A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics
Abstract
:1. Introduction
1.1. Method and Eligibility Criteria
1.2. Rationale behind the Presented Review and Objectives
1.3. Originality of the Paper
1.4. Previous Research, State of the Art
2. General Classification and Metrics
Metrics
3. Results—Passive Technologies
4. Results—Active Technologies
4.1. Gas
4.2. Fluid
4.3. Electrical Current
4.3.1. MEMS-Based Microsystems
4.3.2. Microwrinkled Nanometric Films
4.3.3. PDLC (Polymer Dispersed Liquid Crystal)
4.3.4. SPD Windows
4.3.5. ECDs
5. Electrochromic Devices
5.1. Switching Mechanism
5.2. Electrochromic Device Architecture
5.3. Simulated Energy Performance
5.4. Most Recent Concepts in EC Smart Windows
5.4.1. Multicolour EC Solutions
5.4.2. Neutral Black Electrochromism
5.4.3. Spectrally Selective Systems
5.4.4. Electrochromic Energy Storage Window (EESD)
5.4.5. Hybrid EC/TC Solutions
5.4.6. EC + OLED Lighting
5.4.7. EC Devices Powered by Solar Cells (DSSC-EC)
5.5. Application of Nanostructures in EC Device Design
6. Discussion—Main Challenges
7. Conclusions
7.1. Smart Windows
- The smart window is a mature technology that has been studied for many years in many variations. The proof of this is the industrial application of the selected technologies and the presence of brands (e.g., View, Sage, Gesimat, Gentex, ChromoGenics);
- Smart windows have not achieved significant market penetration due to the factors discussed in the previous paragraph;
- Smart windows must also switch deeply and quickly enough to mitigate glare and prevent user discomfort, or they will not gain user acceptance;
- In the case of so-called privacy windows, the haze effect must be considered when discussing the transparency/translucency (high) and energy-saving performance (relatively low);
- The review shows that the widespread adoption of smart window technology calls for better performance and cost competitiveness.
7.2. Electrochromics
- Many ECD technologies are currently at the stage of research and development as multicolour, neutral black, spectrally selective, energy storage, and generation;
- Hybrid technologies are of special attention, e.g., smart glass joining in one device the PV and ECD (self-powering smart windows), or ECD and OLED light-emitting diodes or ECD and TC technologies;
- Hybrid devices usually expose lower either VIS or NIR performance while presenting other functionalities;
- Dual-band (NIR/VIS) technologies are promising in the context of energy flow management. In this category, the best performance was achieved by a device which is capable of shielding 96.2% of the NIR irradiation from 800 to 2500 nm [71];
- The application of nano-technologies seems to be opening a wealth of new opportunities presenting the best performance;
- The observed tendency is that the complexity of ECDs is growing, especially the number of layers, the architecture of nano-structures, and manufacturing technology (deposition sequence).
7.3. Limitations of the Study
7.4. Future Application
8. Summary
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
TC | thermochromic | DSSC | dye-sensitised solar cell |
EC | electrochromic | OLED | organic light-emitting diode |
GC | gasochromic | MEMS | microelectromechanical systems |
TC | thermochromic | EESW | electrochromic energy storage windows |
ECD | electrochromic device | PDLC | polymer dispersed liquid crystal |
Tvis/Tlum | visible transmittance | SPD | suspended particle devices |
Tsol | solar transmittance | PEDOT | conducting polymer based on 3,4-ethylene dioxythiophene |
TNIR | near-infrared transmittance | UV | ultraviolet |
ΔTvis | visual modulation | TRL | technology readiness level |
ΔTsol | solar modulation | ||
ΔTNIR | near-infrared modulation |
References
- Hellinga, H. Daylight and View. The Influence of Windows on the Visual Quality of Indoor Spaces. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2013. [Google Scholar]
- Kolokotronia, M.; Rena, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Sustainable Development Goals, United Nations Department of Global Communications. May 2020. Available online: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/01/SDG_Guidelines_AUG_2019_Final.pdf (accessed on 20 August 2021).
- Malvoni, M.; Baglivo, C.; Congedo, P.M.; Laforgia, D. CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077. Energy 2016, 111, 430–438. [Google Scholar] [CrossRef]
- Granqvist, C.G. Spectrally Selective Coatings for Energy Efficiency and Solar Applications. Phys. Scr. 1985, 32, 401–407. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromic metal oxides: An introduction to materials and devices. In Electrochromic Materials and Devices; Mortimer, R.J., Rosseinsky, D.R., Monk, P.M.S., Eds.; Wiley-VCH: Weinheim, Germany, 2015; pp. 3–40. [Google Scholar]
- Andow, B.C.; Krietemeyer, B.; Stark, P.R.H.; Dyson, A.H. Performance criteria for dynamic window systems using nanostructured behaviors for energy harvesting and environmental comfort. In Proceedings of the SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2013, San Diego, CA, USA, 10–14 March 2013. [Google Scholar]
- Brzezicki, M. Regulated transparency: A brief review of the existing and the most promising technologies. In Engineered Transparency 2016: Glass in Architecture and Structural Engineering; Jens, S., Bernhard, W., Eds.; Wilhelm Ernst & Sohn: Berlin, Germany, 2016; pp. 11–19. [Google Scholar]
- Gartlehner, G.; Affengruber, L.; Titscher, V.; Noel-Storr, A.; Dooley, G.; Ballarini, N.; König, F. Single-reviewer abstract screening missed 13 percent of relevant studies: A crowd-based, randomized controlled trial. J. Clin. Epidemiol. 2020, 121, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P.S.; Long, Y. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Adv. Energy Mater. 2019, 9, 1902066. [Google Scholar] [CrossRef]
- Tällberg, R.; Jelle, B.P.; Loonen, R.; Gao, T.; Hamdy, M. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 2019, 200, 109828. [Google Scholar] [CrossRef] [Green Version]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Casini, M. Smart windows for energy efficiency of buildings. In Proceedings of the Second Intl. Conference on Advances in Civil, Structural and Environmental Engineering—ACSEE 2014, Zurich, Switzerland, 25–26 October 2014. [Google Scholar] [CrossRef]
- Rai, V.; Singh, R.S.; Blackwood, D.J.; Zhili, D. A Review on Recent Advances in Electrochromic Devices: A Material Approach. Adv. Eng. Mater. 2020, 22, 2000082. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A review of one-dimensional TiO2nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Lamontagne, B.; Fong, N.R.; Song, I.-H.; Ma, P.; Barrios, P.; Poitras, D. Review of microshutters for switchable glass. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 040901. [Google Scholar] [CrossRef]
- Kraft, A. Electrochromism: A fascinating branch of electrochemistry. ChemTexts 2018, 5, 1. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Arvizu, M.A.; Qu, H.-Y.; Wen, R.-T.; Niklasson, G.A. Advances in electrochromic device technology: Multiple roads towards superior durability. Surf. Coat. Technol. 2018, 357, 619–625. [Google Scholar] [CrossRef]
- Aburas, M.; Soebarto, V.; Williamson, T.; Liang, R.; Ebendorff-Heidepriem, H.; Wu, Y. Thermochromic smart window technologies for building application: A review. Appl. Energy 2019, 255, 113522. [Google Scholar] [CrossRef]
- Wang, Y.; Runnerstrom, E.L.; Milliron, D.J. Switchable Materials for Smart Windows. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 283–304. [Google Scholar] [CrossRef]
- Park, B.R.; Hong, J.; Choi, E.J.; Choi, Y.J.; Lee, C.; Moon, J.W. Improvement in Energy Performance of Building Envelope Incorporating Electrochromic Windows (ECWs). Energies 2019, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Kunwar, N.; Cetin, K.; O’Neill, Z. A critical review of fenestration/window system design methods for high performance buildings. Energy Build. 2021, 248, 111184. [Google Scholar] [CrossRef]
- Mori, K.; Misawa, K.; Ihida, S.; Takahashi, T.; Fujita, H.; Toshiyoshi, H. A MEMS Electrostatic Roll-Up Window Shade Array for House Energy Management System. IEEE Photon. Technol. Lett. 2016, 28, 593–596. [Google Scholar] [CrossRef]
- Jelle, B.P. Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings—Measurement and calculation. Sol. Energy Mater. Sol. Cells 2013, 116, 291–323. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.D.; Yeo, L.P.; Kei, T.C.; Mandler, D.; Magdassi, S.; Tok, A.I.Y. Efficient Near Infrared Modulation with High Visible Transparency Using SnO2–WO3 Nanostructure for Advanced Smart Windows. Adv. Opt. Mater. 2019, 7, 1801389. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Niklasson, G.A. Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings. Buildings 2016, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Choi, D.S.; Kang, S.H.; Yang, W.S.; Nahm, S.; Han, S.H.; Kim, T. VO2/WO3-Based Hybrid Smart Windows with Thermochromic and Electrochromic Properties. ACS Sustain. Chem. Eng. 2019, 7, 7111–7117. [Google Scholar] [CrossRef]
- La, T.-G.; Li, X.; Kumar, A.; Fu, Y.; Yang, S.; Chung, H.-J. Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 33100–33106. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, G.; Saes, B.W.H.; Debije, M.G. Dual-responsive “smart” window and visually attractive coating based on a diarylethene photochromic dye. Appl. Opt. 2019, 58, 9823–9828. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhou, Y.; Shao, Z.; Zhao, S.; Chang, T.; Huang, A.; Li, N.; Ji, S.; Jin, P. Enhanced Coloration/Bleaching Photochromic Performance of WO3 Based on PVP/PU Composite Matrix. ChemistrySelect 2019, 4, 9817–9821. [Google Scholar] [CrossRef]
- Chou, H.-T.; Chen, Y.-C.; Lee, C.-Y.; Chang, H.-Y.; Tai, N.-H. Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency. Sol. Energy Mater. Sol. Cells 2017, 166, 45–51. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, J. Flexible Adaptive Solar Control Smart-films Comprising Thermo-responsive Hydrogels with Silver Naopatterned Substrates. Polym. Korea 2019, 43, 144–150. [Google Scholar] [CrossRef]
- Wittwer, V.; Datz, M.; Ell, J.; Georg, A.; Graf, W.; Walze, G. Gasochromic windows. Sol. Energy Mater. Sol. Cells 2004, 84, 305–314. [Google Scholar] [CrossRef]
- Liang, R.; Liu, D.; Sun, Y.; Luo, X.; Grant, D.; Walker, G.; Wu, Y. Investigation of Mg-Y coated gasochromic smart windows for building applications. Build. Simul. 2018, 12, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, D.; Goossen, K.W. Evaluation of 3D printed optofluidic smart glass prototypes. Opt. Express 2017, 26, A85–A98. [Google Scholar] [CrossRef] [PubMed]
- Heiz, B.P.V.; Pan, Z.; Su, L.; Le, S.T.; Wondraczek, L. A Large-Area Smart Window with Tunable Shading and Solar-Thermal Harvesting Ability Based on Remote Switching of a Magneto-Active Liquid. Adv. Sustain. Syst. 2017, 2, 1700140. [Google Scholar] [CrossRef] [Green Version]
- Hillmer, H.; Al-Qargholi, B.; Khan, M.M.; Worapattrakul, N.; Wilke, H.; Woidt, C.; Tatzel, A. Optical MEMS-based micromirror arrays for active light steering in smart windows. Jpn. J. Appl. Phys. 2018, 57, 08PA07. [Google Scholar] [CrossRef]
- Hillmer, H.; Al-Qargholi, B.; Khan, M.M.; Iskhandar, M.S.Q.; Wilke, H.; Tatzel, A. Optical MEMS based micromirror arrays: Fabrication, characterization and potential applications in smart active windows. In Proceedings of the 2019 International Conference on Optical MEMS and Nanophotonics (OMN), Daejeon, Korea, 28 July–1 August 2019; pp. 188–189. [Google Scholar] [CrossRef]
- Shrestha, M.; Asundi, A.; Lau, G.-K. Smart Window Based on Electric Unfolding of Microwrinkled TiO2 Nanometric Films. ACS Photon. 2018, 5, 3255–3262. [Google Scholar] [CrossRef]
- Lampert, C. Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells 1998, 52, 207–221. [Google Scholar] [CrossRef]
- Lampert, C.M. Chromogenic smart materials. Mater. Today 2004, 7, 28–35. [Google Scholar] [CrossRef]
- Murray, J.; Ma, D.; Munday, J.N. Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows. ACS Photon. 2016, 4, 1–7. [Google Scholar] [CrossRef]
- Available online: https://www.saint-gobain-glass.com/products/priva-lite (accessed on 20 August 2021).
- De Filpo, G.; Armentano, K.; Pantuso, E.; Mashin, A.I.; Chidichimo, G.; Nicoletta, F.P. Polymer Membranes Dispersed Liquid Crystal (PMDLC): A new electro-optical device. Liq. Cryst. 2019, 46, 986–993. [Google Scholar] [CrossRef]
- Kim, M.; Park, K.J.; Seok, S.; Ok, J.M.; Jung, H.-T.; Choe, J.; Kim, D.H. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows. ACS Appl. Mater. Interfaces 2015, 7, 17904–17909. [Google Scholar] [CrossRef]
- Alghamdi, H.; Almawgani, A. Smart and Efficient Energy Saving System Using PDLC Glass. In Proceedings of the 2019 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 23–24 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Sol, J.; Timmermans, G.; Van Breugel, A.J.; Schenning, A.P.H.J.; Debije, M.G. Multistate Luminescent Solar Concentrator “Smart” Windows. Adv. Energy Mater. 2018, 8, 1702922. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M. (Ed.) Smart Materials; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B. Durability of switching behaviour after outdoor exposure for a suspended particle device switchable glazing. Sol. Energy Mater. Sol. Cells 2017, 163, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.K. Reminiscences on the discovery of electrochromic phenomena in transition metal oxides. Sol. Energy Mater. Sol. Cells 1995, 39, 191–201. [Google Scholar] [CrossRef]
- Singh, R.; Tharion, J.; Murugan, S.; Kumar, A. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode. ACS Appl. Mater. Interfaces 2016, 9, 19427–19435. [Google Scholar] [CrossRef]
- Gayathri, P.T.G.; Shaiju, S.S.; Remya, R.; Biswapriya, D. Hydrated tungsten oxide nanosheet electrodes for broadband electrochromism and energy storage. Mater. Today Energy 2018, 10, 380–387. [Google Scholar] [CrossRef]
- Mjejri, I.; Doherty, C.M.; Rubio-Martinez, M.; Drisko, G.L.; Rougier, A. Double-Sided Electrochromic Device Based on Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9, 39930–39934. [Google Scholar] [CrossRef]
- Mortimer, R.J. Five Color Electrochromicity Using Prussian Blue and Nation/Methyl Viologen Layered Films J. Electrochem. Soc. 1991, 138, 633–634. [Google Scholar] [CrossRef]
- Wang, B.; Cui, M.; Gao, Y.; Jiang, F.; Du, W.; Gao, F.; Kang, L.; Zhi, C.; Luo, H. A Long-Life Battery-Type Electrochromic Window with Remarkable Energy Storage Ability. Sol. RRL 2019, 4, 1900425. [Google Scholar] [CrossRef]
- Cannavale, A.; Ayr, U.; Fiorito, F.; Martellotta, F. Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort. Energies 2020, 13, 1449. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A.; Marino, C.; Nucara, A.; Pietrafesa, M. Energy performance of an electrochromic switchable glazing: Experimental and computational assessments. Energy Build. 2018, 165, 390–398. [Google Scholar] [CrossRef]
- Cannavale, A.; Martellotta, F.; Cossari, P.; Gigli, G.; Ayr, U. Energy savings due to building integration of innovative solid-state electrochromic devices. Appl. Energy 2018, 225, 975–985. [Google Scholar] [CrossRef]
- Javad, K.; Navid, G. Thermal comfort investigation of stratified indoor environment in displacement ventilation: Climate-adaptive building with smart windows. Sustain. Cities Soc. 2018, 46, 101354. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kang, J.S.; Park, J.-H.; Kang, J.; Jo, I.-R.; Sung, Y.-E.; Ahn, K.-S. Color-switchable electrochromic Co(OH)2/Ni(OH)2 nanofilms with ultrafast kinetics for multifunctional smart windows. Nano Energy 2020, 72, 104720. [Google Scholar] [CrossRef]
- Liu, X.; Cao, T.; Yao, W.; Shen, L.; Xu, J.; Jiang, F.; Du, Y. A freestanding electrochromic copolymer for multicolor smart window. J. Colloid Interface Sci. 2020, 570, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Argun, A.A.; Aubert, P.-H.; Thompson, B.C.; Schwendeman, I.; Gaupp, C.L.; Hwang, J.; Pinto, N.J.; Tanner, D.B.; MacDiarmid, A.G.; Reynolds, J.R. Multicolored Electrochromism in Polymers: Structures and Devices. Chem. Mater. 2004, 16, 4401–4412. [Google Scholar] [CrossRef] [Green Version]
- Futsch, R.; Mjejri, I.; Rakotozafy, H.; Rougier, A. PEDOT:PSS-V2O5 Hybrid for Color Adjustement in Electrochromic Systems. Front. Mater. 2020, 7, 78. [Google Scholar] [CrossRef]
- Chu, J.; Kong, Z.; Lu, D.; Zhang, W.; Wang, X.; Yu, Y.; Li, S.; Wang, X.; Xiong, S.; Ma, J. Hydrothermal synthesis of vanadium oxide nanorods and their electrochromic performance. Mater. Lett. 2016, 166, 179–182. [Google Scholar] [CrossRef]
- Mjejri, I.; Gaudon, M.; Rougier, A. Mo addition for improved electrochromic properties of V2O5 thick films. Sol. Energy Mater. Sol. Cells 2019, 198, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Aste, N.; Leonforte, F.; Piccolo, A. Color rendering performance of smart glazings for building applications. Sol. Energy 2018, 176, 51–61. [Google Scholar] [CrossRef]
- Jarosz, T.; Gebka, K.; Stolarczyk, A.; Domagala, W. Transparent to Black Electrochromism—The “Holy Grail” of Organic Optoelectronics. Polymers 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Passerini, S.; Scrosati, B.; Gorenstein, A. The Intercalation of Lithium in Nickel Oxide and Its Electrochromic Properties. J. Electrochem. Soc. 1990, 137, 3297–3300. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ning, J.; Yin, Y.; Xing, X.; Qi, M.; Li, T.; Cao, J.; He, Y.; Perepichka, I.F.; Meng, H. Thieno[3,2-b]thiophene-based conjugated copolymers for solution-processable neutral black electrochromism. Polym. Chem. 2018, 9, 5608–5616. [Google Scholar] [CrossRef]
- Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless to Neutral Color Electrochromic Devices Based on Asymmetric Viologens. ACS Appl. Mater. Interfaces 2016, 8, 29619–29627. [Google Scholar] [CrossRef]
- Wu, M.; Shi, Y.; Li, R.; Wang, P. Spectrally Selective Smart Window with High Near-Infrared Light Shielding and Controllable Visible Light Transmittance. ACS Appl. Mater. Interfaces 2018, 10, 39819–39827. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, P.; Magni, M.; Martinez, S.; Gil, R.M.G.; Della Pirriera, M.; Manca, M. Spectrally Selective PANI/ITO Nanocomposite Electrodes for Energy-Efficient Dual Band Electrochromic Windows. ACS Appl. Energy Mater. 2020, 3, 3779–3788. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Yeo, L.P.; Mandler, D.; Magdassi, S.; Tok, A. Electrodeposition of amorphous WO3 on SnO2–TiO2 inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window. RSC Adv. 2019, 9, 16730–16737. [Google Scholar] [CrossRef] [Green Version]
- Nunes, S.C.; Saraiva, S.M.; Pereira, R.F.P.; Pereira, S.; Silva, M.M.; Carlos, L.D.; Fortunato, E.; Ferreira, R.A.S.; Rego, R.; Bermudez, V.D.Z. Sustainable Dual-Mode Smart Windows for Energy-Efficient Buildings. ACS Appl. Energy Mater. 2019, 2, 1951–1960. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, S.; Zhang, T.; Lee, J.Y. Fluoride-Assisted Synthesis of Plasmonic Colloidal Ta-Doped TiO2 Nanocrystals for Near-Infrared and Visible-Light Selective Electrochromic Modulation. Chem. Mater. 2018, 30, 4838–4846. [Google Scholar] [CrossRef]
- Barawi, M.; Veramonti, G.; Epifani, M.; Giannuzzi, R.; Sibillano, T.; Giannini, C.; Rougier, A.; Manca, M. A dual band electrochromic device switchable across four distinct optical modes. J. Mater. Chem. A 2018, 6, 10201–10205. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, Y.; Zhu, Z.; Zhu, C.; Du, D.; Lin, Y. Self-Driven Multicolor Electrochromic Energy Storage Windows Powered by a “Perpetual” Rechargeable Battery. ACS Appl. Mater. Interfaces 2019, 11, 48013–48020. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E. Electrochromic Conjugated Polymers for Multifunctional Smart Windows with Integrative Functionalities. Adv. Mater. Technol. 2020, 5, 1900890. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, S.; Zhang, T.; Yao, Q.; Lee, J.Y. A Visible Light-Near-Infrared Dual-Band Smart Window with Internal Energy Storage. Joule 2019, 3, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, M.; Kim, J.; Kim, E. Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window. Energy Environ. Sci. 2018, 11, 2124–2133. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Y.; Bi, Z.; Jia, S.; Guo, X.; Gao, X.; Li, X. Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance. Chem. Eng. J. 2019, 370, 1459–1466. [Google Scholar] [CrossRef]
- Wang, W.-Q.; Wang, X.-L.; Xia, X.-H.; Yao, Z.-J.; Zhong, Y.; Tu, J.-P. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 2018, 10, 8162–8169. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, R.; Wang, Y.; Ye, X.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Sol. Energy Mater. Sol. Cells 2019, 207, 110337. [Google Scholar] [CrossRef]
- Lu, X.; Liu, G.-J.; Li, Y.-H.; Ma, Y.-Y.; Fan, J.; Fung, M.-K. Smart OLED Lighting on Electrochromic Glass. Phys. Status Solidi 2018, 215, 1800102. [Google Scholar] [CrossRef]
- Cossari, P.; Pugliese, M.; Gambino, S.; Cannavale, A.; Maiorano, V.; Gigli, G.; Mazzeo, M. Fully integrated electrochromic-OLED devices for highly transparent smart glasses. J. Mater. Chem. C 2018, 6, 7274–7284. [Google Scholar] [CrossRef]
- Bechinger, C.; Ferrere, S.; Zaban, A.; Sprague, J.R.; Gregg, B.A. Photoelectrochromic windows and displays. Nature 1996, 383, 608–610. [Google Scholar] [CrossRef]
- Wu, C.-H.; Hsu, C.-Y.; Huang, K.-C.; Nien, P.-C.; Lin, J.-T.; Ho, K.-C. A photoelectrochromic device based on gel electrolyte with a fast switching rate. Sol. Energy Mater. Sol. Cells 2011, 99, 148–153. [Google Scholar] [CrossRef]
- Costa, C.; Ivanou, D.; Pinto, J.; Mendes, J.; Mendes, A. Impact of the architecture of dye sensitized solar cell-powered electrochromic devices on their photovoltaic performance and the ability to color change. Sol. Energy 2019, 182, 22–28. [Google Scholar] [CrossRef]
- Wang, J.M.; Sun, X.W.; Jiao, Z. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress. Materials 2010, 3, 5029–5053. [Google Scholar] [CrossRef] [PubMed]
- Kwak, G.; Lee, M.; Yong, K. Chemically Modified Superhydrophobic WOx Nanowire Arrays and UV Photopatterning. Langmuir 2010, 26, 9964–9967. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Lu, Y.-R.; Li, H.-H.; Liu, J.-W.; Yu, S.-H. Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows. J. Am. Chem. Soc. 2017, 139, 9921–9926. [Google Scholar] [CrossRef]
- Nah, Y.-C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. TiO2−WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties. J. Am. Chem. Soc. 2008, 130, 16154–16155. [Google Scholar] [CrossRef] [PubMed]
- Daothong, S.; Songmee, N.; Dejang, N.; Pichler, T.; Shiozawa, H.; Jia, Y.; Batchelor, D.; Kauppinen, E.; Thongtem, S.; Ayala, P.; et al. Ethanol-Promoted Fabrication of Tungsten Oxide Nanobelts with Defined Crystal Orientation. J. Phys. Chem. C 2009, 114, 10–14. [Google Scholar] [CrossRef]
- Mo, R.-F.; Jin, G.-Q.; Guo, X.-Y. Morphology evolution of tungsten trioxide nanorods prepared by an additive-free hydrothermal route. Mater. Lett. 2007, 61, 3787–3790. [Google Scholar] [CrossRef]
- Wei, X.; Shen, P.K. Electrochromics of single crystalline WO3·H2O nanorods. Electrochem. Commun. 2006, 8, 293–298. [Google Scholar] [CrossRef]
- Cai, L.; Wu, X.; Gao, Q.; Fan, Y. Effect of morphology on the near infrared shielding property and thermal performance of K0.3WO3 blue pigments for smart window applications. Dye. Pigment. 2018, 156, 33–38. [Google Scholar] [CrossRef]
- Chen, J.-Z.; Ko, W.-Y.; Yen, Y.-C.; Chen, P.-H.; Lin, K.-J. Hydrothermally Processed TiO2Nanowire Electrodes with Antireflective and Electrochromic Properties. ACS Nano 2012, 6, 6633–6639. [Google Scholar] [CrossRef] [PubMed]
- Tokudome, H.; Miyauchi, M. Electrochromism of Titanate-Based Nanotubes. Angew. Chem. Int. Ed. 2005, 44, 1974–1977. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-H.; Hon, M.H.; Leu, I.-C. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties. J. Electron. Mater. 2016, 46, 2080–2084. [Google Scholar] [CrossRef]
- Najafi-Ashtiani, H.; Gholipour, S.; Rahdar, A. Surface plasmon resonance effect for a new structure of Ag/WO3 nanorod-shell nanocomposits and application in smart window. J. Mol. Struct. 2018, 1169, 25–30. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Tang, K.; Cui, J.; Shu, X.; Wang, Y.; Liu, J.; Jiang, Y.; Tan, H.H.; Wu, Y. Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties. Chem. Eng. J. 2018, 355, 942–951. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, M.; Zhang, Y.; Cui, J.; Wang, Y.; Shu, X.; Qin, Y.; Tan, H.H.; Liu, J.; Wu, Y. Structure modulated amorphous/crystalline WO3 nanoporous arrays with superior electrochromic energy storage performance. Sol. Energy Mater. Sol. Cells 2020, 212, 110579. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Hu, F.; Ding, L.; Gu, Y.; Yan, B.; Yang, F.; Jiang, M.; Cao, Y. Patterned Flexible Electrochromic Device Based on Monodisperse Silica/Polyaniline Core/Shell Nanospheres. J. Electrochem. Soc. 2019, 166, H343–H350. [Google Scholar] [CrossRef]
- Hanzu, I.; Hornebecq, V.; Djenizian, T.; Knauth, P. In situ study of electrochromic properties of self-assembled TiO2 nanotubes. C. R. Chim. 2013, 16, 96–102. [Google Scholar] [CrossRef]
- Preto, S.; Gomes, C.C. Three Times Smart—Smart Workplaces, Smart Lighting & Smart Glass, Advances in Safety Management and Human Factors, AHFE 2017. In Advances in Intelligent Systems and Computing; Arezes, P., Ed.; Springer: Cham, Switzerland, 2017; Volume 604, pp. 435–446. [Google Scholar]
- Granqvist, C.G.; Pehlivan, I.B.; Niklasson, G. Electrochromics on a roll: Web-coating and lamination for smart windows. Surf. Coat. Technol. 2017, 336, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Tu, J.; Zhou, D.; Li, L.; Zhang, J.; Wang, X.; Gu, C. Constructed TiO2/NiO Core/Shell Nanorod Array for Efficient Electrochromic Application. J. Phys. Chem. C 2014, 118, 6690–6696. [Google Scholar] [CrossRef]
- Pierucci, A.; Cannavale, A.; Martellotta, F.; Fiorito, F. Smart windows for carbon neutral buildings: A life cycle approach. Energy Build. 2018, 165, 160–171. [Google Scholar] [CrossRef]
No. | Team | Year | Focus |
---|---|---|---|
1 | Tällberg et al. | 2019 | energy saving potential of adaptive and controllable smart windows |
2 | Casini | 2018 | active dynamic windows for buildings |
3 | Rai et al. | 2020 | recent advances in electrochromic devices |
4 | Ge et al. | 2016 | a review of one-dimensional TiO2 nanostructured materials |
5 | Lamontagne et al. | 2019 | review of micro shutters for switchable glass |
6 | Kraft | 2019 | general issues of electrochromism |
7 | Granqvist et al. | 2019 | advances in electrochromic coating technology |
8 | Aburas | 2019 | thermochromic smart window technologies for building application |
9 | Ke at al | 2019 | perspectives on the future of electrochromic |
10 | Wang et al. | 2015 | review of switchable materials used in smart windows |
11 | Park et al. | 2019 | energy performance of building envelope incorporating electrochromic windows |
12 | Feng et al. | 2021 | a critical review of fenestration/window system design methods for high-performance buildings |
Type | Stimulus | Technology | Featured Systems |
---|---|---|---|
Passive technologies: | Heat—Thermochromic | ||
Light—Photochromic | |||
Heat—Phase Change Materials | |||
Active technologies: | Gas—Gasochromic | ||
Fluid—Optofluidic glass | |||
Electrical current: | Microsystems | ||
Microwrinkled Nanometric Films | |||
Polymer dispersed liquid crystal | |||
Suspended particle devices (SPD) | |||
Electrochromic: | Multicolour EC | ||
Neutral black electrochromism | |||
Spectrally selective systems NIR/VIS | |||
Electrochromic energy storage window | |||
Hybrid EC/TC solutions | |||
EC devices powered by solar cells | |||
Nanostructures |
No. | Team | Year | Type | ΔTsol | ΔTvis | Remarks |
---|---|---|---|---|---|---|
1 | Wittwer et al. | 2004 | Active gasochromic | 71% | 72% | Switching from transparent to mirror state |
2 | Liang et al. | 2019 | Active gasochromic | 42% | n/a | |
3 | Wolfe et al. | 2018 | Optofluidic | n/a | 77% | Clear to foggy |
4 | Heiz et al. | 2017 | Magneto-Active Liquid | 95% | n/a | Magnetic particles in liquid |
5 | Hillmer et al. | 2018 | Microelectromechanical | n/a | n/a | Micromirrors. The team only measured a temperature build-up in the room. |
6 | Mori et al. | 2016 | Electrostatic | n/a | 17% | Micro blinds |
7 | Shrestha et al. | 2018 | Microwrinkled TiO2 Films | n/a | 79.2% haze | Transparent to translucent switching |
8 | Lampert | 1998 | PDLC | n/a | 40% haze | |
9 | Lampert | 2004 | PDLC | 60% | 57% haze | |
10 | Murray et al. | 2016 | PDLC | n/a | 25–29% haze | |
11 | De Filpo et al. | 2019 | PDLC | n/a | 64% haze | |
12 | Sol et al. | 2017 | PDLC | n/a | 61% haze | |
13 | Ghosh | 2017 | SPD | 46% | n/a |
No. | Team | Year | Type/Technology | ΔTvis/ΔTNIR | Remarks |
---|---|---|---|---|---|
1 | Yilmaz et al. | 2020 | nanocrystalline ITO | 44%/77% | Cool/Warm/Dark states |
2 | Nguyen et al. | 2019 | (SnO2), (TiO2), (WO3) | 21%/64% | Vis/NIR |
3 | Nguyen et al. | 2019 | opal (IO) nanostructures | 12%/57% * | Vis/NIR |
4 | Nunes et al. | 2019 | a-IZO | 45%/57% | NIR at 1000 nm |
5 | Cao et al. | 2018 | Ta (tantalum) doped titanium oxide (TiO2) | 86%/81% | NIR at 1600 nm |
6 | Barawi et al. | 2018 | vanadium enriched TiO2 | 30%/70% | NIR at 1500 nm |
7 | Wu et al. | 2018 | caesium tungsten bronze (CsxWO3) | 33%/96.2% | NIR at 800 to 2500 nm |
No. | Team | Year | Type/Technology | ΔTvis/ΔTNIR | Energy Storage (W, mAh, Areal Capacitance) |
---|---|---|---|---|---|
1 | Sheng et al. | 2019 | Ta-doped TiO2 nanocrystals | 89%/81% | 466.5 mAh m−2 |
2 | Wang et al. | 2020 | Prussian blue | 84.9%/n/a | 78.9 mAh m−2 |
3 | Kim et al. | 2018 | blue and a red colour ECP | n/a | 58.8 kW kg−1 |
4 | Xie et al. | 2019 | Mo-doped WO3 | 60%/n/a | 19.1 mF cm−2 |
5 | Wang et al. | 2018 | mesoporous WO3 | 75.6%/n/a | 75.3 mAh g−1 |
6 | Pan et al. | 2020 | NiO/PB composite nanosheets | 67.6%/n/a | 11.50 mF cm−2 |
No. | Team | Year | Type/Technology | ΔTsol/ΔTvis | Remarks |
---|---|---|---|---|---|
1 | Lee et al. | 2019 | tantalum oxide Ta2O5 | 45%/45% | at 20° |
36%/34% | at 80° |
No. | Team | Year | Type/Technology | ΔTvis/ΔTNIR | Remarks |
---|---|---|---|---|---|
1 | Lu et al. | 2018 | PEDOT polymer | 25%/n/a | switch between two semi-transparent states, ≈45% ≈70% absorption, light emitting 35.0 and 7.5 cdA−1 |
2 | Cossari et al. | 2018 | 57%/n/a | luminance from 300 cd m−2 to 800 cd m−2 |
No. | Team | Year | Type/Technology | ΔTvis/ΔTNIR | Remarks |
---|---|---|---|---|---|
1 | Lu et al. | 2016 | tungsten oxide nanorods | 41%/n/a | at 632.8 nm |
2 | Shi et al. | 2018 | WO3/PEDOT core/shell hybrid nanorod arrays | 80%/n/a | only WO3 |
26%/n/a | only PEDOT | ||||
72%/n/a | WO3 and PEDOT | ||||
3 | Najafi-Ashtiani et al. | 2018 | Ag nanorods | 37%/n/a | range 32–37% |
4 | Shi et al. | 2020 | WO3 nanoarray | 94%/90% | areal capacitance 47.4 mF/cm2 |
5 | Wang et al. | 2018 | mesoporous WO3 | 75.6%/n/a | capacity of 75.3 mA h g−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzezicki, M. A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics. Sustainability 2021, 13, 9604. https://doi.org/10.3390/su13179604
Brzezicki M. A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics. Sustainability. 2021; 13(17):9604. https://doi.org/10.3390/su13179604
Chicago/Turabian StyleBrzezicki, Marcin. 2021. "A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics" Sustainability 13, no. 17: 9604. https://doi.org/10.3390/su13179604