Effects of the Feeding Rate on Growth Performance, Body Composition, and Hematological Properties of Juvenile Mandarin Fish Siniperca scherzeri in a Recirculating Aquaculture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Rearing Conditions
2.2. Experimental Design
2.3. Preparation of Experimental Diets
2.4. Fish Measurement and Body Condition
2.5. Analysis of Blood Component and Morphological Indices
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.Z. Geographic distribution of the Sinipercinae fishes. Chin. J. Zool. 1991, 26, 40–44. [Google Scholar]
- Zhou, C.W.; Yang, Q.; Cai, D.L. On the classification and distribution of the Sinipercinae fishes (Family Serranidae). Zool. Res. 1988, 9, 113–126. [Google Scholar]
- Sankian, Z.; Khosravi, S.; Kim, Y.-O.; Lee, S.-M. Dietary protein requirement for juvenile mandarin fish, Siniperca scherzeri. J. World Aquac. Soc. 2018, 50, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Y.; Hu, M.; Fan, Q.X.; Chenung, S.G.; Shin, P.K.S.; Li, H.; Cao, L. Effects of the timing of initial feeding on growth and survival of spotted mandarin fish Siniperca scherzeri larvae. J. Fish Biol. 2009, 75, 1158–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.F.; Kiu, J.K.; Huang, B.Y. The role of sense organs in the feeding behaviour of Chinese perch. J. Fish Biol. 1998, 52, 1058–1067. [Google Scholar] [CrossRef]
- Wu, Z.; Hardy, R.W. A preliminary ethological analysis on the feeding behavior of mandarin fish. Freshw. Fish. 1998, 5, 18–21. (In Chinese) [Google Scholar]
- Liu, L.; Liang, X.-F.; Fang, J.; Li, J. The differentia of nitrogen utilization between fast growth individuals and slow growth individuals in hybrid ofSiniperca chuatsi(♀) × Siniperca scherzeri(♂) mandarin fish fed minced prey fish. Aquac. Res. 2016, 48, 4590–4595. [Google Scholar] [CrossRef]
- Mo, A.J.; Sun, J.X.; Wang, Y.H.; Yang, K.; Yang, H.S.; Yuan, Y.C. Apparent digestibility of protein, energy and amino acids in nine protein sources at two content levels for mandarin fish, Siniperca chuatsi. Aquaculture 2019, 499, 42–50. [Google Scholar] [CrossRef]
- Sankian, Z.; Khosravi, S.; Kim, Y.-O.; Lee, S.-M. Effect of dietary protein and lipid level on growth, feed utilization, and muscle composition in golden mandarin fish Siniperca scherzeri. Fish. Aquat. Sci. 2017, 20, 7. [Google Scholar] [CrossRef]
- Sankian, Z.; Khosravi, S.; Kim, Y.-O.; Lee, S.-M. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture 2018, 496, 79–87. [Google Scholar] [CrossRef]
- Hafs, A.; Mazik, P.; Kenney, P.; Silverstein, J. Impact of carbon dioxide level, water velocity, strain, and feeding regimen on growth and fillet attributes of cultured rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 350–353, 46–53. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Maran, B.A.V.; Park, J.W. Effect of Feeding Frequency on Growth, Food Consumption, Proximate Composition, and Blood Chemistry of Juvenile Dark-banded Rockfish, Sebastes inermis. J. World Aquac. Soc. 2018, 49, 994–1001. [Google Scholar] [CrossRef]
- Lee, S.-M.; Hwang, U.-G.; Cho, S.H. Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture 2000, 187, 399–409. [Google Scholar] [CrossRef]
- Ng, W.-K.; Lu, K.-S.; Hashim, R.; Ali, A. Effects of feeding rate on growth, feed utilizationand body composition of a tropical bagrid catfish. Aquac. Int. 2000, 8, 19–29. [Google Scholar] [CrossRef]
- Azzaydi, M.; Martínez, F.; Zamora, S.; Vázquez, F.J.S.; Madrid, J.A. The influence of nocturnal vs. diurnal feeding under winter conditions on growth and feed conversion of European sea bass (Dicentrarchus labrax, L.). Aquaculture 2000, 182, 329–338. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Maran, B.A.V. Feeding frequency influences growth, feed consumption and body composition of juvenile rock bream (Oplegnathus fasciatus). Aquac. Int. 2015, 23, 175–184. [Google Scholar] [CrossRef]
- Tsevis, N.; Klaoudatos, S.; Conides, A. Food conversion budget in sea bass, Dicentrarchus labrax, fingerlings under two different feeding frequency patterns. Aquaculture 1992, 101, 293–304. [Google Scholar] [CrossRef]
- Biswas, G.; Thirunavukkarasu, A.; Sundaray, J.; Kailasam, M. Optimization of feeding frequency of Asian seabass (Lates calcarifer) fry reared in net cages under brackishwater environment. Aquaculture 2010, 305, 26–31. [Google Scholar] [CrossRef]
- Mihelakakis, A.; Yoshimatsu, T.; Tsolkas, C. Effects of feeding rate on growth, feed utilization and body composition of red porgy fingerlings: Preliminary results. Aquac. Int. 2001, 9, 237–245. [Google Scholar] [CrossRef]
- Aydın, I. The effect of feeding frequency and feeding rate on growth performance of juvenile Black Sea Turbot (Psetta maxima, Linneaus, 1758). J. Fish. 2011, 5, 35–42. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995.
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Lee, S.; Wang, Y.; Hung, S.S.; Strathe, A.B.; Fangue, N.A.; Fadel, J.G. Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus). Aquaculture 2014, 433, 411–420. [Google Scholar] [CrossRef]
- Abidi, S.F.; Khan, M.A. Evaluation of feeding rate based on growth, feed conversion, protein gain and carcass quality of fingerling Indian major carp, Catla catla (Hamilton). Aquac. Res. 2012, 45, 439–447. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, S.-M.; Park, B.H. Effect of feeding ratio on growth and body composition of juvenile olive flounder Paralichthys olivaceus fed extruded pellets during the summer season. Aquaculture 2006, 251, 78–84. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, S.-M.; Park, B.H.; Ji, S.C.; Choi, C.Y.; Lee, J.H.; Kim, Y.C.; Lee, J.H.; Oh, S.-Y. Effect of Daily Feeding Ratio on Growth and Body Composition of Subadult Olive Flounder, Paralichthys olivaceus, Fed an Extruded Diet during the Summer Season. J. World Aquac. Soc. 2007, 38, 68–73. [Google Scholar] [CrossRef]
- Cleveland, B.M.; Burr, G.S. Proteolytic response to feeding level in rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 319, 194–204. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Liu, Y.-J.; Tian, L.-X.; He, J.-G.; Cao, J.-M.; Liang, G.-Y. The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp (Ctenopharyngodon idella). Aquac. Int. 2005, 14, 247–257. [Google Scholar] [CrossRef]
- Eroldoğan, O.; Kumlu, M.; Aktaş, M. Optimum feeding rates for European sea bass Dicentrarchus labrax L. reared in seawater and freshwater. Aquaculture 2004, 231, 501–515. [Google Scholar] [CrossRef]
- Shimeno, S.; Shikata, T.; Hosokawa, H.; Masumoto, T.; Kheyyali, D. Metabolic response to feeding rates in common carp, Cyprinus carpio. Aquaculture 1997, 151, 371–377. [Google Scholar] [CrossRef]
- Yuan, Y.-C.; Yang, H.-J.; Gong, S.-Y.; Luo, Z.; Yuan, H.-W.; Chen, X.-K. Effects of feeding levels on growth performance, feed utilization, body composition and apparent digestibility coefficients of nutrients for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquac. Res. 2009, 41, 1030–1042. [Google Scholar] [CrossRef]
- Zheng, K.; Deng, D.; De Riu, N.; Moniello, G.; Hung, S. The effect of feeding rate on the growth performance of green sturgeon (Acipenser medirostris) fry. Aquac. Nutr. 2014, 21, 489–495. [Google Scholar] [CrossRef]
- Okorie, O.; Bae, J.; Kim, K.; Son, M.; Kim, J.; Bai, S. Optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Aquac. Nutr. 2012, 19, 267–277. [Google Scholar] [CrossRef]
- Blanquet, I.; Oliva-Teles, A. Effect of feed restriction on the growth performance of turbot (Scophthalmus maximus L.) juveniles under commercial rearing conditions. Aquac. Res. 2009, 41, 1255–1260. [Google Scholar] [CrossRef]
- Henken, A.; Kleingeld, D.; Tijssen, P. The effect of feeding level on apparent digestibility of dietary dry matter, crude protein and gross energy in the African catfish Clarias gariepinus (Burchell, 1822). Aquaculture 1985, 51, 1–11. [Google Scholar] [CrossRef]
- Baloi, M.; Sterzelecki, F.; Sugai, J.; Passini, G.; Carvalho, C.; Cerqueira, V. Growth performance, body composition and metabolic response to feeding rates in juvenile Brazilian sardine Sardinella brasiliensis. Aquac. Nutr. 2017, 23, 1458–1466. [Google Scholar] [CrossRef]
- Liu, F.-G.; Liao, I.C. Effect of Feeding Regimen on the Food Consumption, Growth, and Body Composition in Hybrid Striped Bass Morone saxatilis×M. chrysops. Fish. Sci. 1999, 65, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Mizanur, R.M.; Bai, S.C. The Optimum Feeding Frequency in Growing Korean Rockfish (Sebastes schlegeli) Rearing at the Temperature of 15 °C and 19 °C. Asian-Australas. J. Anim. Sci. 2014, 27, 1319–1327. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, K.S.; Brown, J.A.; Parrish, C.; Lall, S.P. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferruginea). Aquaculture 2002, 213, 279–292. [Google Scholar] [CrossRef]
- Wang, N.; Hayward, R.S.; Noltie, D.B. Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish. Aquaculture 1998, 165, 261–267. [Google Scholar] [CrossRef]
- Cui, Y.; Hung, S.S.O.; Deng, D.-F.; Yang, Y. Growth Performance of Juvenile White Sturgeon as Affected by Feeding Regimen. Progress. Fish-Cult. 1997, 59, 31–35. [Google Scholar] [CrossRef]
- Silva, C.R.; Gomes, L.C.; Brandão, F.R. Effect of feeding rate and frequency on tambaqui (Colossoma macropomum) growth, production and feeding costs during the first growth phase in cages. Aquaculture 2007, 264, 135–139. [Google Scholar] [CrossRef]
- Abdelghany, A.E.; Ahmad, M.H. Effects of feeding rates on growth and production of Nile tilapia, common carp and silver carp polycultured in fertilized ponds. Aquac. Res. 2002, 33, 415–423. [Google Scholar] [CrossRef]
- Lee, S.; Haller, L.; Fangue, N.; Fadel, J.; Hung, S. Effects of feeding rate on growth performance and nutrient partitioning of young-of-the-year white sturgeon (Acipenser transmontanus). Aquac. Nutr. 2015, 22, 400–409. [Google Scholar] [CrossRef]
- Storebakken, T.; Hung, S.; Calvert, C.; Plisetskaya, E. Nutrient partitioning in rainbow trout at different feeding rates. Aquaculture 1991, 96, 191–203. [Google Scholar] [CrossRef]
- Deng, D.-F.; Koshio, S.; Yokoyama, S.; Bai, S.; Shao, Q.; Cui, Y.; Hung, S.S. Effects of feeding rate on growth performance of white sturgeon (Acipenser transmontanus) larvae. larvae. Aquaculture 2003, 217, 589–598. [Google Scholar] [CrossRef]
- Hung, S.S.; Conte, F.S.; Hallen, E.F. Effects of feeding rates on growth, body composition and nutrient metabolism in striped bass (Morone saxatilis) fingerlings. Aquaculture 1993, 112, 349–361. [Google Scholar] [CrossRef]
- Mihelakakis, A.; Tsolkas, C.; Yoshimatsu, T. Optimization of Feeding Rate for Hatchery-Produced Juvenile Gilthead Sea Bream Sparus aurata. J. World Aquac. Soc. 2002, 33, 169–175. [Google Scholar] [CrossRef]
- Kim, Y.-O.; Oh, S.-Y.; Lee, W.-S. Feeding ratio affects growth, body composition, and blood chemistry of mandarin fish (Siniperca scherzeri) in recirculating aquaculture system. Fish. Aquat. Sci. 2021, 24, 219–227. [Google Scholar] [CrossRef]
- Zoccarato, I.; Benatti, G.; Bianchini, M.L.; Boccignone, M.; Conti, A.; Napolitano, R.; Palmegiano, G.B. Differences in performance, flesh composition and water output quality in relation to density and feeding levels in rainbow trout, Oncorhynchus mykiss (Walbaum), farming. Aquac. Res. 1994, 25, 639–647. [Google Scholar] [CrossRef]
- Puvanendran, V.; Boyce, D.; Brown, J. Food ration requirements of 0+ yellowtail flounder Limanda ferruginea (Storer) juveniles. Aquaculture 2003, 220, 459–475. [Google Scholar] [CrossRef]
- Van Ham, E.H.; Berntssen, M.H.; Imsland, A.K.; Parpoura, A.C.; Bonga, S.E.W.; Stefansson, S.O. The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture 2003, 217, 547–558. [Google Scholar] [CrossRef]
Ingredients | Composition (%) |
---|---|
Anchovy fish meal a | 76.0 |
Corn gluten meal b | 2.8 |
Potato-starch | 10.5 |
Squid liver oil + soybean oil | 8.1 |
Vitamin premix c | 1.0 |
Mineral premix d | 1.0 |
Vitamin C | 0.3 |
Vitamin E | 0.2 |
Choline salt | 0.1 |
Nutrient contents (dry matter basis) | |
Crude protein (%) | 55.4 |
Crude lipid (%) | 14.1 |
Ash (%) | 11.5 |
Feeding Rate (% BW−1) | Initial Mean Weight (g) | Final Mean Weight (g) | Survival (%) | WG (%) 1 | SGR (% Day−1) 2 |
---|---|---|---|---|---|
0.5 | 18.4 ± 0.12 | 20.9 ± 0.63 a | 100 ± 0.0 | 9.7 ± 2.86 a | 0.13 ± 0.04 a |
1.0 | 18.2 ± 0.14 | 31.5 ± 0.40 b | 100 ± 0.0 | 64.5 ± 1.01 b | 0.71 ± 0.01 b |
1.5 | 18.2 ± 0.09 | 45.0 ± 0.92 c | 100 ± 0.0 | 135.4 ± 4.06 c | 1.22 ± 0.02 c |
2.0 | 18.6 ± 0.08 | 48.2 ± 1.15 c | 100 ± 0.0 | 147.3 ± 6.21 c,d | 1.29 ± 0.04 c,d |
2.5 | 18.4 ± 0.35 | 53.9 ± 1.00 d | 100 ± 0.0 | 179.9 ± 10.76 e | 1.47 ± 0.05 e |
3.0 | 18.7 ± 0.04 | 54.0 ± 1.29 d | 100 ± 0.0 | 175.5 ± 7.17 d,e | 1.45 ± 0.04 d,e |
Feeding Rate (% BW−1) | Feed Consumption (g Fish−1) | FE (%) 1 | PER 2 | PR 3 |
---|---|---|---|---|
0.5 | 4.8 ± 0.07 a | 38.6 ± 10.74 a | 0.69 ± 0.19 a | 10.2 ± 4.43 a |
1.0 | 16.0 ± 0.05 b | 77.2 ± 1.59 b,c | 1.38 ± 0.03 b,c | 27.0 ± 0.42 b |
1.5 | 28.7 ± 0.27 c | 89.9 ± 2.15 c | 1.61 ± 0.04 c | 30.1 ± 1.40 b |
2.0 | 33.9 ± 0.60 d | 84.7 ± 1.97 b,c | 1.52 ± 0.04 b,c | 29.7 ± 0.72 b |
2.5 | 45.4 ± 0.62 e | 76.3 ± 1.96 b,c | 1.37 ± 0.04 b,c | 27.5 ± 0.51 b |
3.0 | 55.2 ± 1.11 f | 62.4 ± 2.44 b | 1.12 ± 0.04 b | 22.8 ± 0.99 b |
Feeding Rate (% BW−1) | CF 1 | HSI (%) 2 | VSI (%) 3 | CVBLi (%) 4 | CVBLf (%) 5 | CVBWi (%) 6 | CVBWf (%) 7 |
---|---|---|---|---|---|---|---|
0.5 | 0.93 ± 0.01 a | 0.90 ± 0.07 a | 5.38 ± 0.20 a | 7.1 ± 1.01 | 10.4 ± 1.07 | 19.8 ± 0.83 | 35.7 ± 1.98 b |
1.0 | 1.05 ± 0.00 b | 1.34 ± 0.12 a,b | 6.28 ± 0.13 ab | 7.4 ± 0.53 | 7.8 ± 0.55 | 20.5 ± 1.73 | 21.0 ± 1.41 a |
1.5 | 1.15 ± 0.01 c | 1.66 ± 0.04 b | 6.51 ± 0.11 ab | 7.1 ± 0.58 | 7.6 ± 0.72 | 18.9 ± 1.24 | 21.6 ± 1.05 a |
2.0 | 1.14 ± 0.01 c | 1.44 ± 0.17 b | 6.95 ± 0.47 b | 7.9 ± 1.78 | 8.0 ± 0.66 | 23.3 ± 2.27 | 23.8 ± 2.24 a |
2.5 | 1.16 ± 0.00 c | 1.52 ± 0.04 b | 7.31 ± 0.24 b | 6.4 ± 0.75 | 8.9 ± 0.93 | 19.8 ± 2.79 | 26.1 ± 3.22 a |
3.0 | 1.20 ± 0.02 d | 1.48 ± 0.08 b | 7.17 ± 0.22 b | 7.6 ± 0.41 | 8.4 ± 0.41 | 21.5 ± 3.30 | 25.7 ± 1.08 a |
Feeding Rate (% BW−1) | Moisture (%) | Crude Protein (%) | Crude Lipid (%) | Ash (%) |
---|---|---|---|---|
0.5 | 73.6 ± 1.67 | 17.5 ± 1.20 | 1.3 ± 0.33 a | 5.8 ± 0.07 |
1.0 | 71.9 ± 0.52 | 19.1 ± 0.30 | 2.5 ± 0.29 b | 5.9 ± 0.25 |
1.5 | 71.9 ± 0.90 | 18.3 ± 0.65 | 3.6 ± 0.07 c | 5.0 ± 0.44 |
2.0 | 71.1 ± 0.48 | 19.1 ± 0.52 | 4.4 ± 0.23 c,d | 4.9 ± 0.12 |
2.5 | 70.0 ± 1.23 | 19.7 ± 0.85 | 4.4 ± 0.07 d | 5.4 ± 0.53 |
3.0 | 70.2 ± 0.50 | 20.0 ± 0.10 | 4.3 ± 0.09 c,d | 5.2 ± 0.10 |
Feeding Rate(% BW−1) | HCT (%) 1 | GLU (mg dL−1) 2 | TP (g dL−1) 3 | TCHO (mg dL−1) 4 | GOT (U L−1) 5 | GPT (U L−1) 6 | HDLC (U L−1) 7 |
---|---|---|---|---|---|---|---|
0.5 | 41.9 ± 1.0 a | 167.8 ± 23.5 | 4.0 ± 0.1 | 131.2 ± 20.8 a | 92.2 ± 28.7 | 19.8 ± 6.1 | 102.9 ± 3.3 |
1.0 | 44.6 ± 1.5 a,b | 234.3 ± 33.2 | 4.6 ± 0.1 | 201.1 ± 1.9 b | 102.3 ± 14.7 | 16.6 ± 1.9 | 110.0 ± 0.1 |
1.5 | 46.1 ± 1.5 a,b | 224.5 ± 31.3 | 5.2 ± 0.2 | 231.7 ± 15.7 b | 90.1 ± 26.0 | 25.8 ± 3.5 | 116.4 ± 6.4 |
2.0 | 46.3 ± 1.0 a,b | 271.6 ± 15.8 | 4.7 ± 0.1 | 209.7 ± 4.5 b | 51.5 ± 5.0 | 19.2 ± 1.6 | 110.0 ± 0.1 |
2.5 | 47.9 ±0.6 b | 312.1 ± 64.5 | 4.4 ± 0.5 | 204.3 ± 9.6 b | 67.3 ± 17.3 | 30.3 ± 18.4 | 105.8 ± 2.1 |
3.0 | 49.2 ± 0.2 b | 276.9 ± 13.0 | 4.5 ± 0.2 | 214.6± 3.3 b | 65.4 ± 2.8 | 8.7± 1.2 | 116.3 ± 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-O.; Oh, S.-Y.; Kim, T. Effects of the Feeding Rate on Growth Performance, Body Composition, and Hematological Properties of Juvenile Mandarin Fish Siniperca scherzeri in a Recirculating Aquaculture System. Sustainability 2021, 13, 8257. https://doi.org/10.3390/su13158257
Kim Y-O, Oh S-Y, Kim T. Effects of the Feeding Rate on Growth Performance, Body Composition, and Hematological Properties of Juvenile Mandarin Fish Siniperca scherzeri in a Recirculating Aquaculture System. Sustainability. 2021; 13(15):8257. https://doi.org/10.3390/su13158257
Chicago/Turabian StyleKim, Yi-Oh, Sung-Yong Oh, and Taewon Kim. 2021. "Effects of the Feeding Rate on Growth Performance, Body Composition, and Hematological Properties of Juvenile Mandarin Fish Siniperca scherzeri in a Recirculating Aquaculture System" Sustainability 13, no. 15: 8257. https://doi.org/10.3390/su13158257
APA StyleKim, Y.-O., Oh, S.-Y., & Kim, T. (2021). Effects of the Feeding Rate on Growth Performance, Body Composition, and Hematological Properties of Juvenile Mandarin Fish Siniperca scherzeri in a Recirculating Aquaculture System. Sustainability, 13(15), 8257. https://doi.org/10.3390/su13158257