Research on the Effects of Environmental Regulations on Industrial-Technological Innovation Based on Pressure Transmission
Abstract
:1. Introduction
1.1. Pressures from Public-Participated Environmental Regulations Put on Relevant Government Departments
1.2. Effects of Environmental Regulations on Industrial-Technological Innovation
2. Theory and Hypotheses
2.1. Hypotheses
2.2. Theoretical Analysis
2.2.1. Transmission of Environmental Pressure between Subjects
2.2.2. Environmental Regulations Promote Industrial-Technological Innovation
3. Research Design and Data Collection
3.1. Variable Selection
3.2. Mediating Effect Model
3.3. Moderating Effect Model
3.4. Threshold Effect Model
3.5. Data Source
3.6. Description of Variables
4. Results and Discussions
4.1. Mediating Effects of Formal Environmental Regulations
4.2. Pressure from Public-Participated Environmental Regulations
4.3. Moderating Effects of Labor and Capital on Industrial Innovation
4.4. Influence of Formal Environmental Regulations on Industrial Innovation under the Pressure of Public Participation
5. Robustness Test
6. Conclusions and Suggestions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
pgdp | RD | pgdp | RD | pgdp | RD | pgdp | RD | pgdp | RD |
---|---|---|---|---|---|---|---|---|---|
7.3849 | 39.07637 | 4.2064 | 6.349755 | 3.5732 | 6.629803 | 5.52328 | 4.755061 | 4.5404 | 8.54246 |
4.6119 | 9.3175 | 3.7028 | 5.739607 | 3.7912 | 4.488511 | 3.85952 | 4.810804 | 4.9044 | 5.595783 |
3.855 | 8.663088 | 3.5826 | 2.200183 | 2.8536 | 5.949713 | 3.12407 | 0.864477 | 3.14158 | 1.817685 |
4.2632 | 3.503228 | 4.901 | 5.866716 | 2.9215 | 5.230423 | 2.94049 | 1.061459 | 6.1479 | 3.045053 |
3.3904 | 3.703868 | 3.4727 | 3.63444 | 3.7378 | 6.117984 | 3.32598 | 2.52306 | 3.7695 | 6.21417 |
3.2705 | 5.098414 | 3.9256 | 6.317698 | 2.8327 | 1.627246 | 4.29994 | 4.60003 | 5.52193 | 6.105282 |
3.1533 | 2.863492 | 3.4041 | 2.400282 | 4.2087 | 5.126199 | 2.92353 | 0.841813 | 5.9028 | 5.454141 |
3.6362 | 36.593 | 3.6658 | 3.016003 | 3.1305 | 2.542623 | 2.80513 | 1.895537 | 3.7139 | 3.083409 |
4.9397 | 5.297637 | 3.4091 | 3.546136 | 3.863 | 5.115734 | 2.71285 | 0.839148 | 6.25224 | 10.00291 |
4.6786 | 7.835322 | 3.2844 | 2.247186 | 3.4266 | 3.503961 | 3.12557 | 1.069201 | 4.2748 | 2.984448 |
4.3912 | 7.133128 | 3.2643 | 1.551693 | 3.4959 | 2.957794 | 3.15971 | 46.15248 | 6.194 | 5.691943 |
3.1581 | 3.053718 | 3.1788 | 2.656678 | 3.2836 | 1.267392 | 5.51559 | 5.408604 | 4.1664 | 5.203761 |
3.513 | 3.771915 | 3.2409 | 1.310727 | 3.3626 | 4.673696 | 5.25024 | 4.295148 | 3.26339 | 3.807159 |
3.1994 | 2.481563 | 3.3747 | 2.807981 | 3.3956 | 3.101633 | 2.58277 | 1.142521 | 3.8217 | 2.394826 |
3.4699 | 4.813238 | 3.9975 | 3.49188 | 3.3277 | 2.800582 | 2.67455 | 2.343275 | 6.0957 | 4.989303 |
3.9405 | 3.329521 | 4.792 | 5.265061 | 3.4376 | 3.247221 | 2.68065 | 0.978942 | 4.7977 | 3.975221 |
2.9514 | 2.772534 | 5.9018 | 7.123677 | 3.3505 | 1.851331 | 3.7675 | 5.027999 | 6.50521 | 4.435711 |
3.4574 | 2.340534 | 4.0065 | 2.500738 | 3.2178 | 2.782878 | 3.7358 | 3.629802 | 3.8234 | 3.005143 |
4.1575 | 4.826371 | 3.7942 | 2.00688 | 3.3442 | 3.23321 | 3.7939 | 4.706473 | 6.4886 | 6.645383 |
2.6743 | 0.95403 | 4.9592 | 2.066271 | 3.2336 | 2.29528 | 4.5878 | 8.627924 | 5.1128 | 4.08181 |
2.7015 | 3.009428 | 3.8975 | 3.177736 | 3.0425 | 1.564364 | 3.6622 | 2.145919 | 3.05125 | 4.58499 |
3.2031 | 1.598 | 3.5148 | 2.559194 | 2.8437 | 0.820369 | 4.1864 | 2.010103 | 3.8095 | 6.762159 |
3.7844 | 1.957057 | 3.8815 | 4.204197 | 3.0409 | 1.194781 | 3.7252 | 1.398396 | 3.0614 | 3.758835 |
3.014 | 4.904537 | 3.5887 | 3.309413 | 3.8463 | 4.941127 | 3.7222 | 5.728322 | 3.403 | 4.161958 |
2.829 | 1.40067 | 4.4136 | 2.647686 | 3.7297 | 3.539052 | 3.7454 | 16.1789 | 2.91066 | 8.202062 |
2.8224 | 1.04689 | 4.0143 | 3.357889 | 3.6805 | 3.455702 | 3.3481 | 1.31915 | 4.185 | 13.45449 |
2.8394 | 1.976388 | 3.8502 | 3.201426 | 3.1961 | 2.277536 | 3.4854 | 1.397791 | 5.2713 | 3.520047 |
2.5648 | 1.245039 | 3.8076 | 2.055711 | 5.52108 | 7.121581 | 3.6059 | 1.176485 | 4.5237 | 5.82694 |
pgdp | RD | pgdp | RD | pgdp | RD | pgdp | RD | pgdp | RD |
2.8423 | 3.875145 | 4.061 | 3.817702 | 4.65534 | 5.489141 | 3.6676 | 2.157488 | 3.10893 | 4.261841 |
2.5631 | 0.765574 | 3.7151 | 7.195578 | 3.98895 | 4.567775 | 3.3749 | 1.094277 | 4.6289 | 5.390019 |
4.0007 | 10.21672 | 3.4826 | 2.782003 | 3.65418 | 4.228986 | 3.6743 | 2.421485 | 3.6236 | 0.82 |
7.36153 | 14.80393 | 3.7543 | 2.450528 | 2.9503 | 3.192755 | 3.6694 | 2.247736 | 3.51602 | 2.983922 |
6.4372 | 3.734921 | 3.4831 | 3.100301 | 3.51163 | 4.160143 | 3.6005 | 0.83674 | 5.4484 | 7.042658 |
6.1915 | 5.828683 | 3.4518 | 3.02486 | 3.38962 | 2.66128 | 3.3823 | 1.344985 | 5.0217 | 4.691368 |
3.6215 | 3.71362 | 3.7456 | 2.56059 | 2.68113 | 3.778415 | 3.5043 | 3.002802 | 3.3663 | 0.683204 |
6.8629 | 6.898405 | 5.1913 | 6.906573 | 3.15696 | 4.409517 | 3.3663 | 0.683204 |
References
- Lieflaender, A.K.; Bogner, F.X. Educational impact on the relationship of environmental knowledge and attitudes. Environ. Educ. Res. 2016, 24, 611–624. [Google Scholar] [CrossRef]
- Mehmet, M.; Gülden, B. Do foreign direct investment and renewable energy consumption affect the CO2 emissions? New evidence from a panel ARDL approach to Kyoto Annex countries. Environ. Sci. Pollut. Res. 2016, 23, 21669–21681. [Google Scholar] [CrossRef]
- Hui, W.; Huifang, L. Foreign direct investment, environmental regulation, and environmental pollution: An empirical study based on threshold effects for different Chinese regions. Environ. Sci. Pollut. Res. 2019, 26, 5394–5409. [Google Scholar] [CrossRef]
- Qian, W.; Baolong, Y. Air pollution control intensity and ecological total-factor energy efficiency: The moderating effect of ownership structure. J. Clean. Prod. 2018, 186, 373–387. [Google Scholar] [CrossRef]
- Michael, L.; Ellen, T.C. New practice creation: An institutional perspective on innovation. Organ. Stud. 2007, 28, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Nori, T.; Stephen, P. Environmental regulation with technology adoption, learning and strategic behavior. J. Environ. Econ. Manag. 2005, 50, 447–467. [Google Scholar] [CrossRef]
- Zhenyu, J.; Zongjun, W.; Zhubo, L. The effect of mandatory environmental regulation on innovation performance: Evidence from China. J. Clean. Prod. 2018, 203, 482–491. [Google Scholar] [CrossRef]
- María, D.L.; José, F.M.; Enrique, C. The potential of environmental regulation to change managerial perception, environmental management, competitiveness and financial performance. J. Clean. Prod. 2010, 18, 963–974. [Google Scholar] [CrossRef]
- Haiyun, L.; Guiju, Z.; Yue, L. Research on the impact of environmental risk perception and public participation on evaluation of local government environmental regulation implementation behavior. Environ. Chall. 2021, 5, 1–29. [Google Scholar] [CrossRef]
- Vinish, K. Informal regulation of pollution in a developing country: Evidence from india. Ecol. Econ. 2007, 63, 403–417. [Google Scholar] [CrossRef]
- Libo, E.; Meimin, Y.; Chujun, W. Strategic interaction of environmental regulation and its influencing mechanism: Evidence of spatial effects among Chinese cities. J. Clean. Prod. 2021, 312, 1–16. [Google Scholar] [CrossRef]
- Lihua, W.; Tianshu, M.; Yuanchao, B.; Sijia, L.; Zhaoqiang, Y. Improvement of regional environmental quality: Government environmental governance and public participation. Sci. Total. Environ. 2020, 717, 1–12. [Google Scholar] [CrossRef]
- Zhiping, L.; Shixun, W.; Lihong, Y. Motivating Innovation Alliance’s Environmental Performance Through Eco-innovation Investment in a Supply Chain. J. Clean. Prod. 2020, 269, 1–11. [Google Scholar] [CrossRef]
- GRAY, W.B. The Cost of Regulation: OSHA, EPA and the Productivity Slowdown. Am. Econ. Rev. 1987, 77, 998–1006. [Google Scholar]
- Christian, L.; Jay, P.S. Private citizen suits and public enforcement: Substitutes or complements. J. Environ. Econ. Manag. 2010, 59, 235–249. [Google Scholar] [CrossRef]
- Wenqing, W.; Yongqian, L.; Chia-Huei, W.; Sang-Bing, T. An empirical study on government direct environmental regulation and heterogeneous innovation investment. J. Clean. Prod. 2020, 254. [Google Scholar] [CrossRef]
- Porter, M.E. America’s green strategy. Sci. Am. 1991, 264, 193–246. [Google Scholar] [CrossRef]
- Porter, M.E.; Linder, C.V.D. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Stefan, A.; Mark, A.C.; Stewart, E.; Pual, L. The Porter hypothesis at 20: Can environmental regulation enhance innovation and competitiveness? Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Fansheng, M.; Ye, X.; Gang, Z. Environmental regulations, green innovation and intelligent upgrading of manufacturing enterprises: Evidence from China. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Ram, R.; Qile, H.; Andrew, B.; Abby, G.; David, G. Environmental regulations, innovation and firm performance: A revisit of the Porter Hypothesis. J. Clean. Prod. 2017, 155, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Xuehong, Z.; Xuguang, Z.; Hailing, L. The dual effects of heterogeneous environmental regulation on the technological innovation of Chinese steel enterprises—Based on a high-dimensional fixed effects model. Ecol. Econ. 2021, 188, 107–119. [Google Scholar] [CrossRef]
- González, P.; Sarkis, J.; Adenso-Díaz, B. Environmental management system certification and its influence on corporate practices: Evidence from the automotive industry. Int. J. Oper. Prod. Manag. 2008, 28, 1021–1041. [Google Scholar] [CrossRef]
- Samwel, M.C.; Daoping, W. The influence of technology innovation on SME performance through environmental sustainability practices in Kenya. Technol. Soc. 2020, 60, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Pang, J.; Zhang, Z.; Li, H. Sustainability assessment of solid waste management in China: A decoupling and decomposition analysis. Sustainability 2014, 6, 9268–9281. [Google Scholar] [CrossRef] [Green Version]
- Guichuan, Z.; Wendi, L.; Tingting, W.; Wenxue, L.; Liming, Z. Be regulated before be innovative? How environmental regulation makes enterprises technological innovation do better for public health. J. Clean. Prod. 2021, 303. [Google Scholar] [CrossRef]
- Bei, X.; Ruimei, W. Effect of environmental regulation on industrial solid waste pollution in china: From the perspective of formal environmental regulation and informal environmental regulation. Int. J. Environ. Res. Public Health 2020, 17, 7798. [Google Scholar] [CrossRef]
- Yuming, Z.; Fangming, Z.; Lilong, H. A study on the definition, classification and evolution of environmental regulation. China Popul. Resour. Environ. 2009, 6, 85–90. [Google Scholar]
- Rubashkina, Y.; Galeotti, M.; Verdolini, E. Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors. Energy Pololicy 2015, 83, 288e300. [Google Scholar] [CrossRef] [Green Version]
- Ben, K.; Thomas, Z. The environmental Porter hypothesis: Theory, evidence, and a model of timing of adoption. Econ. Innov. New Technol. 2009, 18, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Zhenyu, J.; Zongjun, W.; Xiao, L. How environmental regulations affect corporate innovation? The coupling mechanism of mandatory rules and voluntary management. Technol. Soc. 2021, 65, 101–113. [Google Scholar] [CrossRef]
- Lina, S.; Deqing, T.; Suling, F.; Wenting, Z. Environmental regulation, import trade, and green technology innovation. Environ. Sci. Pollut. Res. Int. 2021. [Google Scholar] [CrossRef]
- Li, D.; Cao, C.; Zhang, L.; Chen, X.; Ren, S.; Zhao, Y. Effects of corporate environmental responsibility on financial performance: The moderating role of government regulation and organizational slack. J. Clean. Prod. 2017, 166, 1323–1334. [Google Scholar] [CrossRef]
- Jingjing, L.; Min, Z.; Yanbo, W. Impacts of government subsidies and environmental regulations on green process innovation: A nonlinear approach. Technol. Soc. 2020, 63, 1014–1027. [Google Scholar] [CrossRef]
- Maoliang, B.; Zhenzi, Q.; Beibei, L. Voluntary environmental regulation and firm innovation in China. Econ. Model. 2020, 89, 10–18. [Google Scholar] [CrossRef]
- Alexandra, K.; Ioannis, G.; Aggelos, T. A typology of European countries based on innovation efficiency and technology gaps: The role of early-stage entrepreneurship. Econ.Model. 2016, 52, 477–484. [Google Scholar] [CrossRef]
- Hui, S.; Zaenhaer, D. The Impact of Heterogeneous Environmental Regulation on Urban Environmental Pollution: Research Based on Static and Dynamic Spatial Durbin Model. East China Econ. Manag. 2021, 35, 75–82. [Google Scholar] [CrossRef]
- Mitsutsugu, H. Environmental regulation and the productivity of Japanese manufacturing industries. Resour. Energy Econ. 2006, 28, 299–312. [Google Scholar] [CrossRef]
- Wanhong, L.; Yue, G.; Fang, L.; Ce, L. The effect of command-and-control regulation on environmental technological innovation in China: A spatial econometric approach. Environ. Sci. Pollut. Res. 2018, 26, 34789–34800. [Google Scholar] [CrossRef]
- Sheoli, P.; David, W. Informal Regulation of Industrial Pollution in Developing Countries: Evidence from Indonesia. J. Political Econ. 1996, 104, 1314–1327. [Google Scholar] [CrossRef]
- Zhonghua, C.; Jun, L.; Lianshui, L.; Xinbei, G. The effect of environmental regulation on capacity utilization in China’s manufacturing industry. Environ. Sci. Pollut. Res. 2020, 27, 14807–14817. [Google Scholar] [CrossRef]
- Lannelongue, G.; Gonzalez-Benito, J.; Quiroz, I. Environmental management and labour productivity: The moderating role of capital intensity. J. Environ. Manag. 2017, 190, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Bowen, S. The influence of Chinese environmental regulation on corporation innovation and competitiveness. J. Clean. Prod. 2016, 112, 1528–1536. [Google Scholar] [CrossRef]
Hypotheses | Explanation | Involved Indicators |
---|---|---|
H1 | Environmental pressure transmitted from the public to relevant departments, and from relevant departments to industrial sector. | pres, cres, RD |
H2 | Pres has positive influence on RD. | pres, RD |
H3 | Cres has positive influence on RD. | cres, RD |
H4 | Cres is a mediating variable between pres and RD. | pres, cres, RD |
H5 | Lab and invest exert a moderating effect on how cres influences RD. | lab, invest, cres, RD |
H6 | There is a threshold effect in cres. | cres, pres, RD |
Variables | Definition | Unit |
---|---|---|
Technological innovation level (RD) | Internal R&D expenditure of industrial enterprises above designated size/industrial output value | _ |
Public-participated environmental regulations (pres) | Frequency of the word “environmental pollution” in the Baidu Index | _ |
Formal environmental regulations (cres) | Completion of industrial pollution control investment in each region | 10,000 yuan |
The level of economic development (pgdp) | Per capita income | 10,000 yuan |
Population density (pdst) | Total population/total area of a city | 10,000 people per square kilometer |
Information technology competence (inf) | Telecommunication service income | 10,000 yuan |
The level of opening up (open) | The actual use of foreign capital | 10,000 yuan |
Labor factor (lab) | The size of the industrial work force | persons in a measurement unit |
Capital factor (invest) | The industrial investment in fixed assets | 10,000 yuan |
Variables | N | Mean | Sd | Min | Max |
---|---|---|---|---|---|
RD | 2670 | 2.708 | 3.379 | 0.00191 | 50.40 |
Pres | 2670 | 24.13 | 28.80 | 0 | 190 |
Cres | 2670 | 25,717 | 42,157 | 760.8 | 555,609 |
Pgdp | 2670 | 2.301 | 1.092 | 0.573 | 7.385 |
Pdst | 2670 | 0.0522 | 0.0347 | 0.000537 | 0.276 |
Inf | 2670 | 531,406 | 1.202 × 106 | 12,274 | 2.816 × 107 |
Open | 2670 | 679,028 | 1.464 × 106 | 19.80 | 2.034 × 107 |
Lab | 2670 | 633,961 | 931,428 | 63,800 | 9.869 × 106 |
Invest | 2670 | 1.507 × 106 | 1.786 × 107 | 486,569 | 1.863 × 108 |
Variables | Adjusted t* | VIF |
---|---|---|
RD | −1.6336 * 1 | |
Pres | −14.9125 *** 1 | 2.94 |
Lncres | −15.3842 *** | 2.8 |
Lnpgdp | −13.0304 *** | 2.21 |
Lnpdst | −2.1814 ** 1 | 2.12 |
Lninf | −19.1911 *** | 1.67 |
Lnopen | −15.4869 *** | 1.27 |
Er | −5.924 *** |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
RD | lncres | RD | RD | RD | RD | |
Pres | 0.043 *** (14.01) | 0.013 *** (16.05) | 0.040 *** (12.53) | 0.037 *** (10.95) | 0.043 *** (13.06) | 0.039 *** (11.47) |
Lncres | 0.219 *** (2.90) | |||||
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
RD | lncres | RD | RD | RD | RD | |
lncres × lnlab | 0.023 *** (4.76) | |||||
lncres × lninvest | 0.002 (0.46) | |||||
lncres × lnlab × lninvest | 0.001 *** (2.65) | |||||
Lnpgdp | 0.534 *** (3.63) | −0.249 *** (−6.6) | 0.589 *** (3.98) | 0.657 *** (4.42) | 0.526 *** (3.54) | 0.52 *** (3.54) |
Lnpdst | −0.050 *** (−0.58) | 0.088 *** (3.97) | −0.070 (−0.81) | −0.096 (−1.11) | −0.053 (−0.61) | −0.071 (−0.82) |
Lninf | 0.384 *** (4.24) | 0.313 *** (13.44) | 0.316 *** (3.37) | 0.209 ** (2.15) | 0.371 *** (3.92) | 0.284 *** (2.89) |
Lnopen | 0.0932 ** (2.01) | 0.163 *** (13.74) | 0.057 (1.20) | 0.024 (0.49) | 0.086 * (1.74) | 0.046 (0.92) |
C | −4.82 *** (−4.14) | 3.750 *** (12.54) | −5.641 *** (−4.71) | −4.683 *** (−4.04) | −4.834 *** (−4.15) | −4.3 *** (−3.64) |
R2 | 0.286 | 0.547 | 0.289 | 0.292 | 0.286 | 0.289 |
F | 213.7 *** | 643.91 *** | 179.98 *** | 183.3 *** | 178.06 *** | 179.65 *** |
N | 2670 | 2670 | 2670 | 2670 | 2670 | 2670 |
Observed Coed | Bootstrap std.Err. | z | p > │z│ | Normal-Based [95% conf. Internal] | ||
---|---|---|---|---|---|---|
_bs_1 | 0.0082795 | 0.0026836 | 3.09 | 0.002 | 0.0030198 | 0.0135392 |
_bs_2 | 0.0527429 | 0.0060999 | 8.65 | 0.000 | 0.0407873 | 0.0646986 |
Variables | Threshold | RSS | MSE | Fstat | Prob | Crit10 | Crit5 | Crit1 | BS |
---|---|---|---|---|---|---|---|---|---|
pres | Single | 8835.09 | 3.33 | 64.36 | 0.0000 | 23.53 | 32.01 | 44.98 | 300 |
Double | 8746.55 | 3.29 | 26.88 | 0.0333 | 19.46 | 24.23 | 41.07 | 300 |
Variables | RD |
---|---|
lncres*I (pres ≤ 14) | 0.025 (0.3) |
lncres*I (14 < pres ≤ 93) | 0.091 (1.09) |
lncres*I (93 < pres) | 0.256 *** (3.01) |
lnpgdp | 1.124 *** (8.84) |
lnpdst | 1.189 ** (2.06) |
lninf | 0.111 (1.10) |
lnopen | −0.215 *** (−4.22) |
C | 6.256 ** (2.52) |
R2 | 0.18 |
F | 20.84 *** |
Hypotheses | True or False | Justification |
---|---|---|
H1 | True | Indicated by the regression results of Model 2 in Table 5. |
H2 | True | Indicated by the regression result of Model 1 in Table 5. |
H3 | True | Indicated by the regression result of Model 3 in Table 5. |
H4 | True | Table 5 and Table 6 show a significant mediating effect. |
H5 | True | Indicated by the regression results of Models 4, 5, and 6 in Table 5. |
H6 | True | Table 8 indicates that H6 is true. |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
RD | er | RD | RD | RD | RD | |
pres | 0.043 *** (14.01) | 0.941 *** (3.29) | 0.043 *** (13.84) | 0.042 *** (13.66) | 0.042 *** (13.73) | 0.042 *** (13.49) |
er | 0.001 ** (2.47) | |||||
er × lnlab | 0.0001 *** (3.53) | |||||
er × lninvest | 0.00003 *** (2.74) | |||||
er × lnlab × lninvest | 0.000004 *** (3.85) | |||||
lnpgdp | 0.534 *** (3.63) | −3.802 (−0.28) | 0.536 *** (3.65) | 0.544 *** (3.71) | 0.529 *** (3.60) | 0.536 *** (3.66) |
lnpdst | −0.050 *** (−0.58) | 62.256 *** (7.75) | −0.082 (−0.95) | −0.095 (−1.09) | −0.084 (−0.97) | −0.097 (−1.11) |
lninf | 0.384 *** (4.24) | 67.528 *** (8.01) | 0.349 *** (3.81) | 0.328 *** (3.57) | 0.345 *** (3.76) | 0.322 *** (3.51) |
lnopen | 0.0932 ** (2.01) | 5.549 *** (1.29) | 0.090 * (1.95) | 0.087 ** (1.89) | 0.089 * (1.91) | 0.085 ** (1.84) |
C | −4.82 *** (−4.14) | −434.091 *** (−4.00) | −4.598 *** (−3.94) | −4.379 *** (−3.75) | −4.526 *** (−3.87) | −4.284 *** (−3.66) |
R2 | 0.286 | 0.175 | 0.288 | 0.290 | 0.288 | 0.290 |
F | 213.7 *** | 112.81 *** | 179.44 *** | 180.93 *** | 179.77 *** | 181.48 *** |
N | 2670 | 2670 | 2670 | 2670 | 2670 | 2670 |
Observed Coed | Bootstrap std.Err. | z | p > abs(z) | Normal-Based [95% conf. Internal] | ||
---|---|---|---|---|---|---|
_bs_1 | 0.0024845 | 0.0007798 | 3.19 | 0.001 | 0.0009561 | 0.0040129 |
_bs_2 | 0.0585379 | 0.0044208 | 13.24 | 0.000 | 0.0498733 | 0.0672026 |
Variables | Threshold | RSS | MSE | Fstat | Prob | Crit10 | Crit5 | Crit1 | BS |
---|---|---|---|---|---|---|---|---|---|
pres | Single | 8900.67 | 3.35 | 44.57 | 0.0233 | 23.88 | 32.53 | 60.39 | 300 |
Variables | RD |
---|---|
er*I (pres < 94) | −0.0004 (−1.57) |
er*I (94 ≤ pres) | 0.002 *** (4.44) |
lnpgdp | 1.380 *** (11.19) |
lnpdst | 0.880 (1.47) |
lninf | 0.136 (1.33) |
lnopen | −0.215 *** (−4.20) |
C | 5.469 ** (2.27) |
R2 | 0.17 |
F | 57.77 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, M.; Guo, Q.; Xia, Q.; Zhou, M. Research on the Effects of Environmental Regulations on Industrial-Technological Innovation Based on Pressure Transmission. Sustainability 2021, 13, 11010. https://doi.org/10.3390/su131911010
Quan M, Guo Q, Xia Q, Zhou M. Research on the Effects of Environmental Regulations on Industrial-Technological Innovation Based on Pressure Transmission. Sustainability. 2021; 13(19):11010. https://doi.org/10.3390/su131911010
Chicago/Turabian StyleQuan, Mengqi, Quan Guo, Qing Xia, and Min Zhou. 2021. "Research on the Effects of Environmental Regulations on Industrial-Technological Innovation Based on Pressure Transmission" Sustainability 13, no. 19: 11010. https://doi.org/10.3390/su131911010
APA StyleQuan, M., Guo, Q., Xia, Q., & Zhou, M. (2021). Research on the Effects of Environmental Regulations on Industrial-Technological Innovation Based on Pressure Transmission. Sustainability, 13(19), 11010. https://doi.org/10.3390/su131911010