# Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Research Method

#### 2.1. Data Collection and Wave Scenario

#### 2.2. Hydrodynamics, and Performance Assessment Criterion

#### 2.3. Model Setup

## 3. Result and Discussion

#### 3.1. Wave-Converter Interaction

#### 3.2. Sensitivity Analysis

#### 3.3. Power Take-Off System

#### 3.4. Flap Response

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

WEC | Wave Energy Converter |

WEC-Sim | Wave Energy Converter Simulator |

PTO | Power Take-off |

OWC | Oscillating Water Column |

OSWEC | Oscillating Surge Wave Energy Converter |

WAFO | Wave Analysis for Fatigue and Oceanography |

## References

- Golbaz, D.; Asadi, R.; Amini, E.; Mehdipour, H.; Nasiri, M.; Nezhad, M.M.; Naeeni, S.T.O.; Neshat, M. Ocean Wave Energy Converters Optimization: A Comprehensive Review on Research Directions. arXiv
**2021**, arXiv:2105.07180. [Google Scholar] - Heravi, G.; Salehi, M.M.; Rostami, M. Identifying cost-optimal options for a typical residential nearly zero energy building’s design in developing countries. Clean Technol. Environ. Policy
**2020**, 22, 2107–2128. [Google Scholar] [CrossRef] - Oleinik, P.H.; Trombetta, T.B.; Guimarães, R.C.; de Paula Kirinus, E.; Marques, W.C. Comparative study of the influence of a wave energy converter site on the wave field of Laguna, SC, Brazil. Sustain. Energy Technol. Assess.
**2019**, 31, 262–272. [Google Scholar] [CrossRef] - Wang, L.; Isberg, J.; Tedeschi, E. Review of control strategies for wave energy conversion systems and their validation: The wave-to-wire approach. Renew. Sustain. Energy Rev.
**2018**, 81, 366–379. [Google Scholar] [CrossRef] - Neshat, M.; Alexander, B.; Wagner, M. A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters. Inf. Sci.
**2020**, 534, 218–244. [Google Scholar] [CrossRef] - Garcia-Rosa, P.B.; Bacelli, G.; Ringwood, J.V. Control-informed optimal array layout for wave farms. IEEE Trans. Sustain. Energy
**2015**, 6, 575–582. [Google Scholar] [CrossRef][Green Version] - Henry, A.; Kimmoun, O.; Nicholson, J.; Dupont, G.; Wei, Y.; Dias, F. A two dimensional experimental investigation of slamming of an oscillating wave surge converter. In Proceedings of the The Twenty-fourth International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engineers (ISOPE), ISOPE-I-14-448, Busan, Korea, 15–20 June 2014. [Google Scholar]
- Wei, Y.; Abadie, T.; Henry, A.; Dias, F. Wave interaction with an oscillating wave surge converter. Part II: Slamming. Ocean Eng.
**2016**, 113, 319–334. [Google Scholar] [CrossRef] - Giannini, G.; Rosa-Santos, P.; Ramos, V.; Taveira-Pinto, F. On the Development of an Offshore Version of the CECO Wave Energy Converter. Energies
**2020**, 13, 1036. [Google Scholar] [CrossRef][Green Version] - Rodríguez, C.A.; Rosa-Santos, P.; Taveira-Pinto, F. Hydrodynamic optimization of the geometry of a sloped-motion wave energy converter. Ocean Eng.
**2020**, 199, 107046. [Google Scholar] [CrossRef] - Neshat, M.; Alexander, B.; Wagner, M.; Xia, Y. A Detailed Comparison of Meta-Heuristic Methods for Optimising Wave Energy Converter Placements. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18, Prague, Czech Republic, 13–17 July 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1318–1325. [Google Scholar] [CrossRef]
- Neshat, M.; Abbasnejad, E.; Shi, Q.; Alexander, B.; Wagner, M. Adaptive neuro-surrogate-based optimisation method for wave energy converters placement optimisation. In Proceedings of the International Conference on Neural Information Processing, Sydney, NSW, Australia, 12–15 December 2019; pp. 353–366. [Google Scholar]
- Amini, E.; Golbaz, D.; Amini, F.; Majidi Nezhad, M.; Neshat, M.; Astiaso Garcia, D. A Parametric Study of Wave Energy Converter Layouts in Real Wave Models. Energies
**2020**, 13, 6095. [Google Scholar] [CrossRef] - Murai, M.; Li, Q.; Funada, J. Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs. Renew. Energy
**2020**, 164, 1121–1132. [Google Scholar] [CrossRef] - Aderinto, T.; Li, H. Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter. Energies
**2020**, 13, 1997. [Google Scholar] [CrossRef][Green Version] - Neshat, M.; Sergiienko, N.Y.; Amini, E.; Majidi Nezhad, M.; Astiaso Garcia, D.; Alexander, B.; Wagner, M. A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea. Energies
**2020**, 13, 5498. [Google Scholar] [CrossRef] - Amini, E. Locating and Evaluating the Oscillating Surge Wave Energy Converter Using Grey Wolf Optimizer Algorithm and WEC-Sim Toolbox. Master’s Thesis, University of Tehran, Tehran, Iran, 2019. [Google Scholar]
- Liu, Z.; Wang, Y.; Hua, X. Prediction and optimization of oscillating wave surge converter using machine learning techniques. Energy Convers. Manag.
**2020**, 210, 112677. [Google Scholar] [CrossRef] - Ruehl, K.; Forbush, D.D.; Yu, Y.H.; Tom, N. Experimental and numerical comparisons of a dual-flap floating oscillating surge wave energy converter in regular waves. Ocean Eng.
**2020**, 196, 106575. [Google Scholar] [CrossRef] - Tran, N.; Sergiienko, N.; Cazzolato, B.; Ding, B.; Ghayesh, M.; Arjomandi, M. The impact of pitch-surge coupling on the performance of a submerged cylindrical wave energy converter. Appl. Ocean Res.
**2020**, 104, 102377. [Google Scholar] [CrossRef] - Amini, E.; Naeeni, S.T.O.; Ghaderi, P. Investigating Wave Energy Potential in Southern Coasts of the Caspian Sea and Evaluating the Application of Gray Wolf Optimizer Algorithm. arXiv
**2019**, arXiv:1912.13201. [Google Scholar] - Doyle, S.; Aggidis, G.A. Development of multi-oscillating water columns as wave energy converters. Renew. Sustain. Energy Rev.
**2019**, 107, 75–86. [Google Scholar] [CrossRef][Green Version] - Doyle, S.; Aggidis, G.A. Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC. Renew. Energy
**2021**, 168, 365–374. [Google Scholar] [CrossRef] - Henry, A. The Hydrodynamics of Small Seabed Mounted Bottom Hinged Wave Energy Conerverters in Shallow Water. Ph.D. Thesis, Queen’s University of Belfast, Belfast, UK, 2009. [Google Scholar]
- Lawson, M.; Yu, Y.H.; Ruehl, K.; Michelen, C. Development and demonstration of the WEC-Sim wave energy converter simulation tool. In Proceedings of the 2nd Marine Energy Technology Symposium, Seattle, WA, USA, 15–18 April 2014. [Google Scholar]
- Ruehl, K.; Michelen, C.; Bosma, B.; Yu, Y.H. WEC-Sim Phase 1 Validation Testing: Numerical Modeling of Experiments. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Busan, Korea, 18 October 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 49972, p. V006T09A026. [Google Scholar]
- Renzi, E.; Doherty, K.; Henry, A.; Dias, F. How does Oyster work? The simple interpretation of Oyster mathematics. Eur. J. Mech.-B/Fluids
**2014**, 47, 124–131. [Google Scholar] [CrossRef][Green Version] - Tom, N.; Lawson, M.; Yu, Y.H.; Wright, A. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry; Technical Report; NREL (National Renewable Energy Laboratory): Golden, CO, USA, 2015.
- Kuang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Cao, Y.; Li, L.; Zeng, L. A review of renewable energy utilization in islands. Renew. Sustain. Energy Rev.
**2016**, 59, 504–513. [Google Scholar] [CrossRef] - Kamranzad, B.; Etemad-Shahidi, A.; Chegini, V. Sustainability of wave energy resources in southern Caspian Sea. Energy
**2016**, 97, 549–559. [Google Scholar] [CrossRef][Green Version] - Kamranzad, B.; Etemad-Shahidi, A.; Chegini, V. Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf. Renew. Energy
**2017**, 114, 59–71. [Google Scholar] [CrossRef] - Kamranzad, B.; Chegini, V.; Etemad-Shahidi, A. Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renew. Energy
**2016**, 94, 341–352. [Google Scholar] [CrossRef][Green Version] - Antonio, F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev.
**2010**, 14, 899–918. [Google Scholar] - Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies
**2018**, 11, 1250. [Google Scholar] [CrossRef][Green Version] - Margheritini, L.; Frigaard, P.; Iglesias, G. Technological and Commercial Comparison of OWC and SSG Wave Energy Converters Built into Breakwaters; CRC Press: Boca Raton, FL, USA, 2020; p. 167. [Google Scholar]
- Jamalabadi, M.Y.A.; Ahmadi, E. Design, Construction and Testing of a Dragon Wave Energy Converter. Am. J. Nav. Archit. Mar. Eng.
**2016**, 1, 7–15. [Google Scholar] - Giorgi, G.; Gomes, R.P.; Henriques, J.C.; Gato, L.M.; Bracco, G.; Mattiazzo, G. Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests. Appl. Energy
**2020**, 276, 115421. [Google Scholar] [CrossRef] - Penalba, M.; Kelly, T.; Ringwood, J. Using NEMOH for modelling wave energy converters: A comparative study with WAMIT. In Proceedings of the 12th European wave and tidal energy conference (EWTEC), Cork, Ireland, 27 August–1 September 2017; Volume 631. [Google Scholar]
- Li, X.; Chen, C.; Li, Q.; Xu, L.; Liang, C.; Ngo, K.; Parker, R.G.; Zuo, L. A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification. Appl. Energy
**2020**, 278, 115459. [Google Scholar] [CrossRef] - Falcão, A.F.; Henriques, J.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy
**2016**, 85, 1391–1424. [Google Scholar] [CrossRef] - Falcão, A.F.; Henriques, J.C. Model-prototype similarity of oscillating-water-column wave energy converters. Int. J. Mar. Energy
**2014**, 6, 18–34. [Google Scholar] [CrossRef] - Bailey, H.; Robertson, B.R.; Buckham, B.J. Wave-to-wire simulation of a floating oscillating water column wave energy converter. Ocean Eng.
**2016**, 125, 248–260. [Google Scholar] [CrossRef] - Cheng, Y.; Li, G.; Ji, C.; Zhai, G. Solitary wave slamming on an Oscillating Wave Surge Converter over varying topography in the presence of collinear currents. Phys. Fluids
**2020**, 32, 047102. [Google Scholar] [CrossRef] - Wood, K. Wave-Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Department of Energy, Wave and Ocean Thermal Energy Devices. 2011. Available online: http://earthsci.org/mineral/energy/wavpwr/wavepwr.html (accessed on 24 August 2021).
- Yu, Y.H.; Li, Y.; Hallett, K.; Hotimsky, C. Design and analysis for a floating oscillating surge wave energy converter. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Busan, Korea, 18 October 2016; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 45547, p. V09BT09A048. [Google Scholar]
- Heath, T.V. A review of oscillating water columns. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2012**, 370, 235–245. [Google Scholar] [CrossRef][Green Version] - López, I.; Andreu, J.; Ceballos, S.; De Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev.
**2013**, 27, 413–434. [Google Scholar] [CrossRef] - Sarlak Chivaee, H. Design and Construction of Sea Wave Energy Absorbers. Master’s Thesis, Sharif University of Technology, Tehran, Iran, 2009. [Google Scholar]
- Korzeniowski, A.; Ghorbani, N. Put Options with Linear Investment for Hull-White Interest Rates. J. Math. Financ.
**2021**, 11, 152. [Google Scholar] [CrossRef] - Guillou, N.; Chapalain, G. Annual and seasonal variabilities in the performances of wave energy converters. Energy
**2018**, 165, 812–823. [Google Scholar] [CrossRef][Green Version] - Babarit, A.l.; Hals, J.; Kurniawan, A.; Moan, T.; Krokstad, J. Power absorption measures and comparisons of selected wave energy converters. Int. Conf. Offshore Mech. Arct. Eng. Am. Soc. Mech. Eng.
**2011**, 44373, 437–446. [Google Scholar] - Young, A.H.; Knapp, K.R.; Inamdar, A.; Hankins, W.; Rossow, W.B. The international satellite cloud climatology project H-Series climate data record product. Earth Syst. Sci. Data
**2018**, 10, 583–593. [Google Scholar] [CrossRef][Green Version] - Golshani, A.; Taebi, S.; Chegini, V. Wave hindcast and extreme value analysis for the southern part of the Caspian Sea. Coast. Eng. J.
**2007**, 49, 443–459. [Google Scholar] [CrossRef] - Cummins, W. The Impulse Response Function and Ship Motions (No. DTMB-1661); David Taylor Model Basin: Washington, DC, USA, 1962. [Google Scholar]
- Amaechi, C.V.; Wang, F.; Hou, X.; Ye, J. Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy. Ocean Eng.
**2019**, 171, 429–442. [Google Scholar] [CrossRef][Green Version] - Lawson, M.; Yu, Y.H.; Nelessen, A.; Ruehl, K.; Michelen, C. Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 45547, p. V09BT09A043. [Google Scholar]
- Whittaker, T.; Folley, M. Nearshore oscillating wave surge converters and the development of Oyster. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2012**, 370, 345–364. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ghorbani, N.; Korzeniowski, A. Adaptive Risk Hedging for Call Options under Cox-Ingersoll- Ross Interest Rates. J. Math. Financ.
**2020**, 10, 697–704. [Google Scholar] [CrossRef] - Renzi, E.; Dias, F. Relations for a periodic array of flap-type wave energy converters. Appl. Ocean Res.
**2013**, 39, 31–39. [Google Scholar] [CrossRef][Green Version] - Benites-Munoz, D.; Huang, L.; Anderlini, E.; Marín-Lopez, J.R.; Thomas, G. Hydrodynamic Modelling of An Oscillating Wave Surge Converter Including Power Take-Off. J. Mar. Sci. Eng.
**2020**, 8, 771. [Google Scholar] [CrossRef] - Folley, M.; Whittaker, T.; Henry, A. The effect of water depth on the performance of a small surging wave energy converter. Ocean Eng.
**2007**, 34, 1265–1274. [Google Scholar] [CrossRef] - Bosma, B.; Simmons, A.; Lomonaco, P.; Ruehl, K.; Gunawan, B. WEC-Sim Phase 1 Validation Testing: Experimental Setup and Initial Results. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 19–24 June 2016. [Google Scholar]
- Li, Y.; Yu, Y.H. A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew. Sustain. Energy Rev.
**2012**, 16, 4352–4364. [Google Scholar] [CrossRef] - Combourieu, A.; Lawson, M.; Babarit, A.; Ruehl, K.; Roy, A.; Costello, R.; Laporte Weywada, P.; Bailey, H. WEC3: Wave Energy Converter Code Comparison Project; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017.
- Garcia-Teruel, A.; Forehand, D. A review of geometry optimisation of wave energy converters. Renew. Sustain. Energy Rev.
**2021**, 139, 110593. [Google Scholar] [CrossRef] - Radfar, S.; Shafieefar, M.; Akbari, H.; Galiatsatou, P.A.; Mazyak, A.R. Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions. Appl. Ocean Res.
**2021**, 112, 102711. [Google Scholar] [CrossRef] - A self-floating oscillating surge wave energy converter. Energy
**2021**, 230, 120668. [CrossRef] - Yu, Y.; Jenne, D.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. Reference Model 5 (rm5): Oscillating Surge Wave Energy Converter; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015.

**Figure 1.**Marine wave energy converters technologies. The studied converter’s category is shown within red-dashed line (adapted from [33]).

**Figure 2.**Multiple oscillating surge wave energy converter types: (

**a**): Schematic diagram of a bottom-hinged OSWEC model equipped with a hydraulic power take-off system [43], (

**b**): A submerged OSWEC farm anchored to the seabed developed by AW-Energy in Vanta, Finland [44], (

**c**): OSWEC joint-floating model illustration [45].

**Figure 4.**Location and average depth of three ports on the Caspian Sea’s southern coasts (bathymetric data is collected using [53]).

**Figure 5.**Wave rise of three selected sites in the southern coast of the Caspian Sea. Nowshahr (central port), Anzali (west port), Amirabad (east port).

**Figure 6.**Numerical simulating in the WEC-Sim module, (adapted from [25]).

**Figure 7.**An illustration of the geometric dimensions and acting forces of the wave energy converters under consideration.

**Figure 8.**Determining the width of the oscillator based on the natural period of vibration (curved lines) and water depth [62].

**Figure 9.**The OSWEC geometric parameters designed specifically for Nowshahr port (in the

**left**), as well as the converter’s mesh-assembled flap and base (in the

**right**).

**Figure 10.**Records of the excitation force (

**a**), radiation damping force (

**b**), added mass force (

**c**), buoyancy restoring moment (

**d**), on the converter’s flap. Red arrows indicate the highest amounts in Nowshahr, Anzali and Amirabad ports.

**Figure 11.**Power output of converters with different flap heights over the range of peak period in installation sites.

**Figure 12.**Records of the power take-off moment of a converter with a 12,000 (Nsm/rad) damping coefficient of the PTO system. Green dashed lines indicate the highest amounts in Nowshahr port’s converter, and the red and blue dashed lines show the maximum of the variable in Anzali and Amirabad ports, respectively.

**Figure 13.**Non-dimensional capture factor over PTO damping coefficients from 5000 to 40,000 (Nsm/rad).

**Figure 14.**Total acting torque applied to the converters’ flaps in the ports studied throughout a run. In order to dismiss the unwanted results at the beginning of the oscillation, a ramp time of 100 s has been considered in the simulation (shown with red-dashed lines).

**Figure 15.**Records of the surge displacement (meters) and pitch rotation (degrees) of the converter’s flap. (

**a**): Nowshahr’s flap displacement, (

**b**): Anzali’s flap displacement, (

**c**): Amirabad’s flap displacement, (

**d**): Nowshahr’s flap rotation, (

**e**): Anzali’s flap rotation, (

**f**): Amirabad’s flap rotation. The red lines, respectively, show the highest amount of each variable.

**Table 1.**The statistical characteristics (peak wave period and significant height) of wave data collected along the Caspian Sea’s southern coasts.

Port | Amirabad | Nowshahr | Anzali | |||
---|---|---|---|---|---|---|

Data | T (s) | Hs (m) | T (s) | Hs (m) | T (s) | Hs (m) |

Minimum | 1.29 | 0.09 | 2.19 | 0.13 | 1.93 | 0.11 |

Maximum | 9.71 | 4.48 | 16.53 | 4.62 | 16.53 | 5.45 |

Mean | 3.60 | 0.77 | 5.85 | 0.73 | 6.11 | 0.74 |

STD | 1.43 | 0.50 | 2.19 | 0.52 | 2.01 | 0.56 |

Dimension’s Name | Amount | |
---|---|---|

Width | Height | |

Flap specifications in Nowshahr port (m) | 21 | 6.7–7.7 |

Flap specifications in Anzali port (m) | 18 | 8.2–9.2 |

v Flap specifications in Amirabad port (m) | 23 | 6.0–8.0 |

Thickness the of oscillator flap (m) | 1.8 | |

Width of the oscillator base (m) | 18 | |

Thickness of the oscillator base (m) | 1.8 | |

Height of the oscillator base (m) | 1.8 | |

The distance between center of rotation and seafloor (m) | 2 | |

Initial Damping coefficient of PTO system ($\frac{Nsm}{rad}$) [63] | 12,000 | |

Distance between center of mass and surface of the flap (m) | −3.9 |

**Table 3.**The results of absorbed power, averaged capture factor and incident wave power in studied sites.

Port’s Name | Capture Factor (%) | Averaged Exploitable Power (Kw/m) | Averaged Absorbed Power (Kw/m) |
---|---|---|---|

Nowshahr | 62.9 | 26.8 | 16.7 |

Anzali | 48.8 | 22.3 | 10.9 |

Amirabad | 42.1 | 20.5 | 8.6 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Amini, E.; Asadi, R.; Golbaz, D.; Nasiri, M.; Naeeni, S.T.O.; Majidi Nezhad, M.; Piras, G.; Neshat, M. Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea. *Sustainability* **2021**, *13*, 10932.
https://doi.org/10.3390/su131910932

**AMA Style**

Amini E, Asadi R, Golbaz D, Nasiri M, Naeeni STO, Majidi Nezhad M, Piras G, Neshat M. Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea. *Sustainability*. 2021; 13(19):10932.
https://doi.org/10.3390/su131910932

**Chicago/Turabian Style**

Amini, Erfan, Rojin Asadi, Danial Golbaz, Mahdieh Nasiri, Seyed Taghi Omid Naeeni, Meysam Majidi Nezhad, Giuseppe Piras, and Mehdi Neshat. 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea" *Sustainability* 13, no. 19: 10932.
https://doi.org/10.3390/su131910932