Modeling Pedestrian Flows: Agent-Based Simulations of Pedestrian Activity for Land Use Distributions in Urban Developments
Abstract
:1. Introduction
1.1. Walking Is the Cornerstone of Sustainable Cities
1.2. Literature Review: Walkability Analytics
1.3. Research Objectives
1.4. Case Study: New Walkable Districts in Central Hamburg
2. Materials and Methods
2.1. Simulation Area
2.2. Synthetic Population
2.3. Simulation Models
2.3.1. First Model—Home to Work
2.3.2. Second Model: The Lunch Break
2.3.3. Third Model: Work to Home
2.3.4. Fourth Model: Special-Use Amenities
2.4. Accuracy of the Models
3. Results
3.1. Simulation Results
3.2. Principles of Pedestrian Flow
3.3. Model Validation
4. Discussion
4.1. Universal Principles and Case-Dependent Results
4.2. Walkability and Rationality
4.3. The Added Value of Agent-Based Modeling of Pedestrian Flow
4.4. Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpio Pinedo, J. Spaces of Consumption in the Mobile Metropolis: Symbolic capital, Multi-Accessibility and Spatial Conditions for Social Interaction. Ph.D. Thesis, Escuela Técnica Superior de Arquitectura de Madrid, Universidad Politécnica de Madrid, Madrid, Spain, 2020. [Google Scholar] [CrossRef]
- Messner, D. Normative Compass. D+C Mon. e-Pap. 2016, 201, 29–31. [Google Scholar]
- Carpio-Pinedo, J. Multimodal transport and potential encounters with social difference: A novel approach based on network analysis. J. Urban Aff. 2021, 43, 93–116. [Google Scholar] [CrossRef]
- Oldenburg, R. The Great Good Place: Cafes, Coffee Shops, Bookstores, Bars, Hair Salons, and Other Hangouts at the Heart of a Community, 3rd ed.; Marlowe & Company: New York, NY, USA; Berkeley, CA, USA, 1999; ISBN 978-1-56924-681-8. [Google Scholar]
- Carpio-Pinedo, J.; López-Baeza, J. La producción de identidad de los nuevos desarrollos urbanos a través del place-based social big data: Los crecimientos del área metropolitana de Madrid durante la burbuja inmobiliaria (1990–2012). EURE 2021, 47, 5–28. [Google Scholar] [CrossRef]
- Mehta, V.; Mahato, B. Designing urban parks for inclusion, equity, and diversity. J. Urban Int. Res. Placemaking Urban Sustain. 2020, 1–33. [Google Scholar] [CrossRef]
- Kropf, K. Urban tissue and the character of towns. Urban Des. Int. 1996, 1, 247–263. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Gutiérrez, J. Consumption and Symbolic Capital in the Metropolitan Space: Integrating ‘Old’ Retail Data Sources with Social Big Data. Cities 2020, 106, 102859. [Google Scholar] [CrossRef]
- Karrholm, M. Retailising Space: Architecture, Retail and the Territorialisation of Public Space; Routledge: London, UK; New York, NY, USA, 2016. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1989; ISBN 978-1-139-93568-5. [Google Scholar]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Cambridge University Press: Cambridge, UK, 1996; ISBN 978-0-521-56039-9. [Google Scholar]
- Ma, D.; Omer, I.; Osaragi, T.; Sandberg, M.; Jiang, B. Why topology matters in predicting human activities. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1297–1313. [Google Scholar] [CrossRef]
- Jiang, B.; Ren, Z. Geographic space as a living structure for predicting human activities using big data. Int. J. Geogr. Inf. Sci. 2019, 33, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Desyllas, J.; Duxbury, E. Axial maps and visibility graph analysis. In Proceedings, 3rd International Space Syntax Symposium; Georgia Institute of Technology: Atlanta, GA, USA, 2001; Volume 27, pp. 13–21. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.3647&rep=rep1&type=pdf (accessed on 1 May 2021).
- Turner, A.; Doxa, M.; O’sullivan, D.; Penn, A. From isovists to visibility graphs: A methodology for the analysis of architectural space. Environ. Plan. B Plan. Des. 2001, 28, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Turner, A. Analysing the visual dynamics of spatial morphology. Environ. Plan. B Plan. Des. 2003, 30, 657–676. [Google Scholar] [CrossRef] [Green Version]
- Hillier, W.R.G.; Turner, A.; Yang, T.; Park, H. Metric and topo-geometric properties of urban street networks: Some convergencies, divergencies and new results. J. Space Syntax 2010, 1. Available online: https://discovery.ucl.ac.uk/id/eprint/1390423 (accessed on 1 May 2021).
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Lee, S.; Talen, E. Measuring walkability: A note on auditing methods. J. Urban Des. 2014, 19, 368–388. [Google Scholar] [CrossRef]
- Lamíquiz, P.J.; López-Domínguez, J. Effects of built environment on walking at the neighbourhood scale. A new role for street networks by modelling their configurational accessibility? Transp. Res. Part A Policy Pract. 2015, 74, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Painter, K. The influence of street lighting improvements on crime, fear and pedestrian street use, after dark. Landsc. Urban Plan. 1996, 35, 193–201. [Google Scholar] [CrossRef]
- Clifton, K.J.; Smith, A.D.L.; Rodriguez, D. The development and testing of an audit for the pedestrian environment. Landsc. Urban Plan. 2007, 80, 95–110. [Google Scholar] [CrossRef]
- Foltête, J.C.; Piombini, A. Urban layout, landscape features and pedestrian usage. Landsc. Urban Plan. 2007, 81, 225–234. [Google Scholar] [CrossRef]
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring walkability for distinct pedestrian groups with a participatory assessment method: A case study in Lisbon. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Desyllas, J.; Duxbury, E.; Ward, J.; Smith, A. Pedestrian demand modelling of large cities: An applied example from London. CASA Work. Pap. 2003, 62. Available online: https://discovery.ucl.ac.uk/id/eprint/233/ (accessed on 1 May 2021).
- Ozbil, A.; Peponis, J.; Stone, B. Understanding the link between street connectivity, land use and pedestrian flows. Urban. Des. Int. 2011, 16, 125–141. [Google Scholar] [CrossRef]
- Graham, D.J.; Glaister, S. Spatial variation in road pedestrian casualties: The role of urban scale, density and land-use mix. Urban Stud. 2003, 40, 1591–1607. [Google Scholar] [CrossRef]
- LaScala, E.A.; Gerber, D.; Gruenewald, P.J. Demographic and environmental correlates of pedestrian injury collisions: A spatial analysis. Accid. Anal. Prev. 2000, 32, 651–658. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Hess, P.M.; Moudon, A.V.; Logsdon, M.G. Measuring land use patterns for transportation research. Transp. Res. Rec. 2001, 1780, 17–24. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Benito-Moreno, M.; Lamíquiz-Daudén, P.J. Beyond Land Use Mix, Walkable Trips. An Approach Based on Parcel-Level Land Use Data and Network Analysis. J. Maps 2021, 17, 23–30. [Google Scholar] [CrossRef]
- Ascher, F. Diario de un Hipermoderno; Alianza Editorial: Madrid, Spain, 2007. [Google Scholar]
- Stier, A.J.; Schertz, K.E.; Rim, N.W.; Cardenas-Iniguez, C.; Lahey, B.B.; Bettencourt, L.M.; Berman, M.G. Evidence and theory for lower rates of depression in larger US urban areas. Proc. Natl. Acad. Sci. USA 2021, 118, e2022472118. [Google Scholar] [CrossRef]
- Gritti, F. Deutsches Hafenmuseum: Hafenmuseum Eröffnet 2025 am Grasbrook—Wenn Alles Gutgeht. Die Zeit. 2019. Available online: https://www.zeit.de/hamburg/2019-09/deutsches-hafenmuseum-hamburg-eroeffnung-grasbrook-faq?utm_referrer=https%3A%2F%2Fwww.google.com (accessed on 1 May 2021).
- Bruns-Berentelg, J. Stadtteil Grasbrook: Nachhaltigkeit und Mobilität 2019. Available online: https://www.grasbrook.de/2019/02/25/4-grasbrook-werkstatt-am-20-2-2019/ (accessed on 1 May 2021).
- HafenCity Hamburg GmbH. Grasbrook District in Hamburg. 2019. Available online: https://www.grasbrook.de/wp-content/uploads/2020/08/Englisch_Auslobung_Grasbrook_Version_Digital-1.pdf (accessed on 1 May 2021).
- European Commission. Housing Space per Person. 2011. Available online: https://ec.europa.eu/energy/content/housing-space-person_en (accessed on 26 November 2020).
- Bundesanstalt für Arbeitsschutz und Abreitsmedizin (BAuA). Technische Regeln für Arbeitsstätten Raumabmessungen und Bewegungsflächen ASR A1.2; BAuA: Dortmund, Germany, 2018.
- Dähne Verlag. Anzahl der Mitarbeiter pro 1.000 m2 Verkaufsfläche der führenden deutschen Baumarktunternehmen in den Jahren von 2018 und 2019. Statistik Baumarkt + Garten 2020 Deutschland—Österreich—Schweiz; Dähne Verlag: Ettlingen, Germany, 2020; p. 126. [Google Scholar]
- Ulrich, C.; Heckner. Die Richtigen Schritte zur Planung. Tipps & Tricks von U.C. Heckner 2020. Available online: https://www.prisma.ag/fileadmin/thinkfirst/download/tipps_tricks/Die%20richtigen%20Schritte%20zur%20Planung.pdf (accessed on 26 November 2020).
- The Federal Statistical Office. Statistisches Bundesamt 2020. Available online: https://www.destatis.de/EN/Home/_node.html (accessed on 26 November 2020).
- Nobis, C.; Kuhnimhof, T. Mobilität in Deutschland−MiD: Ergebnisbericht Studie von Infas, DLR, IVT Und Infas 360 Im Auftrag Des Bundesministers Für Verkehr Und Digitale Infrastruktur (FE-Nr. 70.904/15); Infas: Bonn, Germany, 2018. [Google Scholar]
- Durlauf, S.; Blume, L.E. The New Palgrave Dictionary of Economics, 2nd ed.; Palgrave Macmillan: London, UK, 2008; ISBN 978-0-333-78676-5. [Google Scholar]
- Omer, I.; Jiang, B. Can cognitive inferences be made from aggregate traffic flow data? Comput. Environ. Urban Syst. 2015, 54, 219–229. [Google Scholar] [CrossRef]
- Ormerod, P. Butterfly Economics: A New General Theory of Economic and Social Behaviour; Faber & Faber: London, UK, 1998; ISBN 978-0-571-20127-3. [Google Scholar]
- Miranda, A.S.; Fan, Z.; Duarte, F.; Ratti, C. Desirable streets: Using deviations in pedestrian trajectories to measure the value of the built environment. Comput. Environ. Urban Syst. 2021, 86, 101563. [Google Scholar] [CrossRef]
- Veblen, T. The Theory of the Leisure Class; Originally Published in 1899; Houghton Mifflin: Boston, MA, USA, 1973. [Google Scholar]
- Bourgais, M.; Taillandier, P.; Vercouter, L.; Adam, C. Emotion Modeling in Social Simulation: A Survey. J. Artif. Soc. Soc. Simul. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Transport for London. Pedestrian Comfort Guidance for London 2010. Available online: http://content.tfl.gov.uk/pedestrian-comfort-guidance-technical-guide.pdf (accessed on 1 May 2021).
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A.; López Baeza, J. Revisiting the Spatial Definition of Neighborhood Boundaries: Functional Clusters versus Administrative Neighborhoods. J. Urban. Technol. 2021, in press. [Google Scholar] [CrossRef]
Bridge to HafenCity | Bridge to Veddel | Main-Axis Orientation | Block Permeability | Amenities Clustered | |
---|---|---|---|---|---|
Pedestrian density | −0.305 | 0.318 | −0.016 | −0.005 | −0.318 |
Temporal entropy | 0.243 | 0.081 | 0.568 | 0.081 | −0.730 |
Interaction opportunity | −0.315 | 0.320 | 0.317 | 0.315 | 0.013 |
Trip Duration | −0.499 | −0.083 | −0.499 | −0.083 | 0.249 |
Trip Length | −0.828 | −0.027 | −0.495 | 0.056 | 0.337 |
Amenity Diversity | Amenity Density | Complementarity | Pedestrian Density | Temporal Entropy | Interact. Opport. | Trip Duration | Trip Length | |
---|---|---|---|---|---|---|---|---|
Amenity Diversity | 1.000 | |||||||
Amenity Density | −0.192 | 1.000 | ||||||
Complementarity | 0.051 | −0.073 | 1.000 | |||||
Pedestrian density | 0.129 | 0.528 | −0.025 | 1.000 | ||||
Temporal entropy | 0.435 | −0.488 | −0.147 | −0.239 | 1.000 | |||
Interaction opportunity | 0.185 | −0.167 | −0.026 | 0.333 | 0.102 | 1.000 | ||
Trip Duration | −0.591 | −0.335 | −0.055 | −0.436 | 0.116 | −0.016 | 1.000 | |
Trip Length | −0.414 | −0.150 | −0.021 | −0.509 | 0.051 | −0.467 | 0.507 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Baeza, J.; Carpio-Pinedo, J.; Sievert, J.; Landwehr, A.; Preuner, P.; Borgmann, K.; Avakumović, M.; Weissbach, A.; Bruns-Berentelg, J.; Noennig, J.R. Modeling Pedestrian Flows: Agent-Based Simulations of Pedestrian Activity for Land Use Distributions in Urban Developments. Sustainability 2021, 13, 9268. https://doi.org/10.3390/su13169268
López Baeza J, Carpio-Pinedo J, Sievert J, Landwehr A, Preuner P, Borgmann K, Avakumović M, Weissbach A, Bruns-Berentelg J, Noennig JR. Modeling Pedestrian Flows: Agent-Based Simulations of Pedestrian Activity for Land Use Distributions in Urban Developments. Sustainability. 2021; 13(16):9268. https://doi.org/10.3390/su13169268
Chicago/Turabian StyleLópez Baeza, Jesús, José Carpio-Pinedo, Julia Sievert, André Landwehr, Philipp Preuner, Katharina Borgmann, Maša Avakumović, Aleksandra Weissbach, Jürgen Bruns-Berentelg, and Jörg Rainer Noennig. 2021. "Modeling Pedestrian Flows: Agent-Based Simulations of Pedestrian Activity for Land Use Distributions in Urban Developments" Sustainability 13, no. 16: 9268. https://doi.org/10.3390/su13169268
APA StyleLópez Baeza, J., Carpio-Pinedo, J., Sievert, J., Landwehr, A., Preuner, P., Borgmann, K., Avakumović, M., Weissbach, A., Bruns-Berentelg, J., & Noennig, J. R. (2021). Modeling Pedestrian Flows: Agent-Based Simulations of Pedestrian Activity for Land Use Distributions in Urban Developments. Sustainability, 13(16), 9268. https://doi.org/10.3390/su13169268