Environmental Impacts of Renewable Insulation Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Materials
- Meadow grass (Germany);
- Seaweed (Mediterranean Sea);
- Reed (Turkey);
- Recycled jute (Germany).
2.2. LCA
2.3. LANCA®
3. Results
3.1. Insulation Material from Meadow Grass
3.2. Insulation Material Made from Seaweed
3.3. Insulation Material Made from Reed
3.4. Insulation Material Made from Recycled Jute
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlegl, F.; Gantner, J.; Traunspurger, R.; Albrecht, S.; Leistner, P. LCA of buildings in Germany: Proposal for a future benchmark based on existing databases. Energy Build. 2019, 194, 342–350. [Google Scholar] [CrossRef]
- Umweltbundesamt. Wärmedämmung—Fragen und Antworten: Hintergrund//März 2016. Available online: www.umweltbundesamt.de/publikationen/waermedaemmung (accessed on 27 April 2021).
- Asam, C. Dämmmaßnahmen an Gebäudefassaden: Eine Zusammenfassung derzeit aktueller Diskussionspunkte; Bundesinstitut für Bau- Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR): Bonn, Germany, 2017; ISBN 9783879941278. [Google Scholar]
- Fachagentur Nachwachsende Rohstoffe e.V. Absatzvolumen von Dämmstoffen in Deutschland 2019. Available online: https://mediathek.fnr.de/absatzvolumen-von-daemmstoffen-in-deutschland.html (accessed on 27 April 2021).
- Bundesministerium des Innern. ÖKOBAUDAT Database: Sustainable Construction Information Portal. Available online: https://www.oekobaudat.de/en.html (accessed on 27 April 2021).
- Deutsches Institut für Normung. DIN 4102-1:1998-05, Brandverhalten von Baustoffen und Bauteilen_-Teil_1: Baustoffe; Begriffe, Anforderungen und Prüfungen; Beuth Verlag GmbH: Berlin, Germany, 1998. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. DIN EN ISO 14040:2009-11, Umweltmanagement_- Ökobilanz_- Grundsätze und Rahmenbedingungen (ISO_14040:2006); Beuth Verlag GmbH: Berlin, Germany, 2009; Deutsche und Englische Fassung EN_ISO_14040:2006. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. DIN EN ISO 14044:2018-05, Umweltmanagement_- Ökobilanz_- Anforderungen und Anleitungen (ISO_14044:2006_+ Amd_1:2017); Beuth Verlag GmbH: Berlin, Germany, 2018; Deutsche Fassung EN_ISO_14044:2006_+ A1:2018. [Google Scholar] [CrossRef]
- Bruijn, H.; Duin, R.; Huijbregts, M.A.J.; Guinee, J.B.; Gorree, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; Koning, A.; Oers, L.; et al. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; ISBN 9780306480553. [Google Scholar]
- Guinée, J.B.; Lindeijer, E. (Eds.) Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; ISBN 1402005571. [Google Scholar]
- Leiden University. CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 29 April 2021).
- Deutsches Institut für Normung. DIN EN 15804:2020-03, Nachhaltigkeit von Bauwerken_-Umweltproduktdeklarationen_-Grundregeln für die Produktkategorie Bauprodukte; Beuth Verlag GmbH: Berlin, Germany, 2014; Deutsche Fassung EN_15804:2012+A2:2019. [Google Scholar] [CrossRef]
- Bundesministerium des Innern. Leitfaden Nachhaltiges Bauen: Zukunftsfähiges Planen, Bauen und Betreiben von Gebäuden; Bundesministerium des Innern: Berlin, Germany, 2019. [Google Scholar]
- Sphera Solutions GmbH. GaBi Software-System and Database for the Life Cycle Engineering; Leinfelden-Echterdingen, Germany, 1992–2019. Available online: https://gabi.sphera.com/international/overview/what-is-gabi-software/ (accessed on 29 July 2021).
- Bos, U. Operationalisierung und Charakterisierung der Flächeninanspruchnahme im Rahmen der Ökobilanz; Fraunhofer Verlag: Stuttgart, Germany, 2019; ISBN 9783839614327. [Google Scholar]
- Bos, U.; Horn, R.; Beck, T.; Lindner, J.P.; Fischer, M. LANCA—Characterization Factors for Life Cycle Impact Assessment: Version 2.0; Fraunhofer Verlag: Stuttgart, Germany, 2016; ISBN 9783839609538. [Google Scholar]
- Beck, T. LANCA: Land Use Indicator Value Calculation in Life Cycle Assessment; Fraunhofer-Verlag: Stuttgart, Germany, 2010; ISBN 9783839601709. [Google Scholar]
- Sphera. GaBi Databases & Modeling Principles 2021. Available online: https://sphera.com/wp-content/uploads/2020/04/Modeling-Principles-GaBi-Databases-2021.pdf (accessed on 22 April 2021).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J Life Cycle Assess 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Zampori, L.; Pant, R. (European commission), 2019: Suggestion for updating the Product Environmental Footprint (PEF) Method; Joint Research Centre, EUR 29682 EN, Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-00654-1. [Google Scholar] [CrossRef]
Unit | Pasture Grass | Seaweed | Reed | Recycled Jute | |
---|---|---|---|---|---|
Density | kg/m3 | 32–65 | 65–75 | 155 | 34–40 |
Thermal conductivity | W/(m × K) | 0.042–0.045 | 0.046 | 0.055 | 0.038 |
Heat storage capacity | J/(kg × K) | 2196 | 2502 | n/a | 2350 |
Water vapor diffusion resistance | µ | 1–2 | n/a | 6.5 | 1–2 |
Module | Life Cycle Phase | Life Cycle Step | Assessed in This Study |
---|---|---|---|
A1 | Production phase | Raw material production | Yes |
A2 | Transport of raw materials | Yes | |
A3 | Production | Yes | |
A4 | Construction phase | Transport to construction site | No |
A5 | Montage | (Yes) | |
B | Use phase | Use, Maintenance, Repairs, etc. | No |
C1 | Recycling or disposal phase | Dismantling/demolition | No |
C2 | Transport | Yes | |
C3 | Waste treatment | Yes | |
C4 | Disposal | No | |
D | Credits and impacts outside the system boundaries | Reuse, recovery or recycling potential | Yes |
Module | GWP | GWP Fossil | ODP | AP | EP | POCP | ADPE | ADPF |
---|---|---|---|---|---|---|---|---|
Unit | [kg CO2 eq] | [kg CO2 eq] | [kg R11 eq] | [kg SO2 eq] | [kg PO4 eq] | [kg C2H4 eq] | [kg Sb eq] | [MJ] |
A1 | 1.97 × 10−1 | 2.12 × 10−1 | 1.80 × 10−16 | 1.35 × 10−3 | 1.92 × 10−3 | −1.20 × 10−6 | 2.81 × 10−5 | 2.01 |
A2 | 1.06 × 10−2 | 1.06 × 10−2 | 4.99 × 10−18 | 2.19 × 10−5 | 5.32 × 10−6 | −7.09 × 10−6 | 1.03 × 10−9 | 1.41 × 10−1 |
A3 | 1.20 | 1.02 × 10−1 | 1.20 × 10−15 | 3.14 × 10−3 | 5.74 × 10−4 | 1.65 × 10−4 | 1.97 × 10−5 | 1.90 |
A5 | 3.52 × 10−1 | 6.77 × 10−2 | 9.57 × 10−17 | 4.00 × 10−5 | 8.85 × 10−6 | 2.73 × 10−6 | 3.77 × 10−9 | 4.05 |
C2 | 2.75 × 10−2 | 2.77 × 10−2 | 1.30 × 10−17 | 5.69 × 10−5 | 1.39 × 10−5 | −1.85 × 10−5 | 2.67 × 10−9 | 7.13 × 10−2 |
C3 | 1.38 | 2.47 × 10−2 | 2.79 × 10−16 | 1.33 × 10−4 | 2.74 × 10−5 | 1-12 × 10−5 | 1.52 × 10−8 | 3.67 × 10−1 |
D | −2.39 | −2.40 | −8.76 × 10−14 | −3.41 × 10−3 | −5.58 × 10−4 | −2.37 × 10−4 | −8.94 × 10−7 | 3.22 × 10−1 |
Total | 7.67 × 10−1 | −1.95 | −8.59 × 10−14 | 1.33 × 10−3 | 1.99 × 10−3 | −8.52 × 10−5 | 4.70 × 10−5 | −2.04 × 10−1 |
Impact Category | Unit | tLN | tref |
---|---|---|---|
EW | t/a | −5.07 × 10−3 | −4.34 × 10−3 |
MF | cm × m2/d | 7.42 × 105 | 7.42 × 105 |
PCF | (cmol ×m2)/m2 | 2.67 × 106 | 2.12 × 106 |
GWN | (mm × m2)/a | 1.44 × 103 | 1.86 × 103 |
Module | GWP | GWP Fossil | ODP | AP | EP | POCP | ADPE | ADPF |
---|---|---|---|---|---|---|---|---|
Unit | [kg CO2 eq] | [kg CO2 eq] | [kg R11 eq] | [kg SO2 eq] | [kg PO4 eq] | [kg C2H4 eq] | [kg Sb eq] | [MJ] |
A1 | −1.23 | 1.81 × 10−2 | 1.62 × 10−16 | 2.98 × 10−5 | 3.98 × 10−6 | 4.03 × 10−6 | 4.16 × 10−9 | 4.74 × 10−1 |
A2 | 1.62 × 10−1 | 1.63 × 10−1 | 3.84 × 10−17 | 5.67 × 10−4 | 1.42 × 10−4 | −1.19 × 10−4 | 1.34 × 10−8 | 2.17 |
A3 | 3.78 × 10−2 | 3.80 × 10−2 | 1.21 × 10−15 | 5.47 × 10−5 | 7.12 × 10−6 | 4.46 × 10−6 | 3.09 × 10−8 | 6.22 × 10−1 |
A5 | 2.33 × 10−2 | 2.33 × 10−2 | 3.98 × 10−18 | 2.12 × 10−6 | 4.74 × 10−7 | 1.53 × 10−7 | 1.58 × 10−10 | 3.31 × 10−3 |
C2 | 1.37 × 10−2 | 1.38 × 10−2 | 6.50 × 10−18 | 2.85 × 10−5 | 6.94 × 10−6 | −9.23 × 10−6 | 1.34 × 10−9 | 1.83 × 10−1 |
C3 | 1.52 | 2.51 × 10−2 | 2.87 × 10−16 | 1.35 × 10−4 | 2.81 × 10−5 | 1.14 × 10−5 | 1.56 × 10−8 | 3.27 × 10−1 |
D | −5.53 × 10−1 | −5.54 × 10−1 | −1.31 × 10−14 | −6.19 × 10−4 | −1.04 × 10−4 | −5.09 × 10−5 | −1.44 × 10−7 | −6.93 |
Total | −3.20 × 10−2 | −2.73 × 10−1 | −1.14 × 10−14 | 1.98 × 10−4 | 8.43 × 10−5 | −1.59 × 10−4 | −7.84 × 10−8 | −3.15 |
Module | GWP | GWP Fossil | ODP | AP | EP | POCP | ADPE | ADPF |
---|---|---|---|---|---|---|---|---|
Unit | [kg CO2 eq] | [kg CO2 eq] | [kg R11 eq] | [kg SO2 eq] | [kg PO4 eq] | [kg C2H4 eq] | [kg Sb eq] | [MJ] |
A1 | −2.18 | 2.15 × 10−1 | 7.77 × 10−17 | 1.59 × 10−3 | 3.74 × 10−4 | −6.29 × 10−4 | −2.73 × 10−8 | 2.73 |
A2 | 4.14 × 10−2 | 4.17 × 10−2 | 1.04 × 10−17 | 3.92 × 10−4 | 1.01 × 10−4 | −1.86 × 10−4 | 3.68 × 10−9 | 5.65 × 10−1 |
A3 | 6.96 × 10−1 | 1.08 × 10−1 | 2.11 × 10−16 | 1.63 × 10−3 | 1.11 × 10−4 | 7.29 × 10−5 | 7.40 × 10−9 | 1.30 |
A5 | 4.46 × 10−2 | 1.55 × 10−3 | 1.78 × 10−17 | 7.20 × 10−6 | 1.59 × 10−6 | 4.87 × 10−7 | 7.00 × 10−10 | 1.31 × 10−2 |
C2 | 2.95 × 10−3 | 2.97 × 10−3 | 1.39 × 10−18 | 6.87 × 10−6 | 1.70 × 10−6 | −2.39 × 10−6 | 2.86 × 10−10 | 3.92 × 10−2 |
C3 | 1.57 | 1.76 × 10−3 | 1.09 × 10−9 | 5.38 × 10−5 | 2.08 × 10−5 | −1.43 × 10−6 | −1.57 × 10−6 | −3.90 × 10−2 |
D | −5.36 × 10−1 | −5.36 × 10−1 | −1.27 × 10−14 | −5.99 × 10−4 | −1.01 × 10−4 | −4.93 × 10−5 | −1.39 × 10−7 | −6.71 |
Total | −3.55 × 10−1 | −1.65 × 10−1 | 1.09 × 10−09 | 3.08 × 10−3 | 5.09 × 10−4 | −7.95 × 10−4 | −1.72 × 10−6 | −2.10 |
Module | GWP | GWP Fossil | ODP | AP | EP | POCP | ADPE | ADPF |
---|---|---|---|---|---|---|---|---|
Unit | [kg CO2 eq] | [kg CO2 eq] | [kg R11 eq] | [kg SO2 eq] | [kg PO4 eq] | [kg C2H4 eq] | [kg Sb eq] | [MJ] |
A1 | −1.01 | 4.18 × 10−1 | 5.39 × 10−15 | 7.16 × 10−4 | 1.19 × 10−4 | 1.07 × 10−4 | 1.12 × 10−6 | 8.06 |
A2 | 1.39 × 10−1 | 1.40 × 10−1 | 6.59 × 10−17 | 2.89 × 10−4 | 7.03 × 10−5 | −9.37 × 10−5 | 1.36 × 10−8 | 1.86 |
A3 | 8.74 × 10−2 | 6.98 × 10−2 | 1.66 × 10−15 | 1.41 × 10−4 | 2.46 × 10−5 | 9.87 × 10−6 | 2.67 × 10−8 | 1.80 |
A5 | 1.38 × 10−1 | 4.92 × 10−2 | 4.45 × 10−17 | 1.90 × 10−5 | 4.20 × 10−6 | 1.30 × 10−6 | 1.75 × 10−9 | 3.34 × 10−2 |
C2 | 1.37 × 10−2 | 1.38 × 10−2 | 6.50 × 10−18 | 2.85 × 10−5 | 6.94 × 10−6 | −9.23 × 10−6 | 1.34 × 10−9 | 1.83 × 10−1 |
C3 | 1.36 | 2.25 × 10−1 | 3.92 × 10−16 | 1.71 × 10−4 | 2.98 × 10−5 | 1.22 × 10−5 | 3.81 × 10−8 | 3.72 × 10−1 |
D | −7.02 × 10−1 | −7.03 × 10−1 | −1.62 × 10−14 | −7.75 × 10−4 | -1.30 × 10−4 | −6.44 × 10−5 | −1.79 × 10−7 | −8.86 |
Total | 2.41 × 10−2 | 2.13 × 10−1 | −8.63 × 10−15 | 5.89 × 10−4 | 1.24 × 10−4 | −3.73 × 10−5 | 1.02 × 10−6 | 3.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geß, A.; Lorenz, M.; Tolsdorf, A.; Albrecht, S. Environmental Impacts of Renewable Insulation Materials. Sustainability 2021, 13, 8505. https://doi.org/10.3390/su13158505
Geß A, Lorenz M, Tolsdorf A, Albrecht S. Environmental Impacts of Renewable Insulation Materials. Sustainability. 2021; 13(15):8505. https://doi.org/10.3390/su13158505
Chicago/Turabian StyleGeß, Andreas, Manuel Lorenz, Anna Tolsdorf, and Stefan Albrecht. 2021. "Environmental Impacts of Renewable Insulation Materials" Sustainability 13, no. 15: 8505. https://doi.org/10.3390/su13158505