The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Analysis of Land Use Changes and Scenario Settings
2.3.1. Water Yield
2.3.2. Soil Conservation
2.3.3. Water Purification
2.4. New Indicator—Average Ecology Effect
2.5. Scenario Setting
3. Results
3.1. Land Use Change in the BAHP from 2000 to 2018
3.2. Evaluation of WRESs Based on Past Land Use Changes
3.3. The Comparison of WRESs in Five Future Scenarios
3.4. The Spatial Distribution Pattern of WRESs in Baseline and Five Future Alternative Scenarios
3.5. Comparison of AEE Among Three Scenarios
4. Discussion
4.1. Linking Land Use Change and WRESs in the Past 18 Years
4.2. Implications of WRESs in the BAHP Based on Scenario Analysis and AEE
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany. 2019. Available online: https://ipbes.net/global-assessment-report-biodiversity-ecosystem-services (accessed on 8 October 2019).
- Braat, L.C.; Groot, R.D. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, C.; Ouyang, Z.Y.; Xu, W.; Bai, Y.; Zhou, W.; Zheng, H.; Wang, X. Impacts of human activities on the hydrology of Baiyangdian Lake, China. Environ. Earth Sci. 2010, 62, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Ouyang, Z.Y.; Zheng, H.; Li, X.; Zhuang, C.; Jiang, B. Modeling soil conservation, water conservation and their tradeoffs: A case study in Beijing. J. Environ. Sci. 2012, 24, 419–426. [Google Scholar] [CrossRef]
- Mei, Y.; Kong, X.H.; Ke, X.L.; Yang, B.H. The impact of cropland balance policy on ecosystem service of water purification—A case study of Wuhan, China. Water 2017, 9, 620. [Google Scholar]
- Daily, G.C. Nature’s services: Societal dependence on natural ecosystems. Pacific Conserv. Biol. 1997, 6, 220–221. [Google Scholar]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision-making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.J.; Zhang, L.W. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Su, S.L.; Xiao, R.; Jiang, Z.L.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Elias, E.; Soromessa, T.; Feyisa, G.L. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z.Y. Linking ecosystem characteristics to final ecosystem services for public policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aneseyee, A.B.; Soromessa, T.; Elias, E. The effect of land use/land cover changes on ecosystem services valuation of Winike watershed, Omo Gibe basin, Ethiopia. Hum. Ecol. Risk Assess. 2019, 26, 2608–2627. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.Q.; Zhang, J.; Connor, J.D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.P.; Zhang, D.G. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model. Chin. J. Appl. Ecol. 2020, 31, 2731–2739. [Google Scholar]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.B.; Zhang, X.L. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Sun, X.; Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Sci. Total Environ. 2017, 609, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Yang, J.; Zhang, W.J. Development of ecosystem services evaluation models: Research progress. Chin. J. Ecol. 2013, 32, 3360–3367. [Google Scholar]
- Sharps, K.; Masanten, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584–585, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.C.; Sun, X.Y.; Guo, H.W.; Shan, R.F. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.Y.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.G.; Xu, W.H.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Liu, M.Z.; Wang, Y.F.; Pei, H.W. Landscape ecological risk assessment in Bashang area of Hebei province based on land use change. Bull. Soil Water Conserv. 2020, 40, 303–311. [Google Scholar]
- Zhen, H.; Zhao, H.S.; Zhang, C.; Zhou, H.C.; Zhao, H.L.; Wang, H. Correlation analysis between groundwater decline trend and human-induced factors in Bashang Region. Water. 2019, 11, 473. [Google Scholar]
- The People’s Government of Hebei Province. Zhangjiakou Capital Water Conservation Function Area and Ecological Environment Support Area Construction Plan (2019–2035). Available online: http://hbepb.hebei.gov.cn/xwzx/szfwj/201912/t20191216_87609.html (accessed on 13 December 2019).
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chapin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide. The Natural Capital Project; University of Minnesota, The Nature Conservancy, World Wildlife Fund, Stanford University: Standford, CA, USA, 2015. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Sonneveld, B.G.J.S.; Nearing, M.A. A nonparametric/parametric analysis of the Universal Soil Loss Equation. CATENA 2003, 52, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 1418–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Canales, M.; López Benito, A.; Passuello, A.; Terrado, M.; Ziv, G.; Acuna, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.H.; Li, H.R.; Zhang, Q.F.; Zhang, K.R. Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China’s Han River basin. Ecol. Eng. 2019, 126, 64–73. [Google Scholar] [CrossRef]
- Wang, B.S.; Chen, H.X.; Dong, Z.; Zhu, W.; Qiu, Q.Y.; Tang, L.N. Impact of land use change on the water conservation service of ecosystems in the urban agglomeration of the Golden Triangle of Southern Fujian, China, in 2030. Acta Ecol. Sin. 2020, 40, 484–498. [Google Scholar]
- Lian, X.H.; Qi, Y.; Wang, H.W.; Zhang, J.L.; Yang, R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water 2019, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, F.; Lu, Z.M.; Crittenden, J.C. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indic. 2018, 94, 117–129. [Google Scholar] [CrossRef]
- Borjesson, P.; Tufvesson, L.M. Agricultural crop-based biofuels-resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 2011, 19, 108–120. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetationin China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.L.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Li, S.; Li, X.D.; Li, X.; Liu, Q.; Meng, Q.F.; Lin, A.Q.; Li, J.J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhang, X.; Li, C.; Hao, F.H.; Yin, G.D. Improvement of ecosystem service function in watershed by ecological restoration measures: A case study in Chaohe River Basion. Acta Ecol. Sin. 2020, 40, 5168–5178. [Google Scholar]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Lorencová, E.K.; Harmáčková, Z.V.; Landová, L.; Pártl, A.; Vačkář, D. Assessing impact of land use and climate change on regulating ecosystem services in the Czech Republic. Ecosyst. Health Sustain. 2016, 2, e01210. [Google Scholar] [CrossRef]
Scenarios | Descriptions | Variations |
---|---|---|
Baseline (2018) | Land use in 2018 (No treatment) | |
Riparian woodland buffer (RWB) Scenario | 100-m-wide riparian buffer is converted into woodland (excluding construction land). | (1) cropland = −0.76%; (2) woodland = +4.1%; (3) grassland = −1.01%; (4) unused land = −3.08% |
Planting trees (PT) Scenario | Cropland and unused land that have a slope gradient of >15° were converted into woodland. | (1) cropland = −2.38%; (2) woodland = +7.28% (3) unused land = −0.26% |
Reclaiming wasteland (RW) Scenario | Unused land that has a slope gradient of <6° were converted into cropland for agricultural development, but woodland and grassland with a slope gradient of <6° were not converted due to eco-environmental protection. | (1) cropland = +9.29%; (2) unused land = −94.47% |
Integrated development (ID) Scenario | Combine RWB, PT and RW scenarios. The priorities are as follows: RWB > PT > RW | (1) cropland = +5.22%; (2) woodland = +13.44% (3) grassland = −2.04%; (4) unused land = −94.92% |
Fertilizer reduction (FR) Scenario | The nutrient loading of cropland reduce by 20% | Nitrogen loading of cropland decrease from 22.02 kg/ha to 16.16 kg/ha. |
2018 | 2000 | ||||||
---|---|---|---|---|---|---|---|
Cropland | Woodland | Grassland | Waters | Construction land | Unused land | Total | |
Cropland | 8885.68 | 51.29 | 295.63 | 24.33 | 115.27 | 76.05 | 9448.25 |
Woodland | 230.97 | 2802.43 | 534.96 | 29.18 | 2.35 | 29.62 | 3629.51 |
Grassland | 191.19 | 150.49 | 3906.83 | 19.86 | 20.75 | 140.56 | 4429.68 |
Waters | 18.45 | 2.89 | 15.52 | 148.89 | 1.15 | 13.84 | 200.74 |
Construction land | 201.59 | 17.6 | 67.06 | 3.39 | 229.15 | 22.15 | 540.94 |
Unused land | 22.36 | 2.20 | 130.25 | 68.48 | 9.18 | 696.53 | 929.00 |
Total | 9550.24 | 3026.9 | 4950.25 | 294.13 | 377.85 | 978.75 | 19,178.12 |
Scenarios | AEEWY (m3·ha−1) | AEENE (kg·ha−1) | AEESE (t·ha−1) |
---|---|---|---|
RWB | −931.84 | −11.98 | −2.00 |
PT | −589.73 | −6.78 | −2.65 |
RW | −1629.33 | 5.58 | −9.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Min, L.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China. Sustainability 2021, 13, 716. https://doi.org/10.3390/su13020716
Liu M, Min L, Zhao J, Shen Y, Pei H, Zhang H, Li Y. The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China. Sustainability. 2021; 13(2):716. https://doi.org/10.3390/su13020716
Chicago/Turabian StyleLiu, Mengzhu, Leilei Min, Jingjing Zhao, Yanjun Shen, Hongwei Pei, Hongjuan Zhang, and Yali Li. 2021. "The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China" Sustainability 13, no. 2: 716. https://doi.org/10.3390/su13020716
APA StyleLiu, M., Min, L., Zhao, J., Shen, Y., Pei, H., Zhang, H., & Li, Y. (2021). The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China. Sustainability, 13(2), 716. https://doi.org/10.3390/su13020716