Outbreaks of the Fall Armyworm (Spodoptera frugiperda), and Maize Production Constraints in Zambia with Special Emphasis on Coping Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Sampling Procedure
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Socio Demographic Characteristics of Respondent Farmers in the Surveyed FAW Affected Districts during the 2016–2017 Cropping Season
3.2. Frequency and Severity of FAW Occurrence in the Chibombo and Chongwe Districts in Zambia
3.3. Farmers’ Perceptions of FAW Damage Symptoms, Severity and Associated Yield Losses
3.4. Farmers’ Knowledge of Potential Control Methods against FAW in the Chibombo and Chongwe Districts
3.5. Maize Production Systems and Implications on FAW Management in the Chibombo and Chongwe Districts
3.6. Other Major Constraints to Maize Production in the Study Areas
3.7. Farmer’s Trait Preferences in Maize
3.8. Factors Influencing Farmers Trait Preferences in a Maize Variety
4. Discussion
4.1. Socio Demographic Profile of Farmers
4.2. Frequency and Severity of FAW Damage in the Chibombo and Chongwe Districts
4.3. Farmers’ Perceptions of FAW Damage Symptoms, Severity and Associated Yield Losses
4.4. Maize Production Systems and Implications on FAW Impact and Management in the Chibombo and Chongwe Districts
4.5. Other Major Constraints to Maize Production in the Study Areas
4.6. Farmer’s Trait Preferences in a Maize Variety
4.7. Farmers’ FAW Coping Strategies and Future Directions in FAW Management
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Integrated Management of the Fall Armyworm on Maize: A Guide for Farmer Field Schools in Africa. Food and Agriculture Organization of United Nations. 2018. Available online: http://www.fao.org/publications/card/en/c/I8665EN/ (accessed on 23 January 2019).
- Abrahams, P.; Beale, T.; Cock, M.; Corniani, N.; Day, R.; Godwin, J.; Gomez, J.; Moreno, P.G.; Murphy, S.T.; Opon-Mensah, B.; et al. Fall Armyworm Status, Impacts and Control Options in Africa: Preliminary Evidence Note. CABI, UKAid. 2018. Available online: https://www.invasive-species.org/Uploads/InvasiveSpecies/FAWinception-report.pdf (accessed on 30 November 2018).
- Agboyi, L.K.; Mensah, S.A.; Clottey, V.A.; Beseh, R.G.; Rwomushana, I.; Day, R.; Kenis, M. Evidence of consumption rate decrease in fall armyworm, Spodoptera frugiperda, larvae parasitized by Coccygidium luteum. Insects 2019, 10, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kansime, M.; Mugambi, I.; Rwomushana, I.; Nunda, W.; Lamontagne-Godwin, J.; Rware, H.; Phiri, N.A.; Chipabika, G.; Ndlovu, M.; Day, R. Farmer perception of fall armyworm (Spodoptera frugiperda J.E. Smith) and farm level management practices in Zambia. Pest Manag. Sci. 2019, 7, 2840–2850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macauley, H.; Ramadjita, T. Cereal Crops: Rice, Maize, Millet, Sorghum, Wheat. Feeding Africa, 36. African Development Bank. 2015. Available online: Cereal_Crops_Rice__Maize__Millet__Sorghum__Wheat.pdf (accessed on 1 August 2021).
- Diiro, G.M.; Seymour, G.; Kassie, M.; Muricho, G.; Murithi, B.W. Women’s empowerment in agriculture and productivity: Evidence from rural maize farmer households in western Kenya. PLoS ONE 2018, 13, e0197995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapoto, A.; Chisanga, B.; Mulako, K. Zambia Agricultural Status Report; Indaba Agricultural Policy Research Institute (IAPRI): Lusaka Zambia, 2018; Available online: http://www.iapri.org.zm/research-reports/woring-papers (accessed on 23 November 2018).
- OECD. Crop Production Indicator; OECD: Paris, France, 2018; Available online: https://dataoecd.org/agroutput/crop-production.htm (accessed on 30 November 2018).
- Chapoto, A.; Subakanya, M. Rural Agricultural Livelihoods Survey; 2019 Survey Report; Indaba Agricultural Policy Research Institute (IAPRI): Lusaka, Zambia, 2019; Available online: http://www.iapri.org.zm (accessed on 14 December 2019).
- Howard, J.A.; Mungoma, C. Zambia’s Stop-and-Go Revolution: The Impact of Policies and Organizations on the Development and Spread of Maize Technology; International Development Working Paper; Michigan State University: East Lansing, MI, USA, 1996. [Google Scholar]
- Niasey, S.; Agbodzavu, M.K.; Kimathi, E.; Mutune, B.; Abdel-Rahman, E.F.M.; Salifu, D. Bioecology of Fall Armyworm Spodoptera frugiperda (J.E. Smith), its Management and Potential Patterns of Spread in Africa. PLoS ONE 2021, 16, e0249042. [Google Scholar]
- Kasoma, C.; Shimelis, H.; Laing, M.D. The fall armyworm invasion in Africa: Implications for maize production and breeding. J. Crop Improv. 2020, 35, 111–146. [Google Scholar] [CrossRef]
- Wadell, R. Defeating the armyworm in Zambia. Sustainable agriculture. World Renew Zambia. 2017. Available online: https://worldrenew.net/blog/defeating-armyworm-zambia (accessed on 3 January 2018).
- Prasanna, B.; Huesing, J.E.; Eddy, R.; Peschke, V. Fall Armyworm in Africa: A Guide for Integrated Pest Management; CIMMYT; USAID: Mexico City, Mexico, 2018. Available online: https://respository.cimmyt.org/xmlui/handle/10883/19204 (accessed on 14 December 2018).
- Mrema, E.; Shimelis, H.; Laing, M.; Bucheyeki, T. Farmers’ perceptions of sorghum production and Striga control practices in semi-arid areas of Tanzania. Int. J. Pest Manag. 2017, 63, 146–156. [Google Scholar] [CrossRef]
- Odendo, M.; De Groote, H.; Odongo, O. Assessment of farmers’ preferences and constraints to maize production in moist mid-altitude zone of western Kenya. In Proceedings of the 5th International Conference of the African Crop Science Society, Lagos, Nigeria, 21–26 November 2001. [Google Scholar]
- Mukanga, M.; Derera, J.; Tongoona, P.; Laing, M. Farmers’ perceptions and management of maize ear rots and their implications for breeding for resistance. Afr. J. Agric. Res. 2011, 6, 4544–4554. [Google Scholar]
- Daudi, H.; Shimelis, H.; Laing, M.; Okori, P.; Mponda, O. Groundnut production constraints, farming systems and farmers-preferred traits in Tanzania. J. Crop Improv. 2018, 36, 812–828. [Google Scholar] [CrossRef]
- Chambers, R. The origins and practice of participatory rural appraisal. World Dev. 1994, 22, 953–969. [Google Scholar] [CrossRef] [Green Version]
- Cornwall, A. Whose voices? Whose choices? Reflections on gender and participatory development. World Dev. 2003, 31, 1325–1342. [Google Scholar] [CrossRef]
- IBM Corp IBM SPSS Statistics for Windows; Version 24.0; IBM Corp: Armonk, NY, USA, 2016.
- CGIAR. Gender in Maize. Consultative Group on Agricultural Research. 2016. Available online: https://maize.org/gender-inmaize/ (accessed on 3 January 2017).
- Hruska, A.J.; Gould, F. Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolate (Lepidoptera: Pyralidae): Impact of larval population level and temporal occurrence on maize yield in Nicaragua. J. Econ. Entomol. 1997, 90, 611–622. [Google Scholar] [CrossRef]
- Mihn, J. Efficient Mass Rearing and Infestation Techniques to Screen for Resistance to Spodoptera Frugiperda; CIMMYT: Mexico City, Mexico, 1983. [Google Scholar]
- Rosenzweig, C.; Iglesias, A.; Yang, X.; Epstein, P.R.; Chivan, E. Climate change and extreme weather events: Implications for food production, plant diseases and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Wiseman, B.; Davis, F.M. Plant resistance to the fall armyworm. Fla. Entomol. 1979, 62, 123–130. [Google Scholar] [CrossRef]
- Baudron, F.; Zaman-Allah, M.A.; Chaipa, I.; Chari, N.; Chinwada, P. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in eastern Zimbabwe. Crop. Prot. 2019, 120, 41–150. [Google Scholar] [CrossRef]
- Tambo, J.A.; Matimelo, M.; Ndhlovu, M.; Mbugua, F.; Phiri, N. Gender-differentiated impacts of plant clinics on maize productivity and food security: Evidence from Zambia. World Dev. 2021, 145, 105519. [Google Scholar] [CrossRef]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lovei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A functional overview of conservation biological control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Durocher-Granger, L.; Mfune, L.; Musesha, M.; Lowry, A.; Reynolds, K.; Buddle, A.; Cafa Offord, L.; Chipabika, G.; Dicke, M.; Kenis, M. Factors influencing the occurrence of fall armyworm parasitoids in Zambia. J. Pest Sci. 2020, 94, 1133–1146. [Google Scholar] [CrossRef]
- Ochago, R. Gender and pest management: Constraints to integrated pest management uptake among smallholder coffee farmers in Uganda. Cogent Food Agric. 2018, 4, 1540093. [Google Scholar] [CrossRef]
- Shimelis, H. New variety design and product profiling. In The Business of Plant Breeding: Market-led Approaches to New Variety Design in Africa; Persley, G.J., Anthony, V.M., Eds.; CABI International: Wallington, UK, 2017; pp. 85–114. [Google Scholar]
- Yigezu, G.; Wakgari, M. Local and indigenous knowledge of farmers management practice against fall armyworm (Spodoptera frugiperda) (J.E Smith) Lepidoptera: Noctuidae: A review. J. Entomol. Zool. Stud. 2020, 8, 765–770. [Google Scholar]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; van den Berg, J. Agro-ecological options for fall armyworm (Spodoptera frugiperda J.E. Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 2019, 24, 318–330. [Google Scholar]
Province | District | Camp | Village | Sampled Number of Farmers | Focus Group | |
---|---|---|---|---|---|---|
Interviewees | FGD | |||||
Lusaka | Chongwe | Chainda | Mukunya | 10 | 8 | 1 |
Chimbali | 10 | 8 | ||||
Ngango | 10 | 9 | ||||
Chalimbana | Kabeleka | 10 | 8 | 2 | ||
Shishko | 10 | 9 | ||||
Mwampikanya | 10 | 8 | ||||
Chongwe | Chibombo | Nanswisa | Njema | 10 | 9 | 3 |
Nkwashi | 11 | 8 | ||||
Makusa | 10 | 8 | ||||
Chititi | Kalusa | 10 | 8 | 4 | ||
Musopela A | 10 | 9 | ||||
Musopela B | 10 | 8 | ||||
Total | 121 | 100 |
Variable | Class | Chibombo | Chongwe | Chi-Square | Df | p-Value |
---|---|---|---|---|---|---|
Gender | Male | 31.7 | 30.8 | 0.002 | 1 | 0.962 |
Female | 19.2 | 18.3 | ||||
Age (years) | 15–30 | 19.1 | 1.7 | 22.560 | 3 | 0.000 |
31–50 | 20.0 | 19.1 | ||||
51–70 | 11.3 | 20.9 | ||||
>70 | 1.7 | 6.1 | ||||
Zero | 6.4 | 5.9 | ||||
Educational level | Primary | 21.3 | 27.2 | 0.003 | 3 | 0.786 |
Secondary | 14.3 | 11.5 | ||||
Tertiary | 8.0 | 5.6 | ||||
Family size (number) | <5 | 16.4 | 4.3 | 9.953 | 2 | 0.007 |
5–10 | 31.0 | 38.8 | ||||
>10 | 3.4 | 6.0 | ||||
Household income | <1000 | 3.6 | 5.2 | 0.005 | 3 | 0.562 |
(ZMW) | 1000–3000 | 17.4 | 19.3 | |||
3000–5000 | 18.5 | 15.7 | ||||
>5000 | 10.5 | 9.9 | ||||
Land owned (ha) | 0.0 | 8.4 | 0.0 | 14.706 | 5 | 0.012 |
<1 | 2.5 | 0.8 | ||||
1–5 | 34.5 | 37 | ||||
6–10 | 4.2 | 8.4 | ||||
11–15 | 0.8 | 2.5 | ||||
16–20 | 0.8 | 0.0 |
District | |||||||
---|---|---|---|---|---|---|---|
Frequency of FAW Occurrence | Level of Damage | Chibombo | Chongwe | Total | Chi-Square | Df | p-Value |
Occurred in one season (main season) | SD | 13.9 | 1.4 | 15.3 | 12.415 | 2 | 0.002 |
MOD | 34.7 | 23.6 | 58.3 | ||||
MID | 6.9 | 19.4 | 26.4 | ||||
Occurred in two seasons (main and off seasons) | SD | 33.3 | 46.2 | 79.5 | 1.082 | 1 | 0.298 ns |
MOD | 12.8 | 7.7 | 20.5 |
Districts | ||||||||
---|---|---|---|---|---|---|---|---|
Level of Damage | Estimated Yield Loss | Symptom | Chibombo (%) | Chongwe (%) | Total (%) | Chi-Square | Df | p-Value |
Severe | >50% | Leaf color change | 9.8 | 2.4 | 12.2 | |||
Perforated leaf | 0.0 | 2.4 | 2.4 | |||||
Big leaf portions eaten away | 17.1 | 43.9 | 61.0 | 17.626 | 4 | 0.001 | ||
Grain deformation | 24.4 | 0.0 | 24.4 | |||||
Moderate | 20–49% | Leaf color change | 38.0 | 30.0 | 68.0 | |||
Multiple holes in leaf | 0.0 | 2.0 | 2.0 | 7.145 | 3 | 0.067 ns | ||
Big leaf portions eaten away | 8.0 | 6.0 | 14.0 | |||||
Grain deformation | 16.0 | 0.0 | 16.0 | |||||
Mild | <20% | Leaf color change | 15.0 | 60.0 | 75.0 | |||
Perforated leaf | 5.0 | 0.0 | 5.0 | 3.81 | 3 | 0.283 ns | ||
Big leaf portions eaten away | 5.0 | 5.0 | 10.0 | |||||
Grain deformation | 5.0 | 5.0 | 10.0 | |||||
Total | Leaf color change | 23.4 | 25.2 | 48.6 | ||||
Perforated leaf | 0.9 | 0.0 | 0.9 | |||||
Multiple holes in leaf | 0.0 | 1.8 | 1.8 | 22.057 | 5 | 0.001 | ||
Big leaf portions eaten away | 10.8 | 19.8 | 30.6 | |||||
Grain deformation | 17.1 | 0.9 | 18.0 |
Camp/District | Production Area | Cropping System | Main Source of Seed | Use of Fertilizers and Crop Rotation | Yield (tons/ha) (Mean ± SD) | ||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Area per Household during 2014 to 2017 (ha) (Mean ± SD) | Sole Crop (%) | Intercrop (%) | Cooperatives (%) | ZARI (%) | Agro-Dealers (%) | Inorganic Fertilizers (%) | Crop Rotation | ||
Camp | |||||||||
Nanswisa | 1.90 ± 1.87 | 100.0 | 0.0 | 1.2 | 63.1 | 35.7 | 26.3 | 28.8 | 3.14 ± 4.23 |
Chititi | 1.73 ± 1.89 | 100.0 | 0.0 | 65.6 | 0.0 | 34.4 | 29.5 | 16.3 | 2.89 ± 3.43 |
Chainda | 2.07 ± 0.83 | 25.4 | 79.8 | 72.8 | 0.0 | 27.2 | 16.8 | 26.0 | 3.05 ± 2.09 |
Chalimbana | 1.33 ± 0.82 | 34.8 | 65.2 | 65.9 | 0.0 | 34.1 | 27.4 | 28.8 | 2.12 ± 2.76 |
District | |||||||||
Chibombo | 1.82 ± 1.87 | 3.02 ± 3.83 | |||||||
Chongwe | 1.69 ± 0.90 | 2.57 ± 2.48 | |||||||
Mean | 1.75 | 2.80 |
Constraint | Proportion of Farmers (%) Ranking This Constraint (Rank) | Level of Importance | Chibombo (%) | Chongwe (%) | Total (%) | Chi-Square | Df | p-Value |
---|---|---|---|---|---|---|---|---|
Limited agriculture land | 13.5 (3) | VI | 20.7 | 6.1 | 26.8 | 41.167 | 3 | 0.0 |
IM | 23.2 | 2.4 | 25.6 | |||||
II | 7.3 | 9.8 | 17.1 | |||||
NI | 11.0 | 19.5 | 30.5 | |||||
Poor soil fertility | 9.2 (5) | VI | 14.3 | 14.3 | 28.6 | 17.685 | 3 | 0.039 |
IM | 26.8 | 16.1 | 42.9 | |||||
II | 10.7 | 3.6 | 14.3 | |||||
NI | 10.7 | 3.6 | 14.3 | |||||
Low-yielding varieties | 4.0 (9) | VI | 0.0 | 5.6 | 5.6 | 5.056 | 3 | 0.537 |
IM | 27.8 | 33.3 | 61.1 | |||||
II | 16.7 | 0.0 | 16.7 | |||||
NI | 5.6 | 11.1 | 16.7 | |||||
Limited access to improved varieties | 4.2 (8) | VI | 5.3 | 0.0 | 5.3 | 10.556 | 3 | 0.307 |
IM | 5.3 | 10.5 | 15.8 | |||||
II | 21.1 | 10.5 | 31.6 | |||||
NI | 15.8 | 31.6 | 47.4 | |||||
New varieties lacking suitable traits | 3.1 (10) | VI | 7.7 | 0.0 | 7.7 | 4.494 | 3 | 0.343 |
IM | 0.0 | 0.0 | 0.0 | |||||
II | 7.7 | 61.5 | 69.2 | |||||
NI | 7.7 | 15.4 | 23.1 | |||||
A lack of improved seed | 6.0 (7) | VI | 6.7 | 0.0 | 6.7 | 16.815 | 3 | 0.052 |
IM | 10.0 | 16.7 | 26.7 | |||||
II | 6.7 | 40.0 | 46.7 | |||||
NI | 10.0 | 10.0 | 20.0 | |||||
High cost of fertilizers | 17.0 (1) | VI | 35.0 | 37.9 | 72.8 | 19.86 | 3 | 0.019 |
IM | 6.8 | 16.5 | 23.3 | |||||
II | 3.9 | 0.0 | 3.9 | |||||
NI | 0.0 | 0.0 | 0.0 | |||||
Limited access to fertilizer | 6.1 (6) | VI | 22.6 | 3.2 | 25.8 | 41.361 | 3 | 0 |
IM | 29.0 | 25.8 | 54.8 | |||||
II | 12.9 | 3.2 | 16.1 | |||||
NI | 3.2 | 0.0 | 3.2 | |||||
Drought stress | 11.7 (4) | VI | 7.0 | 29.6 | 36.6 | 35.515 | 3 | 0 |
IM | 1.4 | 1.4 | 2.8 | |||||
II | 18.3 | 22.5 | 40.8 | |||||
NI | 16.9 | 2.8 | 19.7 | |||||
Insect pests | 15.2 (2) | VI | 19.6 | 18.5 | 38.0 | 28.287 | 3 | 0.001 |
IM | 5.4 | 21.6 | 31.5 | |||||
II | 7.6 | 3.3 | 10.9 | |||||
NI | 8.7 | 10.9 | 19.4 | |||||
Diseases | 6.0 (7) | VI | 3.3 | 0.0 | 3.3 | 22.585 | 3 | 0.007 |
IM | 20.0 | 20.0 | 40.0 | |||||
II | 13.3 | 6.7 | 20.0 | |||||
NI | 10.0 | 26.7 | 36.7 | |||||
Bird damage | 4.0 (9) | VI | 0.0 | 11.1 | 11.1 | 3.651 | 3 | 0.455 |
IM | 0.0 | 0.0 | 0.0 | |||||
II | 22.2 | 27.8 | 50.0 | |||||
NI | 27.8 | 11.1 | 38.9 |
Trait | District | ||||
---|---|---|---|---|---|
Chibombo (%) | Chongwe (%) | Chi-Square | Df | p-Value | |
High yield | 42.3 | 56.8 | 33.8 | 10 | 0.000 |
Processing quality | 46.0 | 54.0 | |||
Suitability for intercropping | 42.0 | 58.0 | |||
Early maturity | 46.9 | 53.1 | |||
Drought tolerance | 34.5 | 65.4 | |||
Insect resistance | 64.3 | 35.5 | |||
Disease resistance | 75.0 | 25.0 | |||
Storage pest resistance | 52.5 | 47.5 | |||
Low aflatoxin accumulation | 60.0 | 40.0 | |||
Good market demand | 55.5 | 44.5 | |||
Environmental adaptability | 50.0 | 50.0 |
Male | Female | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
Eigen values | 3.01 | 1.80 | 1.59 | 1.23 | 1.11 | 1.01 | 2.66 | 1.92 | 1.62 | 1.25 | 1.15 | 1.03 |
Proportion of variation | 21.46 | 12.82 | 11.33 | 8.81 | 7.93 | 7.21 | 18.96 | 13.7 | 11.55 | 8.95 | 8.19 | 7.38 |
Cumulative variation | 21.46 | 34.28 | 45.61 | 54.42 | 62.35 | 69.57 | 18.96 | 32.66 | 44.21 | 53.16 | 61.35 | 68.74 |
Social | ||||||||||||
Region | 0.906 | 0.116 | −0.019 | −0.012 | −0.017 | −0.139 | 0.930 | −0.072 | −0.007 | 0.057 | 0.139 | 0.033 |
Extension service | 0.005 | 0.649 | −0.214 | -0.670 | 0.305 | 0.273 | 0.136 | 0.594 | −0.368 | −0.114 | −0.006 | −0.305 |
Family size | 0.543 | −0.225 | −0.142 | 0.108 | 0.056 | 0.349 | 0.476 | 0.319 | 0.135 | 0.00 | −0.395 | −0.111 |
Good market price | 0.255 | 0.621 | 0.296 | 0.223 | 0.121 | 0.309 | 0.429 | 0.611 | 0.069 | 0.04 | −0.276 | −0.287 |
Agronomy | ||||||||||||
High yield | −0.221 | −0.055 | 0.065 | 0.590 | −0.238 | −0.427 | -0.206 | 0.099 | 0.134 | 0.579 | −0.125 | 0.420 |
Early maturity | 0.376 | 0.451 | 0.201 | 0.282 | −0.288 | −0.220 | 0.506 | 0.480 | 0.103 | 0.214 | −0.086 | 0.292 |
Drought tolerance | −0.456 | 0.381 | 0.448 | −0.001 | 0.260 | −0.119 | 0.322 | 0.608 | 0.324 | −0.085 | 0.091 | −0.135 |
Adaptability | 0.025 | 0.078 | 0.026 | −0.804 | −0.152 | −0.194 | 0.017 | −0.006 | −0.044 | −0.745 | 0.281 | 0.380 |
Cooking quality | 0.025 | 0.018 | −0.812 | 0.078 | 0.115 | −0.224 | −0.029 | −0.208 | −0.733 | 0.257 | 0.301 | −0.040 |
Plant protection | ||||||||||||
Insect pest resistance | −0.106 | −0.649 | 0.571 | 0.025 | 0.177 | 0.131 | −0.230 | −0.419 | −0.733 | −0.014 | −0.067 | −0.235 |
Disease resistance | −0.011 | −0.247 | −0.219 | 0.234 | −0.683 | −0.075 | −0.219 | −0.151 | −0.044 | 0.361 | 0.380 | −0.455 |
Storage pest resistance | −0.339 | −0.111 | −0.363 | 0.174 | −0.468 | 0.537 | −0.384 | −0.096 | −0.344 | 0.107 | −0.520 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasoma, C.; Shimelis, H.; D. Laing, M.; Shayanowako, A.; Mathew, I. Outbreaks of the Fall Armyworm (Spodoptera frugiperda), and Maize Production Constraints in Zambia with Special Emphasis on Coping Strategies. Sustainability 2021, 13, 10771. https://doi.org/10.3390/su131910771
Kasoma C, Shimelis H, D. Laing M, Shayanowako A, Mathew I. Outbreaks of the Fall Armyworm (Spodoptera frugiperda), and Maize Production Constraints in Zambia with Special Emphasis on Coping Strategies. Sustainability. 2021; 13(19):10771. https://doi.org/10.3390/su131910771
Chicago/Turabian StyleKasoma, Chapwa, Hussein Shimelis, Mark D. Laing, Admire Shayanowako, and Isack Mathew. 2021. "Outbreaks of the Fall Armyworm (Spodoptera frugiperda), and Maize Production Constraints in Zambia with Special Emphasis on Coping Strategies" Sustainability 13, no. 19: 10771. https://doi.org/10.3390/su131910771
APA StyleKasoma, C., Shimelis, H., D. Laing, M., Shayanowako, A., & Mathew, I. (2021). Outbreaks of the Fall Armyworm (Spodoptera frugiperda), and Maize Production Constraints in Zambia with Special Emphasis on Coping Strategies. Sustainability, 13(19), 10771. https://doi.org/10.3390/su131910771