Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis
2.1.1. Approach to the Objective of the Search
2.1.2. Keyword Definition
2.1.3. Identification of Pertinent Databases
2.1.4. Understanding and Analysis of Results
2.2. Technical Analysis
3. Results and Discussion
3.1. Bibliometric Component
3.1.1. Analysis of Related Scientific Production
3.1.2. Scientific Production by Country
3.1.3. Keywords Used
3.1.4. Academic Journals Selected for Publication
3.1.5. Authors with the Highest Scientific Productivity in the Decade
3.1.6. Co-Authorship and Co-Citation Network
3.1.7. Frequently Cited Documents
3.2. Technical Component of the Studies
3.2.1. Protected Agriculture Structure Types
3.2.2. Type of Covering Material
3.2.3. Analyzed Ventilation Configuration
3.2.4. Type of Software Used for Numerical Solution of the Simulations
3.2.5. Type of Numerical Simulation Performed
3.2.6. Type of Numerical Grid Implemented
3.2.7. Turbulence Model Implemented
3.2.8. Implemented Radiation Model
3.2.9. Implemented Crop Model
3.2.10. Type of Meteorological Condition Simulated
3.2.11. Type of Validation Used
3.3. Current Research Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabbi, B.; Chen, Z.H.; Sethuvenkatraman, S. Protected cropping in warm climates: A review of humidity control and cooling methods. Energies 2019, 12, 2737. [Google Scholar] [CrossRef] [Green Version]
- Villagran, E.; Leon, R.; Rodriguez, A.; Jaramillo, J. 3D numerical analysis of the natural ventilation behavior in a Colombian greenhouse established in warm climate conditions. Sustainability 2020, 12, 8101. [Google Scholar] [CrossRef]
- Revathi, S.; Sivakumaran, N.; Radhakrishnan, T.K. Design of solar-powered forced ventilation system and energy-efficient thermal comfort operation of greenhouse. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Villagrán, E.; Rodriguez, A. Analysis of the Thermal Behavior of a New Structure of Protected Agriculture Established in a Region of Tropical Climate Conditions. Fluids 2021, 6, 223. [Google Scholar] [CrossRef]
- Ben Amara, H.; Bouadila, S.; Fatnassi, H.; Arici, M.; Allah Guizani, A. Climate assessment of greenhouse equipped with south-oriented PV roofs: An experimental and computational fluid dynamics study. Sustain. Energy Technol. Assess. 2021, 45, 101100. [Google Scholar] [CrossRef]
- Rojas-Rishor, A. Análisis del Comportamiento Térmico de un Invernadero Construido en Ladera, Aplicando Dinámica de Fluidos Computacional. Bachelor’s Thesis, Facultad de Ingeniería, Departamento de Ingeniería Agrícola, Universidad de Costa Rica, San Pedro, Costa Rica, 2015. Available online: https://www.ingbiosistemas.ucr.ac.cr/wp-content/uploads/2016/02/tesis-adriana-rojas.pdf (accessed on 10 May 2021).
- Villagran, E.; Henao-Rojas, J.C.; Franco, G. Thermo-Environmental Performance of Four Different Shapes of Solar Greenhouse Dryer with Free Convection Operating Principle and No Load on Product. Fluids 2021, 6, 183. [Google Scholar] [CrossRef]
- Zhou, D.; Meinke, H.; Wilson, M.; Marcelis, L.F.M.; Heuvelink, E. Towards delivering on the sustainable development goals in greenhouse production systems. Resour. Conserv. Recycl. 2021, 169, 105379. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Ramírez Vargas, C.; Nienhuis, J. Evaluación del crecimiento y productividad del tomate (Lycopersicon esculentum Mill) bajo cultivo protegido en tres localidades de Costa Rica. Rev. Tecnol. Marcha 2012, 25, 3. [Google Scholar] [CrossRef] [Green Version]
- Villagran, E.; Bojacá, C.; Akrami, M. Contribution to the sustainability of agricultural production in greenhouses built on slope soils: A numerical study of the microclimatic behavior of a typical Colombian structure. Sustainability 2021, 13, 4748. [Google Scholar] [CrossRef]
- Akrami, M.; Javadi, A.A.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Tabor, G.R.; Negm, A. Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability 2020, 12, 986. [Google Scholar] [CrossRef] [Green Version]
- Villagran Munar, E.A.; Bojacá Aldana, C.R.; Rojas Bahamon, N.A. Determination of the thermal behavior of a Colombian spatial greenhouse through computational fluid dynamics. Rev. UDCA Actual. Divulg. Cient. 2018, 21, 415–426. [Google Scholar]
- McCartney, L.; Lefsrud, M.G. Field trials of the natural ventilation augmented cooling (NVAC) greenhouse. Biosyst. Eng. 2018, 174, 159–172. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Guo, S.; Zhang, J.; Wei, B.; Sun, J.; Shu, S. Ventilation optimization of solar greenhouse with removable back walls based on CFD. Comput. Electron. Agric. 2018, 149, 16–25. [Google Scholar] [CrossRef]
- Espejel Trujano, D.; López Cruz, I.L. Determinación de las tasas de ventilación natural en un invernadero mediante modelos teóricos y gases trazadores. Rev. Mex. Cienc. Agríc. 2013, 4, 185–198. [Google Scholar]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R.; Acuña-Caita, J.F. Diseño Y Evaluación Climatica de un Invernadero Para Condiciones de Clima Intertropical de Montaña. Master’s Thesis, Facultad de Ingeniería, Departamento de Ingeniería Agrícola, Universidad Nacional de Colombia, Bogotá, Colombia, 2016. Available online: https://repositorio.unal.edu.co/bitstream/handle/unal/56572/1072644298.2016.pdf?sequence=1&isAllowed=y (accessed on 1 May 2021).
- López, A.; Valera, D.L.; Molina-Aiz, F. Sonic anemometry to measure natural ventilation in greenhouses. Sensors 2011, 11, 9820–9838. [Google Scholar] [CrossRef] [PubMed]
- Molina-Aiz, F.D.; Norton, T.; López, A.; Reyes-Rosas, A.; Moreno, M.A.; Marín, P.; Espinoza, K.; Valera, D.L. Using computational fluid dynamics to analyse the CO2 transfer in naturally ventilated greenhouses. Acta Hortic. 2017, 1182, 283–292. [Google Scholar] [CrossRef]
- De Pedro, L.F. Invernaderos en Regiones Tropicales Y Sub-Tropicales Balance de Energía, Diseño Y Manejo del Ambiente Físico. Master’s Thesis, Universidad Nacional de Formosa en convenio con el Gobierno de la Provincia—Instituto Universitario de Formosa, Laguna Blanca, Argentina, 2015. Available online: https://bibliotecavirtual.unl.edu.ar:8443/ (accessed on 23 March 2021).
- Arellano-García, M.; Marco, A.; Valera-Martínez, D.L.; Urrestarazu-Gavilán, A.; Murguía-López, M.R.; Zermeño-González, J. Ventilación natural Y forzada de invernaderos tipo Almería Y su relación con el rendimiento de tomate. Terra Latinoam. 2011, 29, 379–386. [Google Scholar]
- Espinoza, K.; López, A.; Valera, D.L.; Molina-Aiz, F.D.; Torres, J.A.; Peña, A. Effects of ventilator configuration on the flow pattern of a naturally-ventilated three-span Mediterranean greenhouse. Biosyst. Eng. 2017, 164, 13–30. [Google Scholar] [CrossRef]
- Bojacá, C.R.; Villagrán, E.A. Diseño, construcción y evaluación de un invernadero para el cultivo de flores de corte en las condiciones del occidente de la Sabana de Bogotá. In Productos Relevantes del Proyecto Fortalecimiento de la Competitividad del Sector Floricultor Colombiano Mediante el uso de Ciencia, Tecnología e Innovación Aplicadas en Cundinamarca; Ediciones Unisalle: Bogota, Colombia, 2021; Volume 1, pp. 12–45. [Google Scholar] [CrossRef]
- Ruiz-García, A.; López-Cruz, I.L.; Arteaga-Ramírez, R.; Ramírez-Arias, J.A. Tasas de ventilación natural de un invernadero del centro de México estimadas mediante balance de energía. Agrociencia 2015, 49, 87–100. [Google Scholar]
- Morris, L.G.; Neale, F.E. Engineering, Infrared Carbon Dioxide Gas Analyser and Its Use in Glasshouse Research; National Institute of Agricultural Engineering: City of York, UK, 1954. [Google Scholar]
- Boulard, T.; Kittas, C.; Roy, J.C.; Wang, S. Convective and ventilation transfers in greenhouses, part 2: Determination of the distributed greenhouse climate. Biosyst. Eng. 2002, 83, 129–147. [Google Scholar] [CrossRef] [Green Version]
- Boulard, T.; Meneses, J.F.; Mermier, M.; Papadakis, G. The mechanisms involved in the natural ventilation of greenhouses. Agric. For. Meteorol. 1996, 79, 31–77. [Google Scholar] [CrossRef]
- Baptista, F.J.; Bailey, B.J.; Randall, J.M.; Meneses, J.F. Greenhouse ventilation rate: Theory and measurement with tracer gas techniques. J. Agric. Eng. Res. 1999, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Villagrán, E.A.; Baeza Romero, E.J.; Bojacá, C.R. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
- Flores-Velázquez, J.; Mejía-Saenz, E.; Montero-Camacho, J.I.; Rojano, A. Analísis nuḿrico del clima interior en un invernadero de tres naves con ventilacín mećnica. Agrociencia 2011, 45, 545–560. [Google Scholar]
- Akrami, M.; Mutlum, C.D.; Javadi, A.A.; Salah, A.H.; Fath, H.E.S.; Dibaj, M.; Farmani, R.; Mohammed, R.H.; Negm, A. Analysis of inlet configurations on the microclimate conditions of a novel standalone agricultural greenhouse for egypt using computational fluid dynamics. Sustainability 2021, 13, 1446. [Google Scholar] [CrossRef]
- Benni, S.; Santolini, E.; Barbaresi, A.; Torreggiani, D.; Tassinari, P. Calibration and comparison of different CFD approaches for airflow analysis in a glass greenhouse. J. Agric. Eng. 2017, 48, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Fidaros, D.K.; Baxevanou, C.A.; Bartzanas, T.; Kittas, C. Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day. Renew. Energy 2010, 35, 1380–1386. [Google Scholar] [CrossRef]
- Perén, J.I.; van Hooff, T.; Leite, B.C.C.; Blocken, B. CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Build. Environ. 2015, 85, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Villagrán, E.A.; Gil, R.; Acuña, J.F.; Bojacá, C.R. Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse. Agron. Colomb. 2012, 30, 282–288. [Google Scholar]
- Baeza, E.J.; Pérez-Parra, J.J.; Montero, J.I.; Bailey, B.J.; López, J.C.; Gázquez, J.C. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Villagran Munar, E.A.; Bojaca Aldana, C.R. Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornam. Hortic. 2019, 25, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Flores-Velázquez, J.; López-Cruz, I.L.; Mejía-Sáenz, E.; Montero-Camacho, J.I. Evaluación del desempeño climático de un invernadero baticenital del centro de México mediante dinámica de fluidos computacional (CFD). Agrociencia 2014, 48, 131–146. [Google Scholar]
- Fragos, V.P.; Kateris, D.; Ntinas, G.K.; Firfiris, V.; Kotsopoulos, T.A. Investigation of ventilation opening positions effect on the airflow inside and outside of a greenhouse. Acta Hortic. 2017, 1170, 151–157. [Google Scholar] [CrossRef]
- Briceño-Medina, L.Y.; Ávila-Marroquín, M.V.; Jaimez-Arellano, R.E. Simicroc: Modelo de simulación del microclima de un invernadero. Agrociencia 2011, 45, 801–813. [Google Scholar]
- Bournet, P.E.; Boulard, T. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Bournet, P.E.; Chassériaux, G.; Winiarek, V. Simulation of energy transfers in a partitioned glasshouse during daytime using a Bi-band radiation model. Acta Hortic. 2006, 719, 357–364. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Yue, X.; Liu, X.; Tian, S.; Li, T. Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation. PLoS ONE 2020, 15, e0239851. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Valera, D.L.; Peña, A.A.; Álvarez, A.J.; Gil, J.A. Analysis of the effect of rollup vent arrangement and wind speed on Almería-type greenhouse ventilation performance using computational fluid dynamics. Acta Hortic. 2006, 719, 173–180. [Google Scholar] [CrossRef]
- Teitel, M.; Garcia-Teruel, M.; Ibanez, P.F.; Tanny, J.; Laufer, S.; Levi, A.; Antler, A. Airflow characteristics and patterns in screenhouses covered with fine-mesh screens with either roof or roof and side ventilation. Biosyst. Eng. 2015, 131, 1–14. [Google Scholar] [CrossRef]
- Romero-Gómez, P.; Choi, C.Y.; López-Cruz, I.L. Mejora de las tasas de ventilación de invernaderos bajo condiciones climáticas del centro de México. Agrociencia 2010, 44, 1–15. [Google Scholar]
- Villagrán, E.A.; Jaramillo, J.E.; León-Pacheco, R.I. Natural ventilation in greenhouse with anti-insect screens evaluated with a computational fluid model. Agron. Mesoamerican 2020, 31, 689–717. [Google Scholar] [CrossRef]
- Zhang, Y.; Yasutake, D.; Hidaka, K.; Kitano, M.; Okayasu, T. CFD analysis for evaluating and optimizing spatial distribution of CO2 concentration in a strawberry greenhouse under different CO2 enrichment methods. Comput. Electron. Agric. 2020, 179, 105811. [Google Scholar] [CrossRef]
- Pakari, A.; Ghani, S. Airflow assessment in a naturally ventilated greenhouse equipped with wind towers: Numerical simulation and wind tunnel experiments. Energy Build. 2019, 199, 1–11. [Google Scholar] [CrossRef]
- Saberian, A.; Sajadiye, S.M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renew. Energy 2019, 138, 722–737. [Google Scholar] [CrossRef]
- Aguilar-Rodriguez, C.E.; Flores-Velazquez, J.; Ojeda-Bustamante, W.; Rojano, F.; Iñiguez-Covarrubias, M. Valuation of the energy performance of a greenhouse with an electric heater using numerical simulations. Processes 2020, 8, 600. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Lü, E. Numerical simulation of temperature decrease in greenhouses with summer water-sprinkling roof. Energies 2019, 12, 2435. [Google Scholar] [CrossRef] [Green Version]
- Bouhoun Ali, H.; Bournet, P.E.; Cannavo, P.; Chantoiseau, E. Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Comput. Electron. Agric. 2018, 149, 26–40. [Google Scholar] [CrossRef]
- Li, K.; Xue, W.; Mao, H.; Chen, X.; Jiang, H.; Tan, G. Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics. Energies 2019, 12, 2873. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xu, F.; Tan, D.; Shen, Z.; Zhang, L.; Ai, Q. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl. Energy 2015, 141, 106–118. [Google Scholar] [CrossRef]
- Fatnassi, H.; Boulard, T.; Ben Amara, H.; Roy, J.C.; Suay, R.; Poncet, C. Increasing the height and multiplying the number of spans of greenhouse: How far can we go? Acta Hortic. 2017, 1170, 137–143. [Google Scholar] [CrossRef]
- Kim, R.; Kim, J.; Lee, I.; Yeo, U.; Lee, S.; Decano-Valentin, C. Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD. Biosyst. Eng. 2021, 207, 33–58. [Google Scholar] [CrossRef]
- Kim, R.; Kim, J.; Lee, I.; Yeo, U.; Lee, S.; Decano-Valentin, C. Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 2: Development of an educational VR simulator. Biosyst. Eng. 2021, 207, 12–32. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Bojacá, C.; Akrami, M. Evaluation of the microclimate in a traditional Colombian greenhouse used for cut flower production. Agronomy 2021, 11, 1330. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pico-Saltos, R.; Carrión-Mero, P.; Montalván-Burbano, N.; Garzás, J.; Redchuk, A. Research trends in career success: A bibliometric review. Sustainability 2021, 19, 4625. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of scientific production on organizational innovation. Cogent Bus. Manag. 2020, 7, 1745043. [Google Scholar] [CrossRef]
- Michán Aguirre, L. Cienciometría, información e informática en ciencias biológicas: Enfoque interdisciplinario para estudiar interdisciplinas. J. Philos. Life Sci. 2011, 19, 239–243. [Google Scholar]
- Tarrío-Saavedra, J.; Orois, E.; Naya, S. Estudio métrico sobre la actividad investigadora usando el software libre R: El caso del sistema universitario gallego. Investig. Bibl. 2017, 2017, 221–247. [Google Scholar] [CrossRef] [Green Version]
- Cervantes Rendón, E.; Garza Almanza, V. La cienciometría como herramienta para analizar el impacto de la investigación científica en una región. Cult. Cient. Y Tecnol. 2012, 9, 41–49. [Google Scholar]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; López-Felices, B.; Román-Sánchez, I.M. An analysis of global research trends on greenhouse technology: Towards a sustainable agriculture. Int. J. Environ. Res. Public Health 2020, 17, 664. [Google Scholar] [CrossRef] [Green Version]
- dos Santo, R.C.; Sell, D.; Steil, A.V.; Ceci, F.; Fernandes, V.; Andreoli, C.V. A revista engenharia sanitária e ambiental no sistema Brasileiro de ciência, Tecnologia e inovação. Eng. Sanit. Ambient. 2015, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Paz-Enrique, L.E.; Hernandez-Alfonso, E.A. Estudio de productividad científica internacional de la temática Caña de Azúcar relacionada con Química Aplicada. Tecnol. Química 2015, 35, 295–307. [Google Scholar]
- Speroni, R.D.M.; Dandolini, G.A.; Souza, J.A.; Gauthier, F.A.O. Estado da arte da produção científica sobre indicadores e índices de inovação. Rev. Adm. Innov. 2015, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- López-Illescas, C.; de Moya-Anegón, F.; Moed, H.F. Coverage and citation impact of oncological journals in the Web of Science and Scopus. J. Informetr. 2008, 2, 304–316. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Payán-Sánchez, B.; Belmonte-Ureña, L.J.; Plaza-úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N.; Pérez-Valls, M. Open innovation for sustainability or not: Literature reviews of global research trends. Sustainability 2021, 13, 1136. [Google Scholar] [CrossRef]
- Roldan-Valadez, E.; Salazar-Ruiz, S.Y.; Ibarra-Contreras, R.; Rios, C. Current concepts on bibliometrics: A brief review about impact factor, Eigenfactor score, cite score, SCI mago journal rank, source-Normalised impact per paper, H-index, and alternative metrics. Ir. J. Med. Sci. 2019, 188, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, A.; Li, Y.; Jin, D.; Tian, Y.; Zhang, D.; Wu, D.; Zhang, L.; Lei, W. Analysis of microclimate characteristics in solar greenhouses under natural ventilation. Build. Simul. 2021, 14, 1811–1821. [Google Scholar] [CrossRef]
- Villagran Munar, E.A.; Bojacá Aldana, C.R.; Rojas Bahamon, N.A. Determinación del comportamiento térmico de un invernadero espacial colombiano mediante dinámica de fluidos computacional. Rev. UDCA Actual. Divulg. Cient. 2018, 21, 415–426. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Gil, R.; Acuña-Caita, J.F.; Bojacá-Aldana, C.R. Optimización de la ventilación y su efecto en el microclima de un invernadero multitúnel colombiano. Agron. Colomb. 2012, 30, 282–288. [Google Scholar]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Determinación del comportamiento térmico de un invernadero colgante colombiano aplicando simulación CFD. Rev. Ciencias Técnicas Agropecu. 2019, 28. [Google Scholar]
- Gil, R.; Bojacá-Aldana, C.R.; Casilimas, H.; Schrevens, E.; Suay, R. Assessment of sidewall and roof vents opening configurations to improve airflow inside greenhouses. Acta Hortic. 2012, 952, 141–146. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization. Rev. Ceres 2020, 67, 345–356. [Google Scholar] [CrossRef]
- Klancoowat, W.; Chaiyat, N.; Nathewet, P. Wastewater recovery of air conditioning for indoor cannabis production. In Proceedings of the 15th National and International Sripatum University Conference 2020, Bangkok, Thailand, 18 December 2020. [Google Scholar]
- Saavedra, M.; Ricardo, K. Requerimientos Agronómicos Para Un Modelo Productivo De Cannabis En La Provincia Del Sumapaz. Bachelor’s Thesis, Facultad de Ciencias Agropecuarias Ingeniería Agronómica University of Cundinamarca, Fusagasugá, Colombia, 2021. [Google Scholar]
- Villagran, E. Two-dimensional numerical study of the microclimate generated in three screenhouses for the climatic conditions of the colombian caribbean. Int. J. Heat Technol. 2021, 39, 460–468. [Google Scholar] [CrossRef]
- Espinal-Montes, V.; López-Cruz, I.; Rojano-Aguilar, A.; Romantchik-Kriuchova, E.; Ramírez-Arias, A. Determinación de los gradientes térmicos nocturnos en un invernadero usando dinámica de fluidos computacional. Agrociencia 2015, 49, 233–247. [Google Scholar]
- Flores-Velázquez, J. Dinamica de fluidos computacional (CFD) para modelar Y optimizar el ambiente de un invernadero. Comeii 2017, 485, 1–11. [Google Scholar]
- Valdez-Torres, J.B.; Soto-Landeros, F.; Osuna-Enciso, T.; Báez-Sañudo, M.A. Modelos de predicción fenológica para maíz blanco (Zea mays L.) y gusano cogollero (Spodoptera frugiperda J. E. Smith). Agrociencia 2012, 46, 399–410. [Google Scholar]
- Gutiérrez, J.K.R.; Velasco, N.Y.G. Redes de coautoría como herramienta de evaluación de la producción científica de los grupos de investigación. Rev. Gen. Inf. Y Doc. 2017, 27, 279. [Google Scholar]
- Velden, T.; Haque, A.; Lagoze, C. A new approach to analyzing patterns of collaboration in co-authorship networks: Mesoscopic analysis and interpretation. Scientometrics 2010, 85, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research trends in geotourism: A bibliometric analysis using the scopus database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and mining towards the development of geotourism: A global perspective. Int. J. Des. Nat. Ecodynamics 2021, 16, 191–201. [Google Scholar] [CrossRef]
- Piscia, D.; Montero, J.I.; Baeza, E.; Bailey, B.J. A CFD greenhouse night-time condensation model. Biosyst. Eng. 2012, 111, 141–154. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Fatnassi, H.; Boulard, T.; Roy, J.C.; Valera, D.L. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Comput. Electron. Agric. 2010, 72, 69–86. [Google Scholar] [CrossRef]
- Nebbali, R.; Roy, J.C.; Boulard, T. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse. Renew. Energy 2012, 43, 111–129. [Google Scholar] [CrossRef]
- Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43. [Google Scholar] [CrossRef]
- Bartzanas, T.; Kacira, M.; Zhu, H.; Karmakar, S.; Tamimi, E.; Katsoulas, N.; Lee, I. Computational fluid dynamics applications to improve crop production systems. Comput. Electron. Agric. 2013, 93, 151–167. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Piscia, D.; Muñoz, P.; Panadès, C.; Montero, J.I. A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Comput. Electron. Agric. 2015, 115, 129–141. [Google Scholar] [CrossRef]
- Aguilar-Rodríguez, C.E.; Flores-Velázquez, J. CFD simulation of heat and mass transfer for climate control in greenhouses. Heat Mass Transf.—Adv. Sci. Technol. Appl. 2019, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baxevanou, C.A.; Fidaros, D.K.; Bartzanas, T.; Kittas, C. Numerical simulation of solar radiation, air flow and temperature distribution in a naturally ventilated tunnel greenhouse. Agric. Eng. Int. CIGR J. 2010, 12, 48–67. [Google Scholar]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. CFD simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior. Int. J. Heat Technol. 2019, 37, 881–892. [Google Scholar] [CrossRef]
- Ghernaout, B.; Attia, M.E.; Bouabdallah, S.; Driss, Z.; Benali, M.L. Heat and fluid flow in an agricultural greenhouse. Int. J. Heat Technol. 2020, 38, 92–98. [Google Scholar] [CrossRef]
- Pontikakos, C.; Ferentinos, K.P.; Tsiligiridis, T.A.; Sideridis, A.B. Natural ventilation efficiency in a twin-span greenhouse using 3D computational fluid dynamics. In Proceedings of the Third International Conference on Information and Communication Technologies in Agriculture, Volos, Greece, 20–23 September 2006. [Google Scholar]
- Piscia, D.; Montero, J.I.; Bailey, B.; Muñoz, P.; Oliva, A. A new optimisation methodology used to study the effect of cover properties on night-time greenhouse climate. Biosyst. Eng. 2013, 116, 130–143. [Google Scholar] [CrossRef]
- Piscia, D.; Montero, J.I.; Flores-Velázquez, J. Predicting night-time condensation in a multi-span greenhouse using computational fluid dynamic simulations. Acta Hortic. 2012, 927, 627–634. [Google Scholar] [CrossRef]
- Mesmoudi, K.; Meguallati, K.H.; Bournet, P.E. Effect of the greenhouse design on the thermal behavior and microclimate distribution in greenhouses installed under semi-arid climate. Heat Transf. Asian Res. 2017, 46, 1294–1311. [Google Scholar] [CrossRef]
- Mesmoudi, K.; Meguellati, K.H.; Bournet, P.E. Thermal analysis of greenhouses installed under semi arid climate. Int. J. Heat Technol. 2017, 35, 474–486. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.W.; Lee, I. Predictive model of micro-environment in a naturally ventilated greenhouse for a model-based control approach. Prot. Hortic. Plant Fact. 2014, 23, 181–191. [Google Scholar] [CrossRef]
- Montero, J.I.; Muñoz, P.; Sánchez-Guerrero, M.C.; Medrano, E.; Piscia, D.; Lorenzo, P. Shading screens for the improvement of the night-time climate of unheated greenhouses. Span. J. Agric. Res. 2013, 11, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.S.; Lee, I.; Kwon, K.; Ha, T. Analysis on internal airflow of a naturally ventilated greenhouse using wind tunnel and PIV for CFD validation. Prot. Hortic. Plant Fact. 2014, 23, 391–400. [Google Scholar] [CrossRef]
- Chu, C.R.; Lan, T.; Tasi, R.K.; Wu, T.R.; Yang, C.K. Wind-driven natural ventilation of greenhouses with vegetation. Biosyst. Eng. 2017, 164, 221–234. [Google Scholar] [CrossRef]
- Rico-García, R.; Soto-Zarazúa, G.M.; Alatorre-Jácome, O.; De la Torre-Gea, G.; Gomez-Melendez, D.J. Aerodynamic study of greenhouses using computational fluid dynamics. Int. J. Phys. Sci. 2011, 6, 6541–6547. [Google Scholar] [CrossRef]
- Bojacá, C.R.; Gil, R.; Villagrán, E. Ecofisiologia y manejo del cultivo. In Manual de Producción de Pepino Bajo Invernadero; Editorial Universidad Jorge Tadeo Lozano: Bogota, Colombia, 2012; Volume 1, pp. 1–210. [Google Scholar]
- Villagrán, E.A.; Bojacá, C.R. Determination of the thermal behavior of a Colombian hanging greenhouse applying CFD simulation. Rev. Ciencias Técnicas Agropecu. 2019, 28. [Google Scholar]
- Reynafarje, X.; Villagrán, E.A.; Bojacá, C.R.; Gil, R.; Schrevens, E. Simulation and validation of the airflow inside a naturally ventilated greenhouse designed for tropical conditions. Acta Hortic. 2020, 1271, 55–62. [Google Scholar] [CrossRef]
- Aich, W.; Kolsi, L.; Borjini, M.N.; Al-Rashed, A.; Ben Aissia, H.; Oztop, H.F.; Abu-Hamdeh, N. Three-dimensional computational fluid dynamics analysis of buoyancy-driven natural ventilation and entropy generation in a prismatic greenhouse. Therm. Sci. 2018, 22, 73–85. [Google Scholar] [CrossRef]
- López-Bautista, V.; Villaseñor-Perea, C.A.; López-Canteñs, G.D.J.; Carrillo-García, M.; Cervantes-Osornio, R. Análisis de coeficientes de la fuerza del viento y comportamiento del flujo sobre un modelo de invernadero. Rev. Mex. Cienc. Agríc. 2016, 7, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Maher, D.; Sami, A.; Hana, A. CFD modelling of air temperature distribution inside tunnel greenhouse in semi-arid region. Int. J. Eng. Syst. Model. Simul. 2018, 10, 112–124. [Google Scholar] [CrossRef]
- Rasheed, A.; Lee, J.W.; Kim, H.T.; Lee, H.W. Efficiency of different roof vent designs on natural ventilation of single-span plastic greenhouse. Prot. Hortic. Plant Fact. 2019, 28, 225–233. [Google Scholar] [CrossRef]
- Lalmi, D.; Benseddik, A.; Bensaha, H.; Bouzaher, M.T.; Arrif, T.; Guermoui, M.; Rabehi, A. Evaluation and estimation of the inside greenhouse temperature, numerical study with thermal and optical aspect. Int. J. Ambient Energy 2019, 42, 1269–1280. [Google Scholar] [CrossRef]
- Nebbali, R.; Roy, J.C.; Boulard, T. Climate dynamic simulations of a cropped greenhouse tunnel. Acta Hortic. 2011, 893, 581–588. [Google Scholar] [CrossRef]
- Bartzanas, T.; Fidaros, D.K.; Boulard, T.; Katsoulas, N.; Kittas, C. Experimental results and spatial simulation of climate in a greenhouse with insect screens. Acta Hortic. 2011, 893, 597–604. [Google Scholar] [CrossRef]
- Montaño-Rodríguez, S.; Villagrán-Munar, E.A.; Osorio-Fiaga3, D.F.; Bojacá-Aldana, C.R.; Velásquez-Vargas, W.L. Simulación numérica del comportamiento térmico de un macro túnel utilizado para la producción de hongos comestibles bajo condiciones de clima tropical. Rev. Tecnol. Marcha 2019, 32, 78–85. [Google Scholar] [CrossRef]
- Flores-Velázquez, J. Análisis del Clima en Los Principales Modelos de Invernaderos en México (Malla Sombra, Multitúnel Y Baticenital) Mediante la Técnica del CFD (Computational Fluid Dynamics). Ph.D. Thesis, Universidad de Almeria, Almeria, Spain, 2010. [Google Scholar]
- Chu, C.R.; Lan, T.W. Effectiveness of ridge vent to wind-driven natural ventilation in monoslope multi-span greenhouses. Biosyst. Eng. 2019, 186, 279–292. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Microclimate I simulation in a greenhouse used for roses production under conditions of intertropical climate. Chil. J. Agric. Anim. Sci. 2019, 35, 137–150. [Google Scholar] [CrossRef]
- Villagran, E.A.; Matarrita, R.R.; Noreña, J.E.J. Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco. UNED Res. J. 2020, 12, e2854. [Google Scholar] [CrossRef]
- Lee, S.; Lee, I.; Kim, R. Evaluation of wind-driven natural ventilation of single-span greenhouses built on reclaimed coastal land. Biosyst. Eng. 2018, 171, 120–142. [Google Scholar] [CrossRef]
- He, K.; Chen, D.; Sun, L.; Huang, Z.; Liu, Z. Analysis of the climate inside multi-span plastic greenhouses under different shade strategies and wind regimes. Korean J. Hortic. Sci. Technol. 2014, 32, 473–483. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Chen, D.; Sun, L.; Liu, Z.; Huang, Z. The effect of vent openings on the microclimate inside multi-span greenhouses during summer and winter seasons. Eng. Appl. Comput. Fluid Mech. 2015, 9, 399–410. [Google Scholar] [CrossRef]
- Vieira-Neto, J.G.; Soriano, J. Computational modelling applied to predict the pressure coefficients in deformed single arch-shape greenhouses. Biosyst. Eng. 2020, 200, 231–245. [Google Scholar] [CrossRef]
- Argüelles Castillo, L.A.; Rico-García, E. Invernadero Hibrido Malla-Sombra Para el Control de Temperatura con Ventilación Natural. Master’s Thesis, Universidad Autónoma de Querétaro, Querétaro, Mexico, 2015. [Google Scholar]
- Fitz-Rodrıguez, E.; López-Cruz, I.L.; Salazar-Moreno, R.; Rojano-Aguilar, A.; Rosales-Vicelis, J.E.; López-Dıáz, J.H. Analysis of air-temperature profile in a solar-heated greenhouse with computational fluid dynamics. Acta Hortic. 2018, 1227, 93–98. [Google Scholar] [CrossRef]
- Da Silva, R.C.; Cordeiro Júnior, J.J.F.; Pandorfi, H.; Vigoderis, R.B.; Guiselini, C. Simulation of ventilation systems in a protected environment using computational fluid dynamics. Eng. Agric. 2017, 37, 414–425. [Google Scholar] [CrossRef]
- Taloub, D.; Bouras, A.; Driss, Z. Effect of the soil inclination on natural convection in half-elliptical greenhouses. Int. J. Eng. Res. Africa 2020, 50, 70–78. [Google Scholar] [CrossRef]
- Piscia, D.; Montero, J.I.; Melé, M.; Flores-Velázquez, J.; Pérez-Parra, J.; Baeza, E.J. A CFD model to study above roof shade and on roof shade of greenhouses. Acta Hortic. 2012, 952, 133–140. [Google Scholar] [CrossRef]
- Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. Yearly numerical evaluation of greenhouse cover materials. Comput. Electron. Agric. 2017, 149, 54–70. [Google Scholar] [CrossRef]
- Ziapour, B.M.; Dehnavi, R. A numerical study of the arc-roof and the one-sided roof enclosures based on the entropy generation minimization. Comput. Math. Appl. 2012, 64, 1636–1648. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, J.J. The effect of turbulence on natural ventilation of a proposed octagonal greenhouse in a transient flow. Int. J. Environ. Sci. Technol. 2020, 18, 2181–2196. [Google Scholar] [CrossRef]
- Gomez-Mataix, G.; Montero, J.I.; Raya, V.; Suay, R. Benchmark study of the distance between greenhouses and its effect on wind driven ventilation. Acta Hortic. 2013, 1008, 207–212. [Google Scholar] [CrossRef]
- Cemek, B.; Atiş, A.; Küçüktopçu, E. Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu J. Agric. Sci. 2017, 32, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Baeza, E.J.; Pérez-Parra, J.; Lopez, J.C.; Kacira, M.; Gázquez, J.C.; Montero, J.I. Validation of CFD simulations for three dimensional temperature distributions of a naturally ventilated multispan greenhouse obtained by wind tunnel measurements. Acta Hortic. 2011, 893, 571–580. [Google Scholar] [CrossRef]
- De La Torre-Gea, G.; Delfín-Santisteban, O.; Torres-Pacheco, I.; Soto-Zarazúa, G.; Guevara-González, R.; Rico-García, E. Bayesian networks applied in a CFD model of the crop in greenhouse. Agrociencia 2014, 48, 307–319. [Google Scholar]
- Limtrakarn, W.; Boonmongkol, P.; Chompupoung, A.; Rungprateepthaworn, K.; Kruenate, J.; Dechaumphai, P. Computational fluid dynamics modeling to improve natural flow rate and sweet pepper productivity in greenhouse. Adv. Mech. Eng. 2012, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornam. Hortic. 2019, 25, 351–364. [Google Scholar] [CrossRef] [Green Version]
- De la Torre-Gea, G. Modelación del Flujo de Aire Mediante Dinámica de Fluidos Computacionales en Invernaderos con Ventilación Natural. Ph.D. Thesis, Universidad Autonoma de Queretano, Queretano, Mexico, 2013. [Google Scholar]
- Kwon, J.K.; Lee, S.H.; Seong, J.H.; Moon, J.P.; Lee, S.J.; Choi, B.M.; Kim, K.J. Analysis of natural ventilation characteristics of venlo-type greenhouse with continuous roof vents. J. Biosyst. Eng. 2011, 36, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Errais, R.; Senhaji, A.; Mouqallid, M.; Bekkaoui, A.; ElFellah, Y.; Majdoubi, H.; Fatnassi, H.; Guissi, K.; Maliani, D.O. Computational fluid dynamic time evolution of crop transpiration and heat transfer inside a Venlo greenhouse. Acta Hortic. 2020, 1296, 167–176. [Google Scholar] [CrossRef]
- Mesmoudi, K.; Meguellati, K.H.; Bournet, P.E.; Serir, L. Numerical prediction of thermal environment and energy consumption of three different greenhouses under hot and semi-arid climate. Acta Hortic. 2017, 1170, 79–86. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, I.B.; Kwon, K.S.; Ha, T.H.; Yeo, U.H.; Park, S.J.; Kim, R.W.; Jo, Y.S.; Lee, S.N. Analysis of natural ventilation rates of venlo-type greenhouse built on reclaimed lands using CFD. J. Korean Soc. Agric. Eng. 2015, 57, 21–33. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Benni, S.; Barbaresi, L.; Torreggiani, D.; Tassinari, P. Numerical study of wind-driven natural ventilation in a greenhouse with screens. Comput. Electron. Agric. 2018, 149, 41–53. [Google Scholar] [CrossRef]
- Kruger, S.; Pretorius, L. The Effect of bench arrangements on the natural ventilation of a multispan greenhouse. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013; pp. 1–10. [Google Scholar]
- Kruger, S.; Pretorius, L. An assessment of different boundary conditions in a naturally ventilated venlo-type greenhouse. In Proceedings of the 14th International Heat Transfer Conference, Washington, DC, USA, 8–13 August 2010; Volume 8, pp. 1–9. [Google Scholar] [CrossRef]
- Tezcan, A.; Buyuktas, K. Determining of climatic parameters using CFD in different window span in naturally ventilated greenhouses. J. Basic Appl. Sci. 2013, 9, 178–186. [Google Scholar] [CrossRef]
- Li, Y.; Sun, G.; Wang, X. Temperature field-wind velocity field optimum control of greenhouse environment based on CFD model. Math. Probl. Eng. 2014, 2014, 949128. [Google Scholar] [CrossRef] [Green Version]
- Flores-Velázquez, J.; Vega-García, M. Regional management of the environment in a zenith greenhouse with computational fluid dynamics (CFD). Ing. Agríc. Y Biosist. 2019, 11, 3–20. [Google Scholar] [CrossRef]
- Flores-Velázquez, J.; Villarreal-Guerrero, F.; Rojano-Aguilar, A.; Rojano, F. Greenhouse air dynamics in foliage. Acta Hortic. 2014, 1037, 1035–1042. [Google Scholar] [CrossRef]
- Aguilar-Rodríguez, C.E.; Flores-Velázquez, J.; Rojano-Aguilar, A.; Ojeda-Bustamante, W.; Iñiguez-Covarrubias, M. Tomato (Solanum lycopersicum L.) crop cycle estimation in greenhouse, based on degree day heat (GDC) simulated in CFD. Tecnol. Y Cienc. Agua 2020, 11, 27–57. [Google Scholar] [CrossRef]
- Senhaji, A.; Mouqallid, M.; Majdoubi, H. CFD assisted study of multi-chapels greenhouse vents openings effect on inside airflow circulation and microclimate patterns. Open J. Fluid Dyn. 2019, 9, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Rojano, F.; Flores-Velázquez, J.; Villarreal-Guerrero, F.; Rojano, A. Dynamics of climatic conditions in a greenhouse: Two locations in Mexico. Acta Hortic. 2014, 1037, 955–962. [Google Scholar] [CrossRef]
- Flores-Velázquez, J.; Ojeda-Bustamante, W.; Villarreal-Guerrero, F.; Rojano-Aguilar, A. Effect of crops on natural ventilation in a screenhouse evaluated by CFD simulations. Acta Hortic. 2017, 1170, 95–101. [Google Scholar] [CrossRef]
- Flores-Velazquez, J.; Arzeta, A.; Ojeda, W.; Villarreal-Guerrero, F. Computational fluid dynamics analysis of the wind drag force in a typical Mexican screenhouse. Acta Hortic. 2018, 1227, 99–106. [Google Scholar] [CrossRef]
- Flores-Velázquez, J.; Villarreal-Guerrero, F.; López-Cruz, I.L.; Montero-Camacho, J.I.; Piscia, D. 3-Dimensional thermal analysis of a screenhouse with plane and multispan roof by using computational fluid dynamics (CFD). Acta Hortic. 2013, 1008, 151–158. [Google Scholar] [CrossRef]
- Villagran, E.; Ramirez, R.; Rodriguez, A.; Pacheco, R.L.; Jaramillo, J. Simulation of the thermal and aerodynamic behavior of an established screenhouse under warm tropical climate conditions: A numerical approach. Int. J. Sustain. Dev. Plan. 2020, 15, 487–499. [Google Scholar] [CrossRef]
- Teitel, M.; Wenger, E. The effect of screenhouse roof shape on the flow patterns—CFD simulations. Acta Hortic. 2012, 927, 603–610. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Jaramillo, J.E. Microclimatic behavior of a screen house proposed for horticultural production in low-altitude tropical climate conditions. Comun. Sci. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zou, Z.; Wang, S. CFD and weighted entropy based simulation and optimisation of Chinese solar greenhouse temperature distribution. Biosyst. Eng. 2016, 142, 12–26. [Google Scholar] [CrossRef]
- Sun, Y.C.; Bao, E.C.; Zhu, C.M.; Yan, L.L.; Cao, Y.F.; Zhang, X.H.; Li, J.M.; Jing, H.W.; Zou, Z. Effects of window opening style on inside environment of solar greenhouse based on CFD simulation. Int. J. Agric. Biol. Eng. 2020, 13, 53–59. [Google Scholar] [CrossRef]
- Teitel, M.; Wenger, E. Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosyst. Eng. 2014, 119, 98–107. [Google Scholar] [CrossRef]
- Wang, X.W.; Luo, J.Y.; Li, X.P. CFD based study of heterogeneous microclimate in a typical chinese greenhouse in central China. J. Integr. Agric. 2013, 12, 914–923. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Bojacá, C.R. Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. J. Agric. Eng. 2019, 50, 20–27. [Google Scholar] [CrossRef]
- Romdhonah, Y.; Suhardiyanto, H.; Erizal, E.; Saptomo, S. Analisis ventilasi alamiah pada greenhouse tipe standard peak menggunakan computational fluid dynamics. J. Ilm. Rekayasa Pertan. Biosist. 2015, 3, 170–178. [Google Scholar]
- Romdhonah, Y.; Suhardiyanto, H.; Saptomo, S.K. Computational fluid dynamics (air temperature dan RH distribution inside a standard peak greenhouse using computational fluid dynamics). J. Ilm. Rekayasa Pertan. Biosist. 2014, 3, 125–133. [Google Scholar]
- Majdoubi, H.; Fatnassi, H.; Boulard, T.; Senhaji, A.; Demrati, H.; Mouqallid, M.; Bouirden, L. Computational study of thermal performance of an unheated canarian-Type greenhouse: Influence of the opening configurations on airflow and climate patterns at the crop level. Acta Hortic. 2017, 1182, 87–94. [Google Scholar] [CrossRef]
- Majdoubi, H.; Boulard, T.; Fatnassi, H.; Senhaji, A.; Elbahi, S.; Demrati, H.; Mouqallid, M.; Bouirden, L. Canary greenhouse CFD nocturnal climate simulation. Open J. Fluid Dyn. 2016, 06, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Majdoubi, H.; Fatnassi, H.; Senhaji, A.; Elbahi, S.; Demrati, H.; Mouqallid, M.; Bouirden, L. Computational study of canary greenhouse side wall and roof vents opening effect on nocturnal airflow and climate patterns. Am. J. Agric. Sci. Eng. Technol. 2016, 3, 1–17. [Google Scholar]
- Flores-Velazquez, J.; Rishor, A.R.; Aguilar, A.R.; Bustamante, W.O.; Flores-Velázquez, J.; Rojas-Rishor, A.; Rojano-Aguilar, A.; Ojeda-Bustamante, W. CFD modeling to assessing environment of a greenhouse typical in Costa Rica. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; pp. 2–11. [Google Scholar]
- Tashoo, K.; Thepa, S.; Pairintra, R.; Namprakai, P. Reducing the air temperature inside the simple structure greenhouse using roof angle variation. Tarim Bilim. Derg. 2014, 20, 136–151. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A. Implementation of ventilation towers in a greenhouse established in low altitude tropical climate conditions: Numerical approach to the behavior of the natural ventilation. Rev. Ceres 2021, 68, 10–22. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Sol. Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- De la Torre-Gea, G.; Rico-García, E. Redes bayesianas aplicadas a un modelo CFD del entorno de un cultivo en invernadero. Agrociencia 2014, 48, 307–319. [Google Scholar]
- Villagran, E.A.; Bojaca, C.R. Simulación con base en la técnica dinámica de fluidos computacional (CFD), para el diseño y optimización de la ventilación natural de los invernaderos de flores de corte en la sabana de Bogotá. Produmedios 2017, 8, 1–104. [Google Scholar]
- He, K.; Chen, D.; Sun, L.; Huang, Z.; Liu, Z. Effects of vent configuration and span number on greenhouse microclimate under summer conditions in eastern China. Int. J. Vent. 2015, 13, 381–396. [Google Scholar] [CrossRef]
- Mistriotis, A.; Castellano, S. Airflow through net covered tunnel structures at high wind speeds. Biosyst. Eng. 2012, 113, 308–317. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Valera, D.L.; Peña, A.A.; Gil, J.A. Optimisation of Almería-type greenhouse ventilation performance with computational fluid dynamics. Acta Hortic. 2005, 691, 433–440. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bartzanas, T.; Boulard, T.; Mermier, M.; Kittas, C. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst. Eng. 2006, 93, 427–436. [Google Scholar] [CrossRef]
- Baeza, E.; Pérez-Parra, J.; López, J.C.; Gázquez, J.C. La dinámica de fluidos computacional como herramienta para mejorar el diseño de los sistemas de ventilación natural en invernadero. Estac. Exp. Fund. Cajamar 2007, 15, 1079–1086. [Google Scholar]
- Bouhoun Ali, H.; Bournet, P.E.; Cannavo, P.; Chantoiseau, E. Using CFD to improve the irrigation strategy for growing ornamental plants inside a greenhouse. Biosyst. Eng. 2019, 186, 130–145. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Coussirat, M.; Guardo, A.; Jou, E.; Egusquiza, E.; Cuerva, E.; Alavedra, P. Performance and influence of numerical sub-models on the CFD simulation of free and forced convection in double-glazed ventilated façades. Energy Build. 2008, 40, 1781–1789. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, M.; Chen, S.; Jin, X. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. J. Wind Eng. Ind. Aerodyn. 2009, 97, 88–95. [Google Scholar] [CrossRef]
- Bartzanas, T.; Boulard, T.; Kittas, C. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng. 2004, 88, 479–490. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C. Analysis of the microclimatic behavior of a greenhouse used to produce carnation (Dianthus caryophyllus L.). Ornam. Hortic. 2020, 26, 109–204. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C. Experimental evaluation of the thermal and hygrometric behavior of a Colombian greenhouse used for the production of roses (Rosa spp.). Ornam. Hortic. 2020, 26, 205–219. [Google Scholar] [CrossRef]
- Pérez-Vega, C.; Ramírez-Arias, J.A.; López-Cruz, I.L.; Arteaga-Ramírez, R.; Cervantes-Osornio, R. 3D computational fluid dynamics modeling of temperature and humidity in a humidified greenhouse. InAgBi 2020, 13, 17–31. [Google Scholar] [CrossRef]
- Montero, J.I.; Muñoz, P.; Antón, A.; Iglesias, N. Computational fluid dynamic modelling of night-time energy fluxes in unheated greenhouses. Acta Hortic. 2005, 691, 403–410. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, J.Y.; Kwon, H.J.; Han, J.H.; Eek Son, J.; Nam, S.W.; Giacomelli, G.A.; Lee, I.B. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosyst. Eng. 2008, 100, 245–255. [Google Scholar] [CrossRef]
- Dhiman, M.; Sethi, V.P.; Singh, B.; Sharma, A. CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks. Comput. Electron. Agric. 2019, 163, 104853. [Google Scholar] [CrossRef]
- Morille, B.; Genez, R.; Migeon, C.; Bournet, P.E.; Bouhoun Ali, H. CFD Simulations of the distributed climate time-evolution inside a glasshouse at night. Acta. Hortic. 2013, 1008, 201–206. [Google Scholar] [CrossRef]
- Kwon, K.; Kim, D.; Kim, R.; Ha, T.; Lee, I. Evaluation of wind pressure coefficients of single-span greenhouses built on reclaimed coastal land using a large-sized wind tunnel. Biosyst. Eng. 2016, 14, 58–81. [Google Scholar] [CrossRef]
- Fouad, N.S.; Mahmoud, G.H.; Nasr, N.E. Comparative study of international codes wind loads and CFD results for low rise buildings. Alex. Eng. J. 2018, 57, 3623–3639. [Google Scholar] [CrossRef]
- Montaño Moreno, J.J.; Palmer Pol, A.; Sesé Abad, A.; Cajal Blasco, B. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25, 500–506. [Google Scholar] [CrossRef]
- Baptista, F.J.; Bailey, B.J.; Meneses, J.F. Comparison of humidity conditions in unheated tomato greenhouses with different natural ventilation management and implications for climate and Botrytis cinerea control. Acta Hortic. 2008, 801, 1013–1019. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Taylor, H.J.; McBratney, A.B. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. Eur. J. Soil Sci. 2007, 58, 343–353. [Google Scholar] [CrossRef]
- Janni, K.A.; Jacobson, L.D. Modeling Natural Ventilation Induced by Combined Thermal Buoyancy and Wind. Trans. Am. Soc. Agric. Eng. 1989, 32, 2165–2174. Available online: https://experts.umn.edu/en/publications/modeling-natural-ventilation-induced-by-combined-thermal-buoyancy (accessed on 11 February 2019).
- Teitel, M.; Rguez, M.G.T.; Liang, H.; Tanny, J.; Ozer, S.; Alon, H. Vertical profiles of temperature, humidity ratio and air velocity in different types of insect-proof screenhouse. Acta Hortic. 2018, 1227, 205–212. [Google Scholar] [CrossRef]
- Teitel, M.; Liang, H.; Vitoshkin, H.; Tanny, J.; Ozer, S. Airflow patterns and turbulence characteristics above the canopy of a tomato crop in a roof-ventilated insect-proof screenhouse. Biosyst. Eng. 2020, 190, 184–200. [Google Scholar] [CrossRef]
- Baxevanou, C.; Fidaros, D.; Katsoulas, N.; Mekeridis, E.; Varlamis, C.; Zachariadis, A.; Logothetidis, S. Simulation of radiation and crop activity in a greenhouse covered with semitransparent organic photovoltaics. Appl. Sci. 2020, 10, 2550. [Google Scholar] [CrossRef] [Green Version]
- Hassanien, R.H.; Li, M.; Yin, F. The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production. Renew. Energy 2018, 121, 377–388. [Google Scholar] [CrossRef]
- Maraveas, C. Wind pressure coefficients on greenhouse structures. Agriculture 2020, 10, 149. [Google Scholar] [CrossRef]
- Kuroyanagi, T. Investigating air leakage and wind pressure coefficients of single-span plastic greenhouses using computational fluid dynamics. Biosyst. Eng. 2017, 163, 15–27. [Google Scholar] [CrossRef]
- Kim, R.-W.; Hong, S.-W.; Lee, I.-B.; Kwon, K.-S. Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 2: Application of the CFD model. Biosyst. Eng. 2017, 164, 257–280. [Google Scholar] [CrossRef]
- Kim, R.W.; Lee, I.B.; Kwon, K. Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model. Biosyst. Eng. 2017, 164, 235–256. [Google Scholar] [CrossRef]
Type of Structure | Climate Control | Methodology of Analysis |
---|---|---|
Greenhouse | Natural ventilation | CFD |
Nethouse | Numerical | |
Mesh-house | Simulation | |
Screenhouse |
About the Structure | About the Simulation |
---|---|
Structure type (greenhouse or screenhouse) | Type of software used for numerical solution of the simulations |
Greenhouse type | Type of numerical simulation performed |
Structure size | Type of numerical grid implemented |
Turbulence model implemented | |
Structure type (greenhouse or screenhouse) | Implemented radiation model |
Greenhouse type | Implemented crop model |
Structure size | Type of meteorological condition simulated |
Rank | Journal | Number of Documents | % | SRJ | H-Index | Quartile |
---|---|---|---|---|---|---|
1 | Acta Horticulturae | 22 | 18.64 | 0.18 | 58 | 4 |
2 | Biosystems Engineering | 11 | 9.32 | 0.89 | 110 | 1 |
3 | Computers and Electronics in Agriculture | 7 | 5.93 | 1.21 | 115 | 1 |
4 | Agrociencia | 5 | 4.24 | 0.19 | 22 | 3 |
5 | International Journal of Heat and Technology | 3 | 2.54 | 0.28 | 29 | 3 |
6 | Protected Horticulture and Plant Factory | 3 | 2.54 | N.a | N.a | N.a |
7 | Open Journal of Fluid Dynamics | 2 | 1.69 | N.a | N.a | N.a |
8 | Ornamental Horticulture | 2 | 1.69 | 0.27 | 6 | 3 |
9 | Renewable Energy | 2 | 1.69 | 1.83 | 191 | 1 |
10 | Journal of Agricultural Engineering | 2 | 1.69 | 0.3 | 18 | 2 |
11 | Energy and Buildings | 2 | 1.69 | 1.74 | 184 | 1 |
12 | Revista Ceres | 2 | 1.69 | 0.3 | 16 | 2 |
13 | African Journal of Biotechnology | 1 | 0.85 | 0.3 | 84 | 3 |
14 | Agronomy Mesoamerican | 1 | 0.85 | 0.12 | 2 | 4 |
15 | Comunicata Scientiae | 1 | 0.85 | 0.24 | 12 | 3 |
Author | Published Documents | Number of Citations | Current Position | Current Institution | Country of Nationality |
---|---|---|---|---|---|
Edwin Villagrán | 18 | 276 | Associate researcher | Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) | Colombia |
Jorge Flores Velázquez | 15 | 311 | Researcher | Colegio de Posgraduados | México |
Carlos Bojacá | 14 | 913 | Full profesor | Jorge Tadeo Lozano University | Colombia |
Juan Ignacio Montero Camacho | 10 | 2531 | Senior researcher | Institute of Agrifood Research and Technology (IRTA) | Spain |
Thierry Boulard | 8 | 8032 | Senior researcher | French National Research Institute for Agriculture (INRA). | French |
Abraham Rojano-Aguilar | 8 | 324 | Professor | Chapingo Autonomous University | México |
Hicham Fatnassi | 7 | 1570 | Senior horticulture scientist | International Center for Biosaline Agriculture (ICBA) | French |
Davide Piscia | 7 | 144 | Researcher | national center for genomic analysis (cnag) | Italy |
Irineo L. López-Cruz | 6 | 1790 | Researcher | Chapingo Autonomous University | Mexico |
Thomas Bartzanas | 5 | 3345 | Associate Professor | Agricultural University of Athens | Greece |
Esteban Baeza | 5 | 1293 | Researcher | Wageningen UR Greenhouse Horticulture | Spain |
Constantinos Kittas | 5 | 3074 | Professor | University of Thessaly | Greece |
Guillermo De la Torre-Gea | 5 | 121 | Researcher manger | Garman Technology Research and Development Institute | Mexico |
Hassan Majdoubi | 5 | 258 | Researcher | Regional Center of Education and Training Jobs-Fes-Meknes | Morocco |
Mhamed Mouqallid | 5 | 124 | Researcher | Ecole Nationale d’Agriculture de Meknès | Morocco |
Title | Citations | Reference |
---|---|---|
Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies | 178 | [41] |
A CFD greenhouse nighttime condensation model | 86 | [90] |
Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses | 82 | [91] |
Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day | 78 | [33] |
Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse | 68 | [92] |
Microclimate and evapotranspiration of crops covered by agricultural screens: A review | 63 | [93] |
Computational fluid dynamics applications to improve crop production systems | 60 | [94] |
Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case | 58 | [95] |
Ventilation optimization of solar greenhouse with removable back walls based on CFD | 52 | [15] |
CFD and weighted entropy-based simulation and optimization of Chinese Solar Greenhouse temperature distribution | 37 | [96] |
A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses | 35 | [96] |
CFD Simulation of Heat and Mass Transfer for Climate Control in Greenhouses | 35 | [97] |
Numerical simulation of solar radiation, air flow and temperature distribution in a naturally ventilated tunnel greenhouse | 31 | [98] |
Mejora de las tasas de ventilación de invernaderos bajo condiciones climáticas del centro de México | 31 | [46] |
Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate | 31 | [29] |
Protected Agriculture Structure Type | Number of Publications | References |
---|---|---|
Chapel | 21 | [39,47,75,90,96,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114] |
Tunnel | 19 | [17,49,76,79,92,104,105,110,115,116,117,118,119,120,121,122,123,124,125] |
Arc | 14 | [33,98,126,127,128,129,130,131,132,133,134,135,136,137] |
Venlo | 14 | [32,54,95,104,105,138,139,140,141,142,143,144,145,146] |
Gothic | 13 | [29,37,46,56,78,126,147,148,149,150,151,152,153] |
Zenital | 10 | [5,38,122,126,149,154,155,156,157,158] |
Screenhouse | 9 | [122,125,130,159,160,161,162,163,164] |
Chinese Solar | 5 | [15,165,166,167,168] |
Traditional Colombian | 3 | [29,111,169] |
Standard peak | 2 | [170,171] |
Almeria | 2 | [19,91] |
Canary | 2 | [172,173,174] |
Slope | 2 | [6,175] |
Simple | 1 | [176] |
Sierrra | 1 | [83] |
Octagonal | 1 | [137] |
One-water sloping roof | 1 | [136] |
Small | Medium | Large |
---|---|---|
(≤500 m2) | (Between 500 m2 and 5000 m2) | (>5000 m2) |
45 | 35 | 15 |
Type of Covering Material | Number of Publications | References |
---|---|---|
Polyethylene (plastic-covered) | 67 | [5,6,17,29,33,38,46,47,49,56,75,76,77,79,83,90,91,92,96,99,101,102,103,106,107,108,109,110,111,113,116,117,118,119,120,121,124,127,128,129,132,134,140,147,148,149,150,151,152,153,154,155,156,157,158,162,167,168,169,172,173,174,175,179,180,181] |
Glass | 11 | [32,95,100,105,138,141,142,143,144,145,146] |
Various roofi materials | 9 | [19,98,104,122,125,126,130,131,135] |
Anti-insect screen | 7 | [159,160,161,162,163,164,182] |
Polycarbonate | 5 | [54,137,139,170,171] |
Polyvinyl film (PVC) | 1 | [15,176] |
Shade screen | 1 | [182] |
Polypropylene | 1 | [166] |
Expanded polystyrene | 1 | [165] |
Ventilation Configuration | Number of Publications | References |
---|---|---|
Side and rooftop | 67 | [6,17,19,29,32,37,38,39,46,47,75,76,77,78,79,83,91,95,99,101,104,105,108,111,113,114,117,122,123,124,125,126,127,128,130,132,141,142,143,144,145,147,148,149,152,153,154,155,156,157,158,159,160,161,162,163,164,166,168,169,170,171,172,173,174,176,181] |
Side | 21 | [15,33,54,90,92,98,102,103,109,116,118,119,120,121,135,140,150,165,167,179,182] |
Rooftop | 16 | [5,49,56,96,106,110,115,129,134,136,137,138,139,146,151,175] |
Closed | 4 | [100,107,131,133] |
Software Type | Number of Publications | References |
---|---|---|
ANSYS FLUENT | 79 | [5,6,15,17,19,29,32,33,37,38,46,47,75,76,78,79,83,90,91,92,96,98,99,100,101,102,103,104,105,106,107,111,113,115,117,118,119,120,121,124,125,127,128,130,131,132,133,134,135,138,139,140,141,142,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,164,165,166,168,169,175,179,181] |
ANSYS CFX | 5 | [116,151,163,167,176] |
CFD2000 | 4 | [56,172,173,174] |
FORTRAN | 3 | [39,114,136] |
SOLIDWORKS | 3 | [145,170,171] |
ANSYS FLOTRAN | 2 | [110,182] |
StarCCM+ | 2 | [143,144] |
Software Truchas | 2 | [109,123] |
Airpak 3.0 | 1 | [54] |
COMSOLMultiphysics | 1 | [49] |
COMSOL Y MATLAB | 1 | [137] |
Autodesk CFD 2015 | 1 | [95] |
Autodesk CFD 2017 | 1 | [129] |
Type of Simulation | Number of Publications | References |
---|---|---|
Steady state | 84 | [6,17,19,37,38,39,46,47,49,54,56,75,76,77,78,79,83,91,96,98,99,100,101,104,105,107,108,109,111,113,114,115,116,117,118,120,121,122,123,124,125,128,129,130,131,132,133,134,136,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,166,169,170,171,172,173,174,175,176,179,182] |
Transient state | 15 | [15,29,32,33,92,102,103,106,110,119,135,137,139,151,167] |
Both | 8 | [90,95,126,127,138,165,168,181] |
Type of Grid | Number of Publications | References |
---|---|---|
No Reported | 51 | [5,38,46,56,83,90,102,103,107,108,114,117,118,119,120,122,126,127,130,131,134,135,136,137,138,145,146,148,149,150,151,153,154,155,158,159,161,165,166,168,170,171,172,173,174,175,179,181,182] |
Unstructured | 45 | [6,15,17,19,29,37,47,49,54,75,76,77,79,91,95,96,99,100,101,104,105,109,110,111,113,115,116,121,123,124,125,129,132,140,143,144,147,152,156,157,162,163,164,169,176] |
Structured | 8 | [32,33,39,78,92,98,133,142] |
Hybrids | 3 | [106,128,139] |
Turbulence Model | Number of Documents | References |
---|---|---|
k-ε estándar | 72 | [5,6,15,17,19,29,33,37,38,46,47,49,75,76,77,78,79,83,90,91,92,96,98,99,102,103,104,105,108,111,113,116,119,120,121,123,124,125,127,128,130,131,134,135,137,138,139,142,147,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,172,173,174,176,181] |
No. reported | 16 | [32,39,56,100,107,114,115,132,133,136,140,145,146,150,171,175] |
k-ε RNG | 7 | [54,101,117,141,148,153,182] |
LES | 4 | [110,118,122,123] |
Use of various models | 3 | [126,129,149] |
k-ε Realizable | 3 | [106,143,144] |
k-ε Modified | 1 | [163] |
Mixing length turbulence model | 1 | [95] |
Radiation Model | Number of Documents | Reference |
---|---|---|
Simplified method | 62 | [19,32,37,38,39,46,49,76,78,83,91,95,99,100,106,108,109,110,111,113,114,115,116,120,121,122,123,126,129,131,133,136,141,142,143,144,145,146,147,148,149,151,153,154,155,156,159,160,161,163,164,165,167,169,170,171,172,173,174,175,176,179,182] |
Discrete Ordinate Model (DOM) | 44 | [5,6,15,17,29,33,47,54,56,75,77,79,90,92,96,98,101,102,103,104,105,107,117,118,119,124,125,127,128,132,134,135,137,138,139,140,150,152,157,158,162,166,168,181] |
Rosseland—solar calculator | 1 | [130] |
Presence of Crop | Number of Publications | References |
---|---|---|
No | 65 | [15,29,32,37,39,46,47,49,54,75,76,77,78,79,83,90,91,95,99,100,101,106,107,108,110,111,113,114,115,116,117,118,121,123,124,125,126,129,130,131,133,136,137,140,142,144,145,146,147,148,149,150,151,152,160,162,164,165,166,169,170,171,175,176,182] |
Yes | 42 | [5,6,17,19,33,38,56,92,96,98,102,103,104,105,119,120,122,127,128,132,134,135,138,139,141,143,150,153,154,155,156,157,158,159,161,163,167,168,172,173,174,181] |
Empty and crop | 1 | [109] |
Type of Climate | Number of Publications | References |
---|---|---|
Daytime | 75 | [5,6,15,19,29,32,33,37,38,39,46,47,49,54,56,76,78,91,98,99,101,104,105,106,109,110,111,113,114,117,120,121,122,123,125,126,127,128,129,130,132,133,134,135,136,137,138,140,141,142,143,144,145,146,147,150,151,153,154,155,156,157,158,159,161,164,166,167,168,169,175,176,179,181,182] |
Daytime and Nighttime | 16 | [17,75,77,92,95,100,116,118,119,124,139,148,162,165,170,171] |
Nighttime | 12 | [79,83,90,96,102,103,107,131,152,172,173,174] |
Type of Validation | Number of Publications | References |
---|---|---|
Microclimatic measurement | 69 | [5,6,15,17,19,29,32,33,37,47,54,75,77,79,83,90,91,95,99,100,102,104,105,106,107,111,113,116,117,120,121,125,127,128,129,132,135,137,138,139,140,141,142,144,145,146,148,150,151,152,153,154,155,156,162,164,165,166,167,168,169,171,173,175,176,179,181,182] |
Not reported | 10 | [39,46,78,92,96,98,119,131,143,174] |
Not validated | 9 | [56,76,101,103,133,134,147,161,163] |
Wind tunnel | 9 | [49,108,109,115,123,126,129,136,149] |
Based on previous research results | 8 | [114,118,136,157,159,160,170,172] |
Water tunnel | 2 | [38,122] |
Auto calibration | 1 | [110] |
Method of Comparison | Number of Publications | References |
---|---|---|
Goodness-of-fit | 34 | [5,15,17,19,32,37,47,54,75,77,79,83,99,102,105,110,111,121,124,125,126,129,130,132,142,145,152,162,164,166,170,171,203] |
Trend graphs | 19 | [90,106,107,113,114,122,127,128,136,139,144,149,153,160,165,167,169,173,181] |
Statistical analysis and trend graph | 15 | [91,104,105,108,110,116,120,135,138,141,143,146,148,150,182] |
Statistical analysis | 4 | [6,100,101,175] |
Goodness-of-fit and trend graph | 4 | [29,95,137,176] |
Statistical analysis and goodness-of-fit | 3 | [6,154,156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. https://doi.org/10.3390/su131810433
Rocha GAO, Pichimata MA, Villagran E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability. 2021; 13(18):10433. https://doi.org/10.3390/su131810433
Chicago/Turabian StyleRocha, Gloria Alexandra Ortiz, Maria Angelica Pichimata, and Edwin Villagran. 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries" Sustainability 13, no. 18: 10433. https://doi.org/10.3390/su131810433
APA StyleRocha, G. A. O., Pichimata, M. A., & Villagran, E. (2021). Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability, 13(18), 10433. https://doi.org/10.3390/su131810433