Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M.; et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 276–284. [Google Scholar] [CrossRef]
- Bowman, D.M.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Ríos-Pena, L.; Kneib, T.; Cadarso-Suárez, C.; Marey-Pérez, M. Predicting the occurrence of wildfires with binary structured additive regression models. J. Environ. Manag. 2017, 187, 154–165. [Google Scholar] [CrossRef]
- Boubeta, M.; Lombardía, M.J.; Marey-Pérez, M.; Morales, D. Poisson mixed models for predicting number of fires. Int. J. Wildland Fire 2019, 28, 237–253. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fule, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- Turco, M.; Levin, N.; Tessler, N.; Saaroni, H. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel. Glob. Planet. Chang. 2017, 151, 28–35. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Goldarag, Y.J.; Mohammadzadeh, A.; Ardakani, A.S. Fire risk assessment using neural network and logistic regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- Maria, L. LOUREIRO & Maria ALLO Los Incendios Forestales Y Su Impacto Económico: Propuesta Para Una Agenda Investigadora. In Revista Galega de Economía; University of Santiago de Compostela, Faculty of Economics and Business: La Coruña, Spain, 2018; Volume 27, p. 129. [Google Scholar]
- Palaiologou, P.; Ager, A.A.; Nielsen-Pincus, M.; Evers, C.R.; Day, M.A. Social vulnerability to large wildfires in the western USA. Landsc. Urban Plan. 2019, 189, 99–116. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, J.; Camia, A. Forest fires at a glance: Facts, figures and trends in the EU. Living with Wildfires: What science can tell us. EFI Discuss. Pap. 2009, 15, 11–18. [Google Scholar]
- Krasovskii, A.; Khabarov, N.; Migliavacca, M.; Kraxner, F.; Obersteiner, M. Regional aspects of modelling burned areas in Europe. Int. J. Wildland Fire 2016, 25, 811–818. [Google Scholar] [CrossRef]
- Khabarov, N.; Krasovskiy, A.; Obersteiner, M.; Swart, R.; Dosio, A.; San-Miguel-Ayanz, J.; Durrant, T.; Camia, A.; Migliavacca, M. Forest fires and adaptation options in Europe. Reg. Environ. Chang. 2016, 16, 21–30. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Vega-Garcia, C.; Comas, C. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. J. Environ. Manag. 2018, 217, 90–99. [Google Scholar] [CrossRef]
- Gómez-González, S.; González, M.E.; Paula, S.; Díaz-Hormazábal, I.; Lara, A.; Delgado-Baquerizo, M. Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. For. Ecol. Manag. 2019, 433, 535–543. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.; Aptroot, A.; Cornelissen, J.H.C. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2016, 180, 103–110. [Google Scholar] [CrossRef]
- Schwilk, D.W.; Ackerly, D.D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 2001, 94, 326–336. [Google Scholar] [CrossRef]
- Simpson, K.J.; Ripley, B.S.; Christin, P.A.; Belcher, C.M.; Lehmann, C.E.; Thomas, G.H.; Osborne, C.P. Determinants of flammability in savanna grass species. J. Ecol. 2016, 104, 138–148. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Bertone, G.; Diaz, S. Device for the standard measurement of shoot flammability in the field. Austral Ecol. 2011, 36, 821–829. [Google Scholar] [CrossRef]
- Schwilk, D.W. Flammability is a niche construction trait: Canopy architecture affects fire intensity. Am. Nat. 2003, 162, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Vázquez, G. Different approaches to the social vision of communal land management: The case of Galicia (Spain). Span. J. Agric. Res. 2010, 8, 848–863. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef]
- Caballero, G. Community-based forest management institutions in the Galician communal forests: A new institutional approach. For. Policy Econ. 2015, 50, 347–356. [Google Scholar] [CrossRef]
- Boubeta, M.; Lombardía, M.J.; González-Manteiga, W.; Marey-Pérez, M.F. Burned area prediction with semiparametric models. Int. J. Wildland Fire 2016, 25, 669–678. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez, A.; de la Riva, J. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat. Hazards 2016, 84, 2049–2070. [Google Scholar] [CrossRef]
- Vilar, L.; Camia, A.; San-Miguel-Ayanz, J.; Martín, M.P. Modeling temporal changes in human-caused wildfires in Mediterranean Europe based on land use-land cover interfaces. For. Ecol. Manag. 2016, 378, 68–78. [Google Scholar] [CrossRef]
- Eugenio, F.C.; Dos Santos, A.R.; Pedra, B.D.; Pezzopane, J.E.M.; Mafia, R.G.; Loureiro, E.B.; Martins, L.D.; Saito, N.S. Causal, temporal and spatial statistics of wildfires in areas of planted forests in Brazil. Agric. For. Meteorol. 2019, 266, 157–172. [Google Scholar] [CrossRef]
- Molina, C.M.; Martín, O.K.; Martín, L.G. Regional fire scenarios in Spain: Linking landscape dynamics and fire regime for wildfire risk management. J. Environ. Manag. 2019, 233, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Farina, A. Principles and Methods in Landscape Ecology; Chapman & Hall: London, UK, 1998; p. 235. [Google Scholar]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef]
- Regos, A.; Brotons, L.; Aquilué, N.; de Cáceres, M. Uso de Estrategias Oportunistas de Extinción para Reducir el Impacto de los Incendios en Condiciones Climáticas Extremas. 6th Spanish Forestry Congress. Spanish Society of Forestry Sciences. Vitoria. 2013. Available online: https://www.congresoforestal.es/index.php?men=405&idCP=85 (accessed on 4 June 2021).
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef]
- Moreno, J.M.; Arianoutsou, M.; González-Cabán, A.; Mouillot, F.; Oechel, W.C.; Spano, D.; Thonicke, K.; Vallejo, V.R.; Vélez, R. Forest Fires under Climate, Social and Economic Changes in Europe, the Mediterranean and Other Fire-Affected Areas of the World: FUME: Lessons Learned and Outlook; European Commission: Brussels, Belgium, 2014; 56p, ISBN 978-84-695-9759-0. [Google Scholar]
- Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). For. Syst. 2015, 24, e022. [Google Scholar]
- Viedma, O.; Moity, N.; Moreno, J.M. Changes in landscape fire-hazard during the second half of the 20th century: Agriculture abandonment and the changing role of driving factors. Agric. Ecosyst. Environ. 2015, 207, 126–140. [Google Scholar] [CrossRef]
- Galiana-Martín, L. Spatial planning experiences for vulnerability reduction in the wildland-urban interface in Mediterranean European countries. Eur. Countrys. 2017, 9, 577–593. [Google Scholar] [CrossRef]
- Wigtil, G.; Hammer, R.B.; Kline, J.D.; Mockrin, M.H.; Stewart, S.I.; Roper, D.; Radeloff, V.C. Places where wildfire potential and social vulnerability coincide in the coterminous United States. Int. J. Wildland Fire 2016, 25, 896–908. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Edgeley, C.M.; Stasiewicz, A.M. Assessing influences on social vulnerability to wildfire using surveys, spatial data and wildfire simulations. J. Environ. Manag. 2018, 213, 425–439. [Google Scholar] [CrossRef]
- Galiana, L.; Aguilar, S.; Lázaro, A. An assessment of the effects of forest-related policies upon wildland fires in the European Union: Applying the subsidiarity principle. For. Policy Econ. 2013, 29, 36–44. [Google Scholar] [CrossRef]
- Montiel-Molina, C. Comparative assessment of wildland fire legislation and policies in the European Union: Towards a Fire Framework Directive. For. Policy Econ. 2013, 29, 1–6. [Google Scholar] [CrossRef]
- de Anta, R.M.C.; Vázquez, F.M.; Rodríguez, A.R.; Pando, F.J.S. El Eucalipto en Galicia. Aspectos Ambientales y Socioeconómicos; Confederación de organizaciones de selvicultores de España: Santiago de Compostela, Spain, 2019. [Google Scholar]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Reyer, C.P.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastián-López, A. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J. Environ. Manag. 2018, 206, 158–169. [Google Scholar] [CrossRef]
- Tutmez, B.; Ozdogan, M.G.; Boran, A. Mapping forest fires by nonparametric clustering analysis. J. For. Res. 2018, 29, 177–185. [Google Scholar] [CrossRef]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Alló, M.; Loureiro, M.L. Assessing preferences for wildfire prevention policies in Spain. For. Policy Econ. 2020, 115, 102145. [Google Scholar] [CrossRef]
- PLADIGA. Plan de Prevención e Defensa Contra os Incendios Forestais de Galicia; Consellería do Medio Rural: Xunta de Galicia, Santiago de Compostela, Spain, 2020; p. 156. [Google Scholar]
- Fonda, R.W. Burning characteristics of needles from eight pine species. For. Sci. 2001, 47, 390–396. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef]
- Pérez, M.F.M.; Vicente, V.R.; Maseda, R.C. Using GIS to measure changes in the temporal and spatial dynamics of forestland: Experiences from north-west Spain. Forestry 2006, 79, 409–423. [Google Scholar] [CrossRef][Green Version]
- CMR. Anuario de Estadística Forestal de Galicia 2019; Consellería do Medio Rural: Xunta de Galicia, Santiago de Compostela, Spain, 2020; p. 120.
- Ministerio de Medio Ambiente. Dirección General de la Conservación de la Naturaleza. (2000). Tercer Inventario Forestal Nacional 1997–2006; Ministerio de Medio Ambiente: Madrid, Spain, 2006.
- Chas-Amil, M.L.; Prestemon, J.P.; McClean, C.J.; Touza, J. Human-ignited wildfire patterns and responses to policy shifts. Appl. Geogr. 2015, 56, 164–176. [Google Scholar] [CrossRef]
- PLADIGA. Plan de Prevención e Defensa Contra os Incendios Forestais de Galicia; Consellería do Medio Rural: Xunta de Galicia, Santiago de Compostela, Spain, 2015; p. 156. [Google Scholar]
- Elands, B.H.; O’Leary, T.N.; Boerwinkel, H.W.; Wiersum, K.F. Forests as a mirror of rural conditions; local views on the role of forests across Europe. For. Policy Econ. 2004, 6, 469–482. [Google Scholar] [CrossRef]
- Pagdee, A.; Homchuen, S.; Sang-arome, P.; Sasaki, Y. Community forest: A local attempt in natural resource management, economic value of ecosystem services, and contribution to local livelihoods. Asia Pac. J. Sci. Technol. 2008, 13, 1129–1134. [Google Scholar]
- Rodríguez-Vicente, V.; Marey-Pérez, M.F. Sistemas de apoio á propiedade privada forestal e a súa aplicación en Galicia. Rev. Galega De Econ. Agrar. 2008, 17, 111–130. [Google Scholar]
- Oficina Virtual do Medio Rural. Available online: https://ovmediorural.xunta.gal/es/consultas-publicas/montes-vecinales-en-man-comun (accessed on 4 June 2021).
- Official Databases of Forest Fires; Ministry of Agriculture, Fisheries and Food, Government of Spain: Madrid, Spain, 2021.
- MAPA. Mapa Forestal de España, MFE50; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 1999.
- MAPA. Mapa Forestal de España, MFE25; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 2009.
- Pausas, J.G.; Bradstock, R.A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Glob. Ecol. Biogeogr. 2007, 16, 330–340. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Gobron, N.; Dolman, A.J. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. The global fire–productivity relationship. Glob. Ecol. Biogeogr. 2013, 22, 728–736. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Vega, J.A.; Arellano-Pérez, S.; Fernández, C.; Fontúrbel, T.; Ruiz, A.D. Os incendios forestais do cambio global xa estan aquí: Un desafío e unha ocasión para lograr unha resposta social consensuada. Dialnet 2021. [Google Scholar] [CrossRef]
- Guo, F.; Innes, J.L.; Wang, G.; Ma, X.; Sun, L.; Hu, H.; Su, Z. Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. J. Plant Ecol. 2015, 8, 480–490. [Google Scholar] [CrossRef]
- Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Finn, J.T.; Bradley, B.A. Quantifying the human influence on fire ignition across the western USA. Ecol. Appl. 2016, 26, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef]
GRID. | MFE 4 (09) | MFE 3 (99) | DIF | % Increase | % Gain | % Loss | % Changes |
---|---|---|---|---|---|---|---|
TOTAL FOREST SUP | 1,579,048.36 | 1,467,439.35 | 111,609.01 | 7.61 | 58.86 | 38.05 | 3.08 |
MVMC | 1,487,349.82 | 1,436,285.22 | 51,064.60 | 3.56 | 54.89 | 41.96 | 3.15 |
MVMC WITH FIRES 09/14 | 1,467,827.89 | 1,418,340.52 | 49,487.37 | 3.49 | 52.96 | 43.20 | 3.84 |
MVMC WITHOUT FIRES 09/14 | 1,787,209.50 | 1,772,454.91 | 14,754.59 | 0.83 | 57.00 | 40.89 | 2.11 |
N° | Average Area | MVMC with Increase | N° of Fires | Fires/100 ha | Productivity | |
---|---|---|---|---|---|---|
MVMC with GAIN PRODUCTION | 1706 | 233.19 | 541 | 1559 | 0.39 | 1,696,860 |
MVMC with LOSS PRODUCTION | 1327 | 201.78 | 468 | 1427 | 0.53 | 1,575,280 |
Same Productivity | Increased Productivity | Loss in Productivity | ||||
---|---|---|---|---|---|---|
% Grids | % Fires | % Grids | % Fires | % Grids | % Fires | |
Regular grid | 3.08 | 58.86 | 38.05 | |||
MVMC with fires | 3.32 | 5.60 | 54.78 | 49.95 | 41.90 | 44.45 |
MVMC without fires | 0.57 | 54.30 | 45.12 |
Burned Area per Year in Hectares and Percentage of Burned Area over Total Area | ||||||||
---|---|---|---|---|---|---|---|---|
Year | MVMC with Profit | MVMC with Loss | ||||||
Not Wooded | % | Wooded | % | Not Wooded | % | Wooded | % | |
2009 | 2433.01 | 1.44 | 666.29 | 0.35 | 1224.33 | 1.19 | 281.71 | 0.21 |
2010 | 4256.66 | 2.52 | 422.92 | 0.22 | 1695.63 | 1.64 | 707.19 | 0.54 |
2011 | 7852.03 | 4.65 | 1473.58 | 0.77 | 3362.25 | 3.25 | 1772.27 | 1.35 |
2012 | 1640.01 | 0.97 | 551.35 | 0.29 | 1070.85 | 1.04 | 282.07 | 0.21 |
2013 | 1400.72 | 0.83 | 803.87 | 0.42 | 1680.2 | 1.63 | 1992.9 | 1.52 |
2014 | 324.38 | 0.19 | 35.99 | 0.02 | 133.34 | 0.13 | 62.69 | 0.05 |
Total | 17,906.81 | 10.60 | 3954 | 2.07 | 9166.6 | 8.87 | 5098.83 | 3.88 |
46.96 | 53.04 | 44.05 | Arb: | 55.95 |
Year | MVMC with Profit | MVMC with Loss | ||||||
---|---|---|---|---|---|---|---|---|
Wooded | Scrub | Crops | Water and Other | Wooded | Scrub | Crops | Water and Other | |
2009 | 35.98% | 54.67% | 5.95% | 3.40% | 41.85% | 49.20% | 7.35% | 1.60% |
2010 | 37.06% | 55.59% | 6.29% | 1.05% | 48.67% | 46.46% | 3.98% | 0.88% |
2011 | 38.85% | 51.97% | 7.87% | 1.31% | 45.91% | 43.01% | 8.97% | 2.11% |
2012 | 43.22% | 50.00% | 5.93% | 0.85% | 46.29% | 45.85% | 5.68% | 2.18% |
2013 | 49.46% | 42.93% | 5.43% | 2.17% | 51.32% | 35.98% | 10.05% | 2.65% |
2014 | 45.61% | 52.63% | 1.75% | 0.00% | 57.14% | 32.47% | 9.09% | 1.30% |
Total | 40.08% | 51.90% | 6.28% | 1.74% | 46.85% | 43.88% | 7.43% | 1.84% |
Type of Use | Lowest Occurrence | Highest Occurrence |
---|---|---|
Woodland | 65.60 | 35.98 |
Scrub | 25.15 | 58.51 |
Agriculture | 7.73 | 2.50 |
Water and buildings | 1.52 | 3.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Rodríguez, G.; Rodríguez-Vicente, V.; Marey-Pérez, M.F. Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability 2021, 13, 8472. https://doi.org/10.3390/su13158472
López-Rodríguez G, Rodríguez-Vicente V, Marey-Pérez MF. Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability. 2021; 13(15):8472. https://doi.org/10.3390/su13158472
Chicago/Turabian StyleLópez-Rodríguez, Gervasio, Verónica Rodríguez-Vicente, and Manuel F. Marey-Pérez. 2021. "Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain)" Sustainability 13, no. 15: 8472. https://doi.org/10.3390/su13158472
APA StyleLópez-Rodríguez, G., Rodríguez-Vicente, V., & Marey-Pérez, M. F. (2021). Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability, 13(15), 8472. https://doi.org/10.3390/su13158472