Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-AHP Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase 1: Inventory of Sustainable Urban Mobility Barriers Deriving from the Literature Review
2.2. Phase 2: Adaptation to a Specific Urban Area and Evaluation and Prioritization of Sustainable Mobility Barriers
2.2.1. Overview of the Analytic Hierarchy Process (AHP) and Delphi Method
2.2.2. Steps of the Proposed Delphi-AHP Methodology
3. The City of Thessaloniki as a Case Study
3.1. Definition of the Study Area and Overall Description of Its Sustainable Mobility Problems
3.2. Selection of Participants in the Process of the Identification and Prioritization of Barriers
3.3. Identification of Sustainable Urban Mobility Barriers
3.4. Prioritization of Sustainable Urban Mobility Barriers
4. Results and Discussion
- the insufficient pedestrian network;
- the problematic and inadequate public transport system;
- the insufficient parking management in the city center;
- the poorly designed bicycle network for the pedestrian network;
- the traffic congestion during peak periods;
- the inability to adopt innovative mobility solutions;
- the limited traffic safety;
- the insufficient organization of urban freight transport; and
- the inability to cope with the seasonal fluctuations of transport demand (e.g., during the international expo).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Economic Commission for Europe, UNECE. A Handbook on Sustainable Urban. Mobility and Spatial Planning. Promoting Active Mobility; United Nations: Geneva, Switzerland, 2020. [Google Scholar]
- Department of Economic and Social Affairs. Population Division. World Urbanization Prospects. The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Dobbs, R.; Smit, S.; Rems, J.; Manyika, J.; Roxburgh, C.; Restrepo, A. Mapping the Economic Power of Cities; McKinsey Global Institute, McKinsey and Company: Princeton, NJ, USA, 2011. [Google Scholar]
- Organisation of Economic Cooperation and Development, OECD. Towards Sustainable Transportation. The Vancouver Conference; OECD: Vancouver, BC, Canada, 1996. [Google Scholar]
- Bezerra, B.S.; dos Santos, A.L.L.; Delmonico, D.V.G. Unfolding barriers for urban mobility plan in small and medium municipalities—A case study in Brazil. Transp. Res. Part. A 2020, 132, 808–822. [Google Scholar] [CrossRef]
- Tyrinopoulos, Y.; Antoniou, C. Factors affecting modal choice in urban mobility. Eur. Transp. Res. Rev. 2013, 5, 27–39. [Google Scholar] [CrossRef][Green Version]
- European Commission. Sustainable Urban Mobility Indicators (SUMI). 2021. Available online: https://ec.europa.eu/transport/themes/urban/urban_mobility/sumi_en (accessed on 4 May 2021).
- Hildermeier, J.; Villareal, A. Two ways of defining sustainable mobility: Autolib’ and BeMobility. J. Environ. Policy Plan. 2014, 16, 321–336. [Google Scholar] [CrossRef]
- Berger, G.; Feindt, P.; Holden, E.; Rubik, F. Sustainable Mobility—Challenges for a Complex Transition. J. Environ. Policy Plan. 2014, 16, 303–320. [Google Scholar] [CrossRef]
- Sdoukopoulos, A.; Pitsiava-Latinopoulou, M.; Basbas, S.; Papaioannou, P. Measuring progress towards transport sustainability through indicators: Analysis and metrics of the main indicator initiatives. Transp. Res. Part. D Transp. Environ. 2018, 67, 316–333. [Google Scholar] [CrossRef]
- European Platform on Sustainable Urban Mobility Plans. Guidelines for Developing and Implementing a Sustainable Urban. Mobility Plan, 2nd ed.; Eltis. The Urban Mobility Observatory: Brussels, Belgium, 2019. [Google Scholar]
- Werland, S. Diffusing Sustainable Urban Mobility Planning in the EU. Sustainability 2020, 12, 8436. [Google Scholar] [CrossRef]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2007, 15, 73–80. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. 2021. Available online: https://www.un.org/sustainabledevelopment/cities/ (accessed on 14 July 2021).
- European Commission. Sustainable and SMART Mobility Strategy—Putting European Transport on Track for the Future; COM (2020) 789 final; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:789:FIN (accessed on 15 May 2021).
- World Economic Forum. The Next Economic Growth. Engine Scaling Fourth Industrial Revolution Technologies in Production; White Paper; World Economic Forum: Cologny, Switzerland, 2018; Available online: http://www3.weforum.org/docs/WEF_Technology_and_Innovation_The_Next_Economic_Growth_Engine.pdf (accessed on 5 July 2021).
- Saeed, T.U.; Burris, M.; Labi, S.; Sinha, K.C. An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences. Technol. Forecast. Soc. Chang. 2020, 158, 120130. [Google Scholar] [CrossRef]
- Gavanas, N. Autonomous Road Vehicles: Challenges for Urban Planning in European Cities. Urban. Sci. 2019, 3, 61. [Google Scholar] [CrossRef][Green Version]
- Staricco, L.; Rappazzo, V.; Scudellari, J.; Brovarone, E.V. Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise. Sustainability 2019, 11, 5222. [Google Scholar] [CrossRef][Green Version]
- Muller, M.; Park, S.; Lee, R.; Fusco, B.; Correia, G.H.d.A. Review of Whole System Simulation Methodologies for Assessing Mobility as a Service (MaaS) as an Enabler for Sustainable Urban Mobility. Sustainability 2021, 13, 5591. [Google Scholar] [CrossRef]
- Belli, L.; Cilfone, A.; Davoli, L.; Ferrari, G.; Adorni, P.; Di Nocera, F.; Dall’Olio, A.; Pellegrini, C.; Mordacci, M.; Bertolotti, E. IoT-Enabled Smart Sustainable Cities: Challenges and Approaches. Smart Cities 2020, 3, 52. [Google Scholar] [CrossRef]
- Creutzig, F.; Franzen, M.; Moeckel, R.; Heinrichs, D.; Nagel, K.; Nieland, S.; Weisz, H. Leveraging digitalization for sustainability in urban transport. Glob. Sustain. 2019, 2. [Google Scholar] [CrossRef][Green Version]
- May, A.D.; Kelly, C.; Shepherd, S. The principles of integration in urban transport strategies. Transp. Policy 2006, 13, 319–327. [Google Scholar] [CrossRef][Green Version]
- Minken, H.; Jonsson, D.; Shepherd, S.; Jarvi, T.; May, T.; Page, M.; Pearman, A.; Pfaffenbichler, P.; Timms, P.; Vold, A. Developing Sustainable Urban. Land Use and Transport. Strategies: A Decision-Makers’ Guidebook; Institute for Transport Studies: Leeds, UK, 2003; Available online: https://www.toi.no/getfile.php?mmfileid=1371 (accessed on 8 July 2020).
- Banister, D. Overcoming barriers to the implementation of sustainable transport. In Barriers to Sustainable Transport: Institutions, Regulations and Sustainability; Rietveld, P., Stough, R.R., Eds.; Routledge: Oxfordshire, UK, 2005; ISBN 9780203005040. [Google Scholar]
- Akerman, J.; Gudmundsson, H.; Hedegaard Sørensen, C.; Isaksson, K.; Olsen, S.; Kessler, F.; Macmillan, J. How to Manage. Barriers to Formation and Implementation of Policy Packages in Transport; OPTIC. Optimal policies for transport in combination: Kawasaki, Japan, 2011; Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/9625826/OPTIC_D5_Final.pdf (accessed on 5 August 2020).
- Bardal, K.G.; Gjertsen, A.; Reinar, M.B. Sustainable mobility: Policy design and implementation in three Norwegian cities. Transp. Res. Part. D Transp. Environ. 2020, 82, 102330. [Google Scholar] [CrossRef]
- Næss, P.; Strand, A.; Næss, T.; Nicolaisen, M. On their road to sustainability?: The challenge of sustainable mobility in urban planning and development in two Scandinavian capital regions. Town Plan. Rev. 2011, 82, 285–316. [Google Scholar] [CrossRef][Green Version]
- Das, S.; Boruah, A.; Banerjee, A.; Raoniar, R.; Nama, S.; Maurya, A.K. Impact of COVID-19: A radical modal shift from public to private transport mode. Transp. Policy 2021, 109, 1–11. [Google Scholar] [CrossRef]
- Esposti, P.D.; Mortara, A.; Roberti, G. Sharing and Sustainable Consumption in the Era of COVID-19. Sustainability 2021, 13, 1903. [Google Scholar] [CrossRef]
- Ku, D.-G.; Um, J.-S.; Byon, Y.-J.; Kim, J.-Y.; Lee, S.-J. Changes in Passengers’ Travel Behavior Due to COVID-19. Sustainability 2021, 13, 7974. [Google Scholar] [CrossRef]
- Macharis, C.; Bernardini, A. Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: Time for a multi-actor approach. Transp. Policy 2015, 37, 177–186. [Google Scholar] [CrossRef]
- Božičević, J.; Lovrić, I.; Bartulović, D.; Steiner, S.; Roso, V.; Škrinjar, J.P. Determining Optimal Dry Port Location for Seaport Rijeka Using AHP Decision-Making Methodology. Sustainability 2021, 13, 6471. [Google Scholar] [CrossRef]
- Curiel-Esparza, J.; Mazario-Diez, J.L.; Canto-Perello, J.; Martin-Utrillas, M. Prioritization by consensus of enhancements for sustainable mobility in urban areas. Environ. Sci. Policy 2016, 55, 248–257. [Google Scholar] [CrossRef]
- Anastasiadou, K.; Gavanas, N.; Pitsiava-Latinopoulou, M.; Bekiaris, E. Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach. Energies 2021, 14, 5269. [Google Scholar] [CrossRef]
- Gutiérrez, L.R.; Oliva, M.D.V.; Romero-Ania, A. Managing Sustainable Urban Public Transport Systems: An AHP Multicriteria Decision Model. Sustainability 2021, 13, 4614. [Google Scholar] [CrossRef]
- Kaewfak, K.; Huynh, V.N.; Ammarapala, V.; Charoensiriwath, C. A Fuzzy AHP-TOPSIS Approach for Selecting the Multimodal Freight Transportation Routes. In Knowledge and Systems Sciences. KSS 2019. Communications in Computer and Information Science; Chen, J., Huynh, V., Nguyen, G.N., Tang, X., Eds.; Springer: Singapore, 2019; Volume 1103. [Google Scholar] [CrossRef]
- Celik, E.; Akyuz, E. An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. Ocean. Eng. 2018, 155, 371–381. [Google Scholar] [CrossRef]
- Nagesha, N.; Balachandra, P. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process. Energy 2006, 31, 1969–1983. [Google Scholar] [CrossRef]
- Shi, H.; Peng, S.; Liu, Y.; Zhong, P. Barriers to the implementation of cleaner production in Chinese SMEs: Government, industry and expert stakeholders’ perspectives. J. Clean. Prod. 2008, 16, 842–852. [Google Scholar] [CrossRef]
- Kabra, G.; Ramesh, A.; Arshinder, K. Identification and prioritization of coordination barriers in humanitarian supply chain management. Int. J. Disaster Risk Reduct. 2015, 13, 128–138. [Google Scholar] [CrossRef]
- Talib, F.; Rahman, Z. Identification and prioritization of barriers to total quality management implementation in service industry. TQM J. 2015, 27, 591–615. [Google Scholar] [CrossRef]
- Delmonico, D.V.D.G.; Dos Santos, H.H.; Pinheiro, M.A.P.; De Castro, R.; De Souza, R.M. Waste management barriers in developing country hospitals: Case study and AHP analysis. Waste Manag. Res. 2017, 36, 48–58. [Google Scholar] [CrossRef][Green Version]
- Gazerani, D.; Bahadori, M.; Meskarpour_Amiri, M.; Ravangard, R. Prioritization of barriers to the implementation of medical equipment marketing strategies using the analytic hierarchy process (AHP). Int. J. Pharm. Health Mark. 2019, 13, 489–499. [Google Scholar] [CrossRef]
- Çavmak, D.; Çavmak, S. Using AHP to Prioritize Barriers in Developing Medical Tourism: Case of Turkey. Int. J. Travel Med. Glob. Health 2020, 8, 73–79. [Google Scholar] [CrossRef]
- Numata, M.; Sugiyama, M.; Mogi, G. Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP). Energies 2020, 13, 1400. [Google Scholar] [CrossRef][Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Next website. The Pros and Cons of Comparison-Based vs. Rating-Based Ranking Systems. 2015. Available online: http://nextml.org/2015/11/14/comparisons-versus-ratings.html (accessed on 1 August 2020).
- Triantafyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; ISBN 978-1-4757-3157-6. [Google Scholar]
- de Loë, R.C.; Melnychuk, N.; Murray, D.; Plummer, R. Advancing the State of Policy Delphi Practice: A Systematic Review Evaluating Methodological Evolution, Innovation, and Opportunities. Technol. Forecast. Soc. Chang. 2016, 104, 78–88. [Google Scholar] [CrossRef]
- Diamond, I.R.; Grant, R.C.; Feldman, B.M.; Pencharz, P.B.; Ling, S.C.; Moore, A.M.; Wales, P.W. Defining consensus: A systematic review recommends methodologic criteria for reporting of Delphi studies. J. Clin. Epidemiol. 2014, 67, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, K. Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology. Sustainability 2021, 13, 4760. [Google Scholar] [CrossRef]
- Murry, T.J.; Pipino, L.L.; Gigch, J.P. A pilot study of fuzzy set modification of Delphi. Hum. Syst. Manag. 1985, 5, 76–80. [Google Scholar] [CrossRef]
- Ishikawa, A.; Amagasa, M.; Shiga, T.; Tomizawa, G.; Tatsuta, R.; Mieno, H. The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 1993, 55, 241–253. [Google Scholar] [CrossRef]
- Hsu, T.H.; Yang, T.H. Application of fuzzy analytic hierarchy process in the selection of advertising media. J. Manag. Syst. 2000, 7, 19–39. [Google Scholar]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Aczel, J.; Saaty, T.L. Procedures for Synthesizing Ratio Judgments. J. Math. Psychol. 1983, 27, 93–102. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef][Green Version]
- Guidelines. Developing and Implementing a Sustainable Urban Mobility Plan. Available online: https://www.eltis.org/sites/default/files/sump-guidelines_el_v2.pdf (accessed on 1 September 2021).
- Anastasiadou, K.; Vougias, S. “Smart” or “sustainably smart” urban road networks? The most important commercial street in Thessaloniki as a case study. Transp. Policy 2019, 82, 18–25. [Google Scholar] [CrossRef]
- Przybylowski, A.; Stelmak, S.; Suchanek, M. Mobility Behaviour in View of the Impact of the COVID-19 Pandemic—Public Transport Users in Gdansk Case Study. Sustainability 2021, 13, 364. [Google Scholar] [CrossRef]
- Svakthess Website. 2021. Available online: https://www.svakthess.imet.gr/ (accessed on 1 September 2021).
Category | Barriers |
---|---|
Financial/economic (related to budget constraints) |
|
Knowledge-based (related to data availability, employees’ expertise, etc.) |
|
Organizational (related to bureaucracy and organization) |
|
Social and cultural (related to mentality, education, and behavioral aspects) |
|
City particularities (related to topography, urban sprawl, climate and weather conditions, and other special city characteristics) |
|
Technological (related to technology exploitation at infrastructure and equipment level) |
|
Unforeseeable/temporary barriers (barriers of a temporary/unforeseeable nature) |
|
Legal and institutional (related to law, rules, administration, etc.) |
|
Political (related to politics) |
|
Intensity of Importance | Definition |
---|---|
1 | Equal importance |
3 | Moderate importance of one over another |
5 | Essential or strong importance |
7 | Very strong importance |
9 | Extreme importance |
2, 4, 6, 8 | Intermediate values between the two adjacent judgments |
Reciprocals | If activity i has one of the above numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Barrier Definition | Code-Name | Percentage of Participants Selecting the Barrier (%) |
---|---|---|
Decision-making is not based on scientific evidence and a holistic decision-aiding methodology that takes into account all of the parameters and stakeholder positions linked to the problem. | DM | 80 |
The citizens’ level of education and awareness regarding the significance of sustainable urban mobility and sustainable transport modes are inadequate. | ED | 65 |
There is a lack of effectively designed infrastructure for environmentally friendly mobility solutions, such as bicycle lanes and walkable areas. | IN | 60 |
The behavior of drivers of motorized vehicles towards other road users and the use of public space are inappropriate, such as in the case of illegal parking and use of both dedicated lanes and pedestrian areas. | LB | 60 |
There is a lack of effectively designed and managed public transport infrastructure (including the size of the fleet and the coverage, the use of environmentally friendly vehicles, and the organization of the network). | PT | 60 |
There are no alternative and complementary public transport systems to the public bus. | CT | 55 |
There is not enough cooperation between the authorities at the local, regional, and national level, and their coordination in decision-making is not efficient. | CO | 50 |
Barriers/ Experts | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | G.M. |
---|---|---|---|---|---|---|---|---|---|---|---|
DM vs. ED | 5 | 6 | 5 | 8 | 3 | 7 | 1/7 | 3 | 5 | 1/6 | 2.1356 |
DM vs. LB | 7 | 4 | 1 | 9 | 4 | 5 | 1/9 | 4 | 1 | 1/8 | 1.5993 |
DM vs. IN | 9 | 1/5 | 1/3 | 1/7 | 4 | 1/5 | 3 | 3 | 1/3 | 4 | 0.9839 |
DM vs. PT | 8 | 1/5 | 1/3 | 1/7 | 3 | 1/5 | 3 | 4 | 1/5 | 3 | 0.9116 |
DM vs. CT | 6 | 7 | 1/3 | 1/9 | 2 | 1/5 | 3 | 3 | 1/5 | 3 | 1.1063 |
DM vs. CO | 9 | 4 | 7 | 1 | 1 | 5 | 6 | 2 | 1/3 | 5 | 2.3269 |
ED vs. LB | 3 | 1/5 | 1/3 | 7 | 3 | 1/3 | 1/9 | 1/2 | 1/3 | 1/8 | 0.6202 |
ED vs. IN | 5 | 1/7 | 1/5 | 1/9 | 2 | 1/7 | 7 | 1 | 1/5 | 7 | 0.7715 |
ED vs. PT | 4 | 1/7 | 1/5 | 1/7 | 2 | 1/7 | 7 | 1/3 | 1/5 | 7 | 0.7056 |
ED vs. CT | 3 | 1/3 | 1/5 | 1/9 | 2 | 1/7 | 7 | 1/3 | 1/5 | 7 | 0.7240 |
ED vs. CO | 6 | 1/6 | 3 | 7 | 3 | 1/3 | 1 | 1/3 | 1 | 1 | 1.1760 |
LB vs. IN | 5 | 1/5 | 1/3 | 1/9 | 1/3 | 1/5 | 9 | 1 | 1/7 | 7 | 0.7282 |
LB vs. PT | 3 | 1/5 | 1/3 | 1/9 | 1/3 | 1/5 | 9 | 1 | 1/7 | 7 | 0.6978 |
LB vs. CT | 4 | 4 | 1/5 | 1/9 | 1/2 | 1/5 | 9 | 1 | 1/7 | 7 | 0.9094 |
LB vs. CO | 6 | 1/3 | 7 | 9 | 1/3 | 3 | 9 | 1 | 1/5 | 7 | 1.8481 |
IN vs. PT | 1/4 | 1 | 1 | 1 | 1/2 | 1 | 1 | 1/4 | 1 | 1 | 0.7492 |
IN vs. CT | 1/5 | 7 | 1/3 | 1 | 1 | 1 | 1 | 1/3 | 1 | 1 | 0.8564 |
IN vs. CO | 1/3 | 5 | 7 | 9 | 1/2 | 7 | 1/6 | 1 | 5 | 1/5 | 1.4090 |
PT vs. CT | 2 | 7 | 1/2 | 1/9 | 2 | 1 | 1 | 1 | 1 | 1 | 1.0375 |
PT vs. CO | 4 | 5 | 7 | 7 | 1 | 7 | 1/6 | 1 | 5 | 1/3 | 1.8764 |
CT vs. CO | 5 | 1/7 | 7 | 9 | 1/2 | 7 | 1/6 | 2 | 5 | 1/4 | 1.4172 |
DM | ED | LB | IN | PT | CT | CO | |
---|---|---|---|---|---|---|---|
DM | 1.0000 | 2.1356 | 1.5993 | 0.9839 | 0.9116 | 1.1063 | 2.3269 |
ED | 0.4683 | 1.0000 | 0.6202 | 0.7715 | 0.7056 | 0.7240 | 1.1760 |
LB | 0.6253 | 1.6123 | 1.0000 | 0.7282 | 0.6978 | 0.9094 | 1.8481 |
IN | 1.0164 | 1.2962 | 1.3733 | 1.0000 | 0.7492 | 0.8564 | 1.4090 |
PT | 1.0970 | 1.4172 | 1.4330 | 1.3348 | 1.0000 | 1.0375 | 1.8764 |
CT | 0.9039 | 1.3812 | 1.0996 | 1.1677 | 0.9639 | 1.0000 | 1.4172 |
CO | 0.4298 | 0.8503 | 0.5411 | 0.7097 | 0.5329 | 0.7056 | 1.0000 |
DM | ED | LB | IN | PT | CT | CO | W | |
---|---|---|---|---|---|---|---|---|
DM | 0.1805 | 0.2203 | 0.2086 | 0.1469 | 0.1639 | 0.1745 | 0.2105 | 0.1865 |
ED | 0.0845 | 0.1032 | 0.0809 | 0.1152 | 0.1269 | 0.1142 | 0.1064 | 0.1045 |
LB | 0.1129 | 0.1663 | 0.1304 | 0.1088 | 0.1255 | 0.1435 | 0.1672 | 0.1364 |
IN | 0.1834 | 0.1337 | 0.1791 | 0.1493 | 0.1347 | 0.1351 | 0.1275 | 0.1490 |
PT | 0.1980 | 0.1462 | 0.1869 | 0.1994 | 0.1798 | 0.1637 | 0.1698 | 0.1777 |
CT | 0.1631 | 0.1425 | 0.1434 | 0.1744 | 0.1733 | 0.1577 | 0.1282 | 0.1547 |
CO | 0.0776 | 0.0877 | 0.0706 | 0.1060 | 0.0958 | 0.1113 | 0.0905 | 0.0914 |
λmax = 7.0672 CI = 0.0112 CR = 0.0085 < 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiadou, K.; Gavanas, N.; Pyrgidis, C.; Pitsiava-Latinopoulou, M. Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-AHP Approach. Sustainability 2021, 13, 10386. https://doi.org/10.3390/su131810386
Anastasiadou K, Gavanas N, Pyrgidis C, Pitsiava-Latinopoulou M. Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-AHP Approach. Sustainability. 2021; 13(18):10386. https://doi.org/10.3390/su131810386
Chicago/Turabian StyleAnastasiadou, Konstantina, Nikolaos Gavanas, Christos Pyrgidis, and Magda Pitsiava-Latinopoulou. 2021. "Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-AHP Approach" Sustainability 13, no. 18: 10386. https://doi.org/10.3390/su131810386