BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review
Abstract
:1. Introduction
“What are the major BIM-based technological innovations for managing waste across the life cycle of a project?”
2. Contextual Background
2.1. The Use of BIM for Construction and Waste Management
2.2. Previous Review Studies
3. Research Methods
3.1. Scoping Review
3.2. Data Extraction
4. Findings and Discussions
4.1. Classification of Studies
4.2. Descriptive Analysis
4.3. Analysis of Contents
4.3.1. “Analysis” of BIM-Based Technologies
4.3.2. Technologies Developed for ‘3 Rs’
4.4. Stages of Life Cycle
4.5. Technologies for “Analysis” or the “3 Rs” across Each Stage of the Life Cycle
4.5.1. Design—Analysis
4.5.2. Design—3 Rs
4.5.3. Construction—Analysis
4.5.4. Construction—The 3 Rs
4.5.5. Operation—Analysis
4.5.6. End-of-Life—Analysis
4.5.7. End-of-Life—The 3 Rs
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Tam, V.W.; Tam, C.; Drew, D. Mapping approach for examining waste management on construction sites. J. Constr. Eng. Manag. 2004, 130, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Ling, F.Y.Y.; Nguyen, D.S.A. Strategies for construction waste management in Ho Chi Minh City, Vietnam. Built Environ. Proj. Asset Manag. 2013, 3, 141–156. [Google Scholar] [CrossRef]
- Nikmehr, B.; Hosseini, M.R.; Oraee, M.; Chileshe, N. Major factors affecting waste generation on construction sites in Iran. In Proceedings of the 6th International Conference on Engineering, Project, and Production Management (EPPM2015), Gold Coast, QLD, Australia, 2–4 September 2015. [Google Scholar]
- Osmani, M.; Glass, J.; Price, A.D. Architects’ perspectives on construction waste reduction by design. Waste Manag. 2008, 28, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Cheng, J.C.; Lee, G. Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea. Waste Manag. 2016, 49, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Nikmehr, B.; Hosseini, M.R.; Rameezdeen, R.; Chileshe, N.; Ghoddousi, P.; Arashpour, M. An integrated model for factors affecting construction and demolition waste management in Iran. Eng. Constr. Archit. Manag. 2017, 24, 1246–1268. [Google Scholar] [CrossRef]
- Esin, T.; Cosgun, N. A study conducted to reduce construction waste generation in Turkey. Build. Environ. 2007, 42, 1667–1674. [Google Scholar] [CrossRef]
- Luangcharoenrat, C.; Intrachooto, S.; Peansupap, V.; Sutthinarakorn, W. Factors influencing construction waste generation in building construction: Thailand’s perspective. Sustainability 2019, 11, 3638. [Google Scholar] [CrossRef] [Green Version]
- Coelho, A.; De Brito, J. Influence of construction and demolition waste management on the environmental impact of buildings. Waste Manag. 2012, 32, 532–541. [Google Scholar] [CrossRef]
- Nagapan, S.; Rahman, I.A.; Asmi, A.; Memon, A.H.; Latif, I. Issues on construction waste: The need for sustainable waste management. In Proceedings of the 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER), Kota Kinabalu, Malaysia, 3–4 December 2012; pp. 325–330. [Google Scholar] [CrossRef] [Green Version]
- Alwi, S.; Mohamed, S.; Hampson, K. Waste in the Indonesian construction projects. In Proceedings of the 1st CIB-W107 International Conference-Creating a Sustainable Construction Industry in Developing Countries, Pretoria, South Africa, 11–13 November 2002; pp. 305–315. [Google Scholar]
- Cheng, J.C.; Ma, L.Y. A BIM-based system for demolition and renovation waste estimation and planning. Waste Manag. 2013, 33, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
- Zoghi, M.; Kim, S. Dynamic modelling for life cycle cost analysis of BIM-based construction waste management. Sustainability 2020, 12, 2483. [Google Scholar] [CrossRef] [Green Version]
- Oyedele, L.O.; Regan, M.; von Meding, J.; Ahmed, A.; Ebohon, O.J.; Elnokaly, A. Reducing waste to landfill in the UK: Identifying impediments and critical solutions. World J. Sci. Technol. Sustain. Dev. 2013, 10, 132–141. [Google Scholar] [CrossRef]
- Phillips, P.S.; Tudor, T.; Bird, H.; Bates, M. A critical review of a key waste strategy initiative in England: Zero waste places projects 2008–2009. Resour. Conserv. Recycl. 2011, 55, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.T.W.; Poon, C.S.; Wong, A.; Yip, R.; Jaillon, L. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong. Waste Manag. 2013, 33, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.C. A Systematic Review of Construction and Demolition Waste Management in Australia: Current Practices and Challenges. Recycling 2021, 6, 34. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Jupp, J.; Papadonikolaki, E.; Mumford, T.; Joske, W.; Nikmehr, B. Position paper: Digital engineering and building information modelling in Australia. Smart Sustain. Built Environ. 2020, in press. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Maghrebi, M.; Akbarnezhad, A.; Martek, I.; Arashpour, M. Analysis of Citation Networks in Building Information Modeling Research. J. Constr. Eng. Manag. 2018, 144, 04018064. [Google Scholar] [CrossRef]
- Sun, C.; Jiang, S.; Skibniewski, M.J.; Man, Q.; Shen, L. A literature review of the factors limiting the application of BIM in the construction industry. Technol. Econ. Dev. Econ. 2017, 23, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Akbarnezhad, A.; Ong, K.C.G.; Chandra, L.R. Economic and environmental assessment of deconstruction strategies using building information modeling. Autom. Constr. 2014, 37, 131–144. [Google Scholar] [CrossRef]
- Banihashemi, S.; Tabadkani, A.; Hosseini, M.R. Integration of parametric design into modular coordination: A construction waste reduction workflow. Autom. Constr. 2018, 88, 1–12. [Google Scholar] [CrossRef]
- Hannan, M.; Al Mamun, M.A.; Hussain, A.; Basri, H.; Begum, R.A. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges. Waste Manag. 2015, 43, 509–523. [Google Scholar] [CrossRef]
- Eadie, R.; Browne, M.; Odeyinka, H.; McKeown, C.; McNiff, S. BIM implementation throughout the UK construction project lifecycle: An analysis. Autom. Constr. 2013, 36, 145–151. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Bilal, M.; Ajayi, S.O.; Owolabi, H.A.; Alaka, H.A.; Bello, S.A. Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS). Resour. Conserv. Recycl. 2015, 105, 167–176. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Won, J.; Cheng, J.C. Identifying potential opportunities of building information modeling for construction and demolition waste management and minimization. Autom. Constr. 2017, 79, 3–18. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C. The building information modelling trajectory in facilities management: A review. Autom. Constr. 2017, 75, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Hu, X.; Tivendale, L.; Hosseini, M.R.; Liu, C. Building information modelling in sustainable design and construction. Int. J. Sustain. Real Estate Constr. Econ. 2018, 1, 164–181. [Google Scholar] [CrossRef]
- Lu, W.; Webster, C.; Chen, K.; Zhang, X.; Chen, X. Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality. Renew. Sustain. Energy Rev. 2017, 68, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.C.; Won, J.; Das, M. Construction and demolition waste management using BIM technology. In Proceedings of the 23rd Annual Conference of the International Group for Lean Construction, Perth, Australia, 19–23 July 2015; pp. 381–390. [Google Scholar]
- Aleksanin, A. Potential for the use of information systems in the management of construction waste. MATEC Web Conf. 2018, 196, 04081. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Omoteso, K.; Ajayi, S.O.; Bilal, M.; Owolabi, H.A.; Alaka, H.A.; Ayris, L.; Looney, J.H. BIM-based deconstruction tool: Towards essential functionalities. Int. J. Sustain. Built Environ. 2017, 6, 260–271. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Yalcinkaya, M.; Singh, V. Patterns and trends in Building Information Modeling (BIM) research: A Latent Semantic Analysis. Autom. Constr. 2015, 59, 68–80. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Skibniewski, M.; Wu, Z.; Wang, R.; Le, Y. Information and Communication Technology Applications in Architecture, Engineering, and Construction Organizations: A 15-Year Review. J. Manag. Eng. 2014. [Google Scholar] [CrossRef]
- Salihi, I.U. Application of structural building information modeling (S-BIM) for sustainable buildings design and waste reduction: A review. Int. J. Appl. Eng. Res. 2016, 11, 1523–1532. [Google Scholar]
- Gupta, S.; Jha, K.N.; Vyas, G. Proposing building information modeling-based theoretical framework for construction and demolition waste management: Strategies and tools. Int. J. Constr. Manag. 2020, 1–11. [Google Scholar] [CrossRef]
- Çıdık, M.S.; Boyd, D.; Thurairajah, N. Innovative Capability of Building Information Modeling in Construction Design. J. Constr. Eng. Manag. 2017, 143, 04017047. [Google Scholar] [CrossRef]
- Barbosa, F.; Woetzel, J.; Mischke, J.; Ribeirinho, M.J.; Sridhar, M.; Parsons, M.; Bertram, N.; Brown, S. Reinventing Construction through a Productivity Revolution. Available online: https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution (accessed on 12 September 2020).
- Opoku, D.-G.J.; Ayarkwa, J.; Agyekum, K. Barriers to environmental sustainability of construction projects. Smart Sustain. Built Environ. 2019, 8, 292–306. [Google Scholar] [CrossRef]
- Brandão, R.; Edwards, D.J.; Hosseini, M.R.; Silva Melo, A.C.; Macêdo, A.N. Reverse supply chain conceptual model for construction and demolition waste. Waste Manag. Res. 2021, 0734242X21998730. [Google Scholar] [CrossRef]
- Gaspar, P.L.; Santos, A.L. Embodied energy on refurbishment vs. demolition: A southern Europe case study. Energy Build. 2015, 87, 386–394. [Google Scholar] [CrossRef]
- Jalaei, F.; Zoghi, M.; Khoshand, A. Life cycle environmental impact assessment to manage and optimize construction waste using Building Information Modeling (BIM). Int. J. Constr. Manag. 2019, 1–18. [Google Scholar] [CrossRef]
- Nikmehr, B.; Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Antucheviciene, J. Digitalization as a strategic means of achieving sustainable efficiencies in construction management: A critical review. Sustainability 2021, 13, 5040. [Google Scholar] [CrossRef]
- Guidelines for the Waste Audits before Demolition and Renovation Works of Buildings. Available online: https://ec.europa.eu/docsroom/documents/31521 (accessed on 20 September 2020).
- Government of the United Kingdom Site Waste Management Plans Regulations 2008. Available online: https://www.legislation.gov.uk/uksi/2008/314/contents/made (accessed on 10 July 2021).
- Shooshtarian, S.; Maqsood, T.; Wong, S.; Khalfan, M. Review of Waste Strategy Documents in Australia: Analysis of Strategies for Construction and Demolition Waste. Int. J. Environ. Waste Manag 2020, 25, 1–18. [Google Scholar] [CrossRef]
- Construction and Demolition Waste Legislation. Available online: https://www.epa.vic.gov.au/for-business/find-a-topic/manage-industrial-waste/construction-and-demolition-waste/legislation (accessed on 10 July 2021).
- Patty, R.; Bera, D.K.; Rath, A.K. Strategies for Construction and Destruction (C&D) Waste Management. In Recent Developments in Sustainable Infrastructure; Springer: Singapore, 2019; pp. 879–889. [Google Scholar]
- Ling, Y.Y.; Leo, K.C. Reusing timber formwork: Importance of workmen’s efficiency and attitude. Build. Environ. 2000, 35, 135–143. [Google Scholar] [CrossRef]
- Cai, G.; Waldmann, D. A material and component bank to facilitate material recycling and component reuse for a sustainable construction: Concept and preliminary study. Clean Technol. Environ. Policy 2019, 21, 2015–2032. [Google Scholar] [CrossRef]
- Mercader Moyano, P.; Ramirez de Arellano Agudo, A.; Olivares Santiago, M. Calculation methodology to quantify and classify construction waste. Open Constr. Build. Technol. J. 2011, 5, 131–140. [Google Scholar] [CrossRef]
- Guy, B.; Shell, S.; Esherick, H. Design for Deconstruction and Materials Reuse. Proc. CIB Task Group 2006, 39, 189–209. [Google Scholar]
- Price, T. In Site waste management plans, the designer and the CDM principal contractor. In Proceedings of the 26th Annual Conference of the Association of Researchers in Construction Management, Leeds, UK, 6–8 September 2010; pp. 1381–1390. [Google Scholar]
- Wang, J.; Li, Z.; Tam, V.W.Y. Identifying best design strategies for construction waste minimization. J. Clean. Prod. 2015, 92, 237–247. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O. Policy imperatives for diverting construction waste from landfill: Experts’ recommendations for UK policy expansion. J. Clean. Prod. 2017, 147, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Li, H.; Luo, H.; Ding, L.; Zhang, X. Sustainable performance of just-in-time (JIT) management in time-dependent batch delivery scheduling of precast construction. J. Clean. Prod. 2018, 193, 684–701. [Google Scholar] [CrossRef]
- Katz, A.; Baum, H. A novel methodology to estimate the evolution of construction waste in construction sites. Waste Manag. 2011, 31, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Dainty, A.R.; Brooke, R.J. Towards improved construction waste minimisation: A need for improved supply chain integration? Struct. Surv. 2004, 22, 20–29. [Google Scholar] [CrossRef]
- Tee, K.W.; Ismail, R.; Khoo, T.J.; Riazi, S.R.M.; Mohd Nawi, M.N. Innovation technology towards Construction & Demolition (C&D) waste management. Int. J. Adv. Sci. Technol. 2020, 29, 1971–1985. Available online: http://sersc.org/journals/index.php/IJAST/article/view/9367 (accessed on 28 July 2021).
- Li, C.Z.; Zhao, Y.; Xiao, B.; Yu, B.; Tam, V.W.; Chen, Z.; Ya, Y. Research trend of the application of information technologies in construction and demolition waste management. J. Clean. Prod. 2020, 121458. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Hong, W.-H.; Park, J.-W.; Cha, G.-W. An estimation framework for building information modeling (BIM)-based demolition waste by type. Waste Manag. Res. 2017, 35, 1285–1295. [Google Scholar] [CrossRef]
- Lu, Q.; Won, J.; Cheng, J.C.P. A financial decision making framework for construction projects based on 5D Building Information Modeling (BIM). Int. J. Proj. Manag. 2016, 34, 3–21. [Google Scholar] [CrossRef]
- Basta, A.; Serror, M.H.; Marzouk, M. A BIM-based framework for quantitative assessment of steel structure deconstructability. Autom. Constr. 2020, 111, 103064. [Google Scholar] [CrossRef]
- Rajendran, P.; Gomez, C.P. Implementing BIM for waste minimisation in the construction industry: A literature review. In Proceedings of the 2nd international conference on Management, Langkawi Kedah, Malaysia, 11–12 June 2012; pp. 557–570. [Google Scholar]
- Lawton, T.; Moor, P.; Cox, K.; Clark, J. The Gammon Skanska Construction System. In Advances in Building Technology; Anson, M., Ko, J.M., Lam, E.S.S., Eds.; Elsevier: Oxford, UK, 2002; pp. 1073–1080. [Google Scholar]
- Porwal, A.; Hewage, K.N. Building information modeling–based analysis to minimize waste rate of structural reinforcement. J. Constr. Eng. Manag. 2012, 138, 943–954. [Google Scholar] [CrossRef]
- Liu, H.; Singh, G.; Lu, M.; Bouferguene, A.; Al-Hussein, M. BIM-based automated design and planning for boarding of light-frame residential buildings. Autom. Constr. 2018, 89, 235–249. [Google Scholar] [CrossRef]
- Bakchan, A.; Faust, K.M.; Leite, F. Seven-dimensional automated construction waste quantification and management framework: Integration with project and site planning. Resour. Conserv. Recycl. 2019, 146, 462–474. [Google Scholar] [CrossRef]
- Mall, A. Reducing Material Waste with the Application of Building Information Modelling (BIM). Ph.D. Thesis, Durban University of Technology, Durban, South Africa, March 2019. [Google Scholar]
- Ge, X.J.; Livesey, P.; Wang, J.; Huang, S.; He, X.; Zhang, C. Deconstruction waste management through 3d reconstruction and bim: A case study. Vis. Eng. 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- BAMB the Project BAMB—Buildings as Material Banks. Available online: https://www.bamb2020.eu/about-bamb/ (accessed on 16 May 2021).
- Ahankoob, A.; Khoshnava, S.M.; Rostami, R.; Preece, C. BIM perspectives on construction waste reduction. In Proceedings of the Management in Construction Research Association (MiCRA) Postgraduate Conference, Kuala Lumpur, Malaysia, 5–6 December 2012; pp. 195–199. [Google Scholar]
- Akinade, O.O.; Oyedele, L.O.; Munir, K.; Bilal, M.; Ajayi, S.O.; Owolabi, H.A.; Alaka, H.A.; Bello, S.A. Evaluation criteria for construction waste management tools: Towards a holistic BIM framework. Int. J. Sustain. Build. Technol. Urban Dev. 2016, 7, 3–21. [Google Scholar] [CrossRef]
- Rumrill, P.D.; Fitzgerald, S.M.; Merchant, W.R. Using scoping literature reviews as a means of understanding and interpreting existing literature. Work. Read. Mass. 2010, 35, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Engebø, A.; Lædre, O.; Young, B.; Larssen, P.F.; Lohne, J.; Klakegg, O.J. Collaborative project delivery methods: A scoping review. J. Civil. Eng. Manag. 2020, 26, 278–303. [Google Scholar] [CrossRef]
- Hanc, M.; McAndrew, C.; Ucci, M. Conceptual approaches to wellbeing in buildings: A scoping review. Build. Res. Inf. 2019, 47, 767–783. [Google Scholar] [CrossRef]
- Maskuriy, R.; Selamat, A.; Maresova, P.; Krejcar, O.; David, O.O. Industry 4.0 for the construction industry: Review of management perspective. Economies 2019, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Brunton, J.; Graziosi, S. EPPI-Reviewer 4.0: Software for Research Synthesis; EPPI-Center Software, Social Science Research Unit, UCL Institute of Education: London, UK, 2010. [Google Scholar]
- Saldaña, J. The coding manual for qualitative researchers. Qual. Res. Organ. Manag. 2015, 12, 169–170. [Google Scholar] [CrossRef]
- Gradeci, K.; Labonnote, N. On the potential of integrating building information modelling (BIM) for the additive manufacturing (AM) of concrete structures. Constr. Innov. 2019, 20, 321–343. [Google Scholar] [CrossRef]
- Guerra, B.C.; Bakchan, A.; Leite, F.; Faust, K.M. BIM-based automated construction waste estimation algorithms: The case of concrete and drywall waste streams. Waste Manag. 2012, 87, 825–832. [Google Scholar] [CrossRef]
- Xu, J.; Shi, Y.; Xie, Y.; Zhao, S. A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction. J. Clean. Prod. 2019, 229, 308–324. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O. Integrating construction supply chains within a circular economy: An ANFIS-based waste analytics system (A-WAS). J. Clean. Prod. 2019, 229, 863–873. [Google Scholar] [CrossRef]
- Bertin, I.; Mesnil, R.; Jaeger, J.M.; Feraille, A.; Le Roy, R. A BIM-based framework and databank for reusing load-bearing structural elements. Sustainability 2020, 12, 3147. [Google Scholar] [CrossRef] [Green Version]
- Guerra, B.C.; Leite, F.; Faust, K.M. 4D-BIM to enhance construction waste reuse and recycle planning: Case studies on concrete and drywall waste streams. Waste Manag. 2020, 116, 79–90. [Google Scholar] [CrossRef]
- Ruiz, L.A.L.; Ramón, X.R.; Domingo, S.G. The circular economy in the construction and demolition waste sector–A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Muller, M.F.; Esmanioto, F.; Huber, N.; Loures, E.R.; Canciglieri, O., Jr. A systematic literature review of interoperability in the green Building Information Modeling lifecycle. J. Clean. Prod. 2019, 223, 397–412. [Google Scholar] [CrossRef]
- The Systems Thinking Toolbox. Available online: https://www.burgehugheswalsh.co.uk/Systems-Thinking/Tools.aspx (accessed on 15 September 2020).
- Hosseini, M.R.; Roelvink, R.; Papadonikolaki, E.; Edwards, D.J.; Pärn, E. Integrating BIM into facility management. Int. J. Build. Pathol. Adapt. 2018, 36, 2–14. [Google Scholar] [CrossRef]
- Wang, J.; Yu, B.; Tam, V.W.Y.; Li, J.; Xu, X. Critical factors affecting willingness of design units towards construction waste minimization: An empirical study in Shenzhen, China. J. Clean. Prod. 2019, 221, 526–535. [Google Scholar] [CrossRef]
- Innes, S. Developing tools for designing out waste pre-site and on-site. In Proceedings of the Minimising Construction Waste Conference: Developing Resource Efficiency and Waste Minimisation in Design and Construction, London, UK, 21 October 2004. New Civil Engineer. [Google Scholar]
- Gharouni Jafari, K.; Noorzai, E.; Hosseini, M.R. Assessing the capabilities of computing features in addressing the most common issues in the AEC industry. Constr. Innov. 2021, in press. [Google Scholar] [CrossRef]
- Wijewickrama, M.; Rameezdeen, R.; Chileshe, N. Information brokerage for circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 2021, 127938. [Google Scholar] [CrossRef]
- Liu, Y.; van Nederveen, S.; Hertogh, M. Understanding effects of BIM on collaborative design and construction: An empirical study in China. Int. J. Proj. Manag. 2017, 35, 686–698. [Google Scholar] [CrossRef]
No | Reference | Outcome | Tools | Focus | Major Software | Material |
---|---|---|---|---|---|---|
1 | Guerra, et al. [84] | Proof of concept | Algorithm of quantification | Construction waste estimation | Cloud-based software named Assemble | Concrete and gypsum |
2 | Xu, et al. [85] | Proof of concept | Algorithm of quantification | Demolition waste estimation | Autodesk Revit | Soil, brick, concrete, cement, lime, mortar, steel, ceramic tile, paint, polymer coating, plastic, wood, paper, asphalt, and plaster. |
3 | Jalaei, Zoghi and Khoshand [44] | Proof of concept | BIM API | Calculation of maintenance and construction waste | Autodesk Revit and Navisworks | All materials |
4 | Akinade and Oyedele [86] | Proof of concept | BIM API | Demolition waste prediction | Autodesk Revit | Binders, bricks, concrete, gypsum, hazardous, inert, insulation, metals, mixed, packaging, plastics, timber |
5 | Kim, Hong, Park and Cha [63] | Proof of concept | Algorithm of quantification | Designing for deconstruction | Archicad | Brick, block, concrete, metal, wood, glass, synthetic resin (e.g., plastic components) |
6 | Cai and Waldmann [52] | Concept | BIM-based bank of material & component waste | Evaluating material for reusing or recycling | Not mentioned | All materials |
7 | Bakchan, Faust and Leite [70] | Proof of concept | Framework of BIM-based estimation | Construction waste estimation and planning for reuse | Autodesk Revit | Concrete |
8 | Bertin, et al. [87] | Proof of concept | BIM API for bank of material and component waste | Reuse planning | Autodesk Revit | Concrete, steel, timber |
9 | Cheng and Ma [12] | Proof of concept | BIM API | Estimation and planning of waste | Autodesk Revit | Concrete, glass, wood, drywall, masonry-brick, metal |
10 | Ge, Livesey, Wang, Huang, He and Zhang [72] | Proof of concept | BIM API | Reuse and recycle planning | Autodesk Revit | All materials |
11 | Akinade, Oyedele, Bilal, Ajayi, Owolabi, Alaka and Bello [25] | Proof of concept | BIM-based deconstructability assessment system, designing for deconstruction | Designing for deconstruction | Autodesk Revit | Steel, wood, concrete, pile, paint, plaster, glass |
12 | Won, Cheng and Lee [5] | Proof of concept | BIM-based design validation | Detect design error | Archicad, Autodesk Revit | Concrete, metal, finishes, plastic, and stone |
13 | Liu, Singh, Lu, Bouferguene and Al-Hussein [69] | Concept | BIM API for design optimization | Design optimization | Autodesk Revit | Wood, Gypsum |
14 | Porwal and Hewage [68] | Proof of concept | Algorithm of waste rebar optimization | Rebar trim-loss optimization | Autodesk Revit | Steel/rebar |
15 | Lu, Webster, Chen, Zhang and Chen [30] | Proof of concept | BIM API | Construction and design waste estimation | Autodesk Revit | All materials |
16 | Guerra, et al. [88] | Proof of concept | Algorithm for estimation of reuse and recycle | Calculation of the amount of reused and recycled concrete and drywall | Not mentioned | Concrete and gypsum |
17 | Basta, Serror and Marzouk [65] | Proof of concept | BIM API | Calculation of deconstructability score | Autodesk Revit, Dynamo | Steel |
Analysis | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 R’s | Reduce | ✓ | ✓ | ✓ | ✓ | |||||||||||||
Reuse | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Recycle | ✓ | ✓ | ||||||||||||||||
Reference | [84] | [85] | [44] | [86] | [63] | [52] | [70] | [87] | [12] | [72] | [25] | [5] | [69] | [68] | [30] | [65] | [88] | |
Design | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||
Operation | ✓ | |||||||||||||||||
End-of-Life | ✓ | ✓ | ✓ | ✓ |
Journals | Waste Management | Automation in Construction | Journal of Cleaner production | Resources, Conservation & Recycling | Waste Management & Research | Clean Technologies and Environmental Policy | International Journal of Construction Management | Sustainability | Visualization in Engineering | Renewable & Sustainable Energy Reviews | Journal of Construction Engineering and Management |
---|---|---|---|---|---|---|---|---|---|---|---|
Impact Factor * | 7.145 | 7.7 | 9.297 | 10.204 | 3.549 | 3.636 | 1.31 | 3.251 | - | 14.982 | 3.951 |
CiteScore * | 11.5 | 12 | 13.1 | 14.7 | 3.9 | 5.5 | 4.7 | 3.9 | 8.6 | 30.5 | 6.4 |
H-index * | 161 | 121 | 200 | 130 | 80 | 55 | 25 | 85 | 19 | 295 | 114 |
Frequency | 4 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Analysis/3 R’s Strategies | Analysis | Reduce | Reuse | Recycle | |
---|---|---|---|---|---|
Stages of Lifecycle | |||||
Design | N = 7 41% | N = 4 24% | N = 2 12% | N = 1 6% | |
Construction | N = 4 24% | N = 1 6% | N = 3 18% | N = 2 12% | |
Operation | N = 1 6% | N = 0 0% | N = 0 0% | N = 0 0% | |
End-of-Life | N = 3 18% | N = 0 0% | N = 1 6% | N = 1 6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikmehr, B.; Hosseini, M.R.; Wang, J.; Chileshe, N.; Rameezdeen, R. BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review. Sustainability 2021, 13, 8427. https://doi.org/10.3390/su13158427
Nikmehr B, Hosseini MR, Wang J, Chileshe N, Rameezdeen R. BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review. Sustainability. 2021; 13(15):8427. https://doi.org/10.3390/su13158427
Chicago/Turabian StyleNikmehr, Bahareh, M. Reza Hosseini, Jun Wang, Nicholas Chileshe, and Raufdeen Rameezdeen. 2021. "BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review" Sustainability 13, no. 15: 8427. https://doi.org/10.3390/su13158427