Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set
2.2.1. Species Distribution of Styrax sumatrana
2.2.2. Biophysical Factors
2.2.3. Climate Factors
2.2.4. Anthropogenic Factors
2.2.5. Future Climate and Scenarios
2.3. Methodology
2.3.1. MaxEnt Model
2.3.2. Baseline Condition
2.3.3. Future Prediction
2.3.4. Validation
3. Results
3.1. MaxEnt Modeling
3.1.1. Effect of the Mean Temperature of the Coldest Quarter
3.1.2. Effect of Altitude
3.1.3. Effect of LULC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kusmana, C.; Hikmat, A. The Biodiversity of Flora in Indonesia. J. Pengelolaan Sumberd. Alam Dan Lingkung. 2015, 5, 187–198. [Google Scholar] [CrossRef]
- Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Zuidema, P.A. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 2014, 174, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Van Zonneveld, M.; Josjela, J.; Vinceti, B.; Jarvis, A. Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 2009, 60, 24–28. [Google Scholar]
- Kailola, F.Y.; Manurung, R.R.; Kaban, I.K. Status Lingkungan Hidup Daerah Provinsi Sumatera Utara Tahun 2015; Badan Lingkungan Hidup Provinsi Sumatera Utara: Medan, Indonesia, 2015.
- Danoedoro, P. Pemetaan Ekologi Bentanglahan Sumatera Utara Berdasarkan Citra Satelit Landsat Enhanced thematic Mapper Plus (ETM+). Sains Inf. Geogr. Dari Pengolah. Dan Anal. Citra Hingga Pemetaan Dan Pemodelan Spasial Pemetaan 2004, 1, 219–243. [Google Scholar]
- Hutagalung, F.; Utomo, B.; Dalimunthe, A. Persepsi Masyarakat di Sekitar Danau Toba Terkait Rendahnya Tingkat Keberhasilan Reboisasi di Daerah Tangkapan Air Danau Toba. Peronema For. Sci. J. 2014, 4, 115–119. [Google Scholar]
- Ambarita, E.C.; Si, M.; Pollung, K. Modal Sosial Komunitas Petani Kemenyan dalam Pelestarian Hutan Kemenyan di desa Pandumaan, Kecamatan Pollung, Kabupaten Humbang Hasundutan. Perspekt. Sosiol. 2015, 3, 42–57. [Google Scholar]
- García-Fernández, C.; Casado, M.A.; Ruiz Pérez, M. Benzoin gardens in North Sumatra, Indonesia: Effects of management on tree diversity. Conserv. Biol. 2003, 17, 829–836. [Google Scholar] [CrossRef]
- Jayusman. Mengenal Pohon Kemenyan (Styrax spp.); Na’iem, M., Mahfudz, Prabawa, S., Eds.; IPB Press: Jakarta, Indonesia, 2014; ISBN 9789794937358. [Google Scholar]
- Silalahi, J.; Sunandar, A.D. Kemenyan (Styrax spp.) Getah Berharga Tano Batak; Forestry Research of Aek Nauli: Simalungun, Indonesia, 2017. [Google Scholar]
- Azhari, I. “Politik Historiografi” Sejarah Lokal: Kisah Kemenyan Dan Kapur Dari Barus, Sumatera Utara. Sej. Dan Budaya J. Sej. BudayaDan Pengajarannya 2018, 11, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Sohel, S.I.; Akhter, S.; Ullah, H.; Haque, E.; Rana, P. Predicting impacts of climate change on forest tree species of Bangladesh: Evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). IForest 2017, 10, 154–160. [Google Scholar] [CrossRef]
- Miller, J. Species distribution modeling. Geogr. Compass 2010, 4, 490–509. [Google Scholar] [CrossRef]
- Anderson, R.P.; Martínez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 2004, 116, 167–179. [Google Scholar] [CrossRef]
- Sinclair, S.J.; White, M.D.; Newell, G.R. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 2010, 15. [Google Scholar] [CrossRef]
- Pearson, R.G. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 2010, 3, 54–89. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Benítez-Badillo, G.; Lascurain-Rangel, M.; Álvarez-Palacios, J.L.; Gómez-Díaz, J.A.; Avendaño-Reyes, S.; Dávalos-Sotelo, R.; López-Acosta, J.C. Influence of Land-Use Changes (1993 and 2013) in the Distribution of Wild Edible Fruits From Veracruz (Mexico). Trop. Conserv. Sci. 2018, 11, 1940082918758662. [Google Scholar] [CrossRef]
- Nimasow, G.; Nimasow, O.D.; Rawat, J.S.; Tsering, G.; Litin, T. Remote sensing and GIS-based suitability modeling of medicinal plant (Taxus baccata Linn.) in Tawang district, Arunachal Pradesh, India. Curr. Sci. 2016, 110, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, J.S.; Lee, H.S. Flood risk assessment for Davao Oriental in the Philippines using geographic information system-based multi-criteria analysis and the maximum entropy model. J. Flood Risk Manag. 2020, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dermawan, B.A.; Herdiyeni, Y.; Prasetyo, L.B.; Siswoyo, A. Predicting the spread of acacia nilotica using Maximum Entropy modeling. Telkomnika (Telecommun. Comput. Electron. Control) 2018, 16. [Google Scholar] [CrossRef]
- Nursamsi, I.; Partasasmita, R.; Cundaningsih, N. Modeling the predicted suitable habitat distribution of Javan hawk- eagle Nisaetus bartelsi in the Java Island, Indonesia. Biodiversitas 2018, 19, 1539–1551. [Google Scholar] [CrossRef]
- Singh, M. Predictive modelling of the distribution of two critically endangered Dipterocarp trees: Implications for conservation of riparian forests in Borneo. J. Ecol. Nat. Environ. 2013, 5, 254–259. [Google Scholar] [CrossRef]
- Rodrigues, P.M.S.; Silva, J.O.; Eisenlohr, P.V.; Schaefer, C. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests. Braz. J. Biol. 2015, 75, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Thorn, J.S.; Nijman, V.; Smith, D.; Nekaris, K.A.I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 2009, 15, 289–298. [Google Scholar] [CrossRef]
- Meijaard, E.; Nijman, V. Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia. Biol. Conserv. 92 2000, 92, 15–24. [Google Scholar] [CrossRef]
- Dinas Perkebunan Sumatera Utara Aplikasi Entry Data Statistik Perkebunan Sumatera Utara. Data Luas Areal, Produksi dan Produktivitas Perkebunan Rakyat Tahun 2017 Komoditi Kemenyan. Available online: http://disbun.sumutprov.go.id/statistik_2018 (accessed on 1 February 2019).
- Hartini, S. Dwi Murti Puspitaningtyas Flora Sumatera Utara Eksotik dan Berpotensi; Pusat Konservasi Tumbuhan Kebun Raya Bogor; LIPI: Bogor, Indonesia, 2005; ISBN 979-97297-4-2. [Google Scholar]
- Hijmans, R.J.; Cameron, S.; Parra, J. WorldClim Version 1. Available online: http://worldclim.com/version1 (accessed on 6 April 2018).
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. U.S Geol. Surv. Data Ser. 2012, 691, 10. [Google Scholar]
- Saputra, M.H.; Sagala, S.A.H.; Lee, H.S. Species Distribution of Styrax sumatrana in North Sumatra Using Maxent Modelling Approach. Forum Geogr. 2019, 33, 196–208. [Google Scholar] [CrossRef]
- Cabrera, J.S.; Lee, H.S. Impacts of climate change on flood-prone areas in Davao Oriental, Philippines. Water 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization). Soil Map of the World; Legend: Paris, France, 1974; Volume 1, ISBN 9231013599. [Google Scholar]
- FAO. Forests and Climate Change in the Asia-Pacific Region; FAO: Roma, Italy, 2010; Volume 7, p. 126. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distribution with Maxent: New extensions and a comprehensive evalutation. Ecograpy 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- Saputra, M.H.; Lee, H.S. Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton. Sustainability 2019, 11, 3024. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change 2013 The Physical Science Basis. In Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; pp. 1–30. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and Experimental Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. Twentyfirst Int. Conf. Mach. Learn. Icml 04 2004, 69, 83. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.B. An Introduction to Best Practices in Species Distribution Modeling; Kansas State University: Manhattan, KS, USA, 2012. [Google Scholar]
- Van Loi, N. Use of GIS Modelling in Assessment of Forestry Land’s Potential in Thua Thien Hue Province of Central Vietnam. Ph.D. Thesis, Georg-August-Universität, Göttingen, Germany, 2008. [Google Scholar]
- Ant, P.; Ernesto, M.; Valenzuela-encinas, C. The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario. Forests 2018, 9, 628. [Google Scholar] [CrossRef] [Green Version]
- Deb, J.C.; Phinn, S.; Butt, N.; McAlpine, C.A. The impact of climate change on the distribution of two threatened Dipterocarp trees. Wiley Ecol. Evol. 2017, 7, 2238–2248. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Anas, A.; Kholibrina, C.R. Faktor-faktor Fenotipe dan Lingkungan Penentu Produktivitas Resin Kemenyan Toba (Styrax sumatrana J. J. Sm). J. Penelit. Kehutan. Sumatrana 2017, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Purba, B.H.; Budiani, E.S.; Mardhiansyah, M. Reveneu Contribution The Community Forests of Styrax spp. on Farmers Household Income. J. Ilmu-Ilmu Kehutan. 2017, 1, 10–17. [Google Scholar]
Data | Source | Year | Type |
---|---|---|---|
Elevation | ASTER GDEM (www.earthexplorer.usgs.gov) | 2017 | tif |
Aspect | Derived from DEM | 2017 | tif |
Slope | Derived from DEM | 2017 | tif |
Land use and land cover | (www.appgis.dephut.go.id) | 1990, 2000, 2010, 2050, 2070 | kml |
Presence data of trees | Field survey and literature | 2012 | csv |
Climate package | CMIP5 GCMs (www.worldclim.org) | 1990, 2050, 2070 | bil |
Soil Type | Food and Agriculture Organization of the United Nations (http://www.fao.org/soils-portal) | 2000 | asc |
Variable | Description | Contribution (%) |
---|---|---|
bio 11_styrax | Mean temperature of coldest quarter | 28.5 |
alt_styrax | Elevation | 26.3 |
lulc_styarx | Land use and land cover | 15.4 |
soiltype_styrax | Type of soil based on FAO classification | 7.4 |
bio2_styrax | Annual mean diurnal range temperature | 5 |
bio19_styrax | Precipitation of coldest quarter | 3.1 |
aspect_styrax | Degree of aspect related compass | 2.8 |
bio3_styrax | Iso-thermality | 2.7 |
bio17_styrax | Precipitation of driest quarter | 2.3 |
bio16_styrax | Precipitation of wettest quarter | 2.1 |
slope_styrx | The degree of slope | 1.5 |
bio18_styrax | Precipitation of warmest quarter | 0.7 |
bio15_styrax | Precipitation seasonality | 0.5 |
bio5_styrax | Maximum temperature of warmest month | 0.4 |
bio7_styrax | Annual temperature range | 0.4 |
bio4_styrax | Temperature seasonality | 0.3 |
bio13_styrax | precipitation of wettest month | 0.2 |
bio8_styrax | Mean temperature of wettest quarter | 0.1 |
bio6_styrax | Minimum temperature of the coldest month | 0 |
bio10_styrax | Mean temperature of warmest quarter | 0 |
bio14_styrax | Precipitation of driest month | 0 |
bio9_styrax | Mean temperature of the driest quarter | 0 |
bio12_styrax | Annual precipitation | 0 |
bio1_styrax | Annual mean temperature | 0 |
Major Classification | Classification | Probability Values |
---|---|---|
Suitable | Highly Suitable | 0.8–1 |
Moderately Suitable | 0.6–0.8 | |
Marginally Suitable | 0.4–0.6 | |
Not Suitable | Currently Not Suitable | 0.2–0.4 |
Permanently Not Suitable | 0–0.2 |
Climate Change Scenario | Suitable Area (%) | ||
---|---|---|---|
Baseline Condition | 2050 | 2070 | |
RCP4.5 | 8.91 | 3.87 (2.05–8.19) | 3.54 (0.03–13.76) |
RCP8.5 | 8.91 | 3.04 (0.03–7.27) | 1.36 (0–3.15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saputra, M.H.; Lee, H.S. Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia. Sustainability 2021, 13, 462. https://doi.org/10.3390/su13020462
Saputra MH, Lee HS. Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia. Sustainability. 2021; 13(2):462. https://doi.org/10.3390/su13020462
Chicago/Turabian StyleSaputra, Muhammad Hadi, and Han Soo Lee. 2021. "Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia" Sustainability 13, no. 2: 462. https://doi.org/10.3390/su13020462
APA StyleSaputra, M. H., & Lee, H. S. (2021). Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia. Sustainability, 13(2), 462. https://doi.org/10.3390/su13020462