Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates
Abstract
:1. Introduction
- adhesion
- cohesion (mechanical interlocking)
- friction due to external compressive and clamping forces
2. Calculation of Shear Bond Strength
2.1. Interface Roughness Parameters
2.2. Design Approaches Based on Roughness Categories
coefficient depending on interface roughness | |
design value of concrete tensile strength | |
effectiveness factor of concrete | |
design value of concrete compressive strength |
2.3. Calculation Approaches Using Roughness Parameters
2.3.1. Approach Proposed by Gohnert
2.3.2. Approach Proposed by Santos and Júlio
2.4. Overview of Existing Calculation Approaches for NSC-UHPFRC Shear Bond
3. Experimental Investigation of NSC-UHPFRC Bond Strength
3.1. Test Specimens and Testing Programme
3.2. Interface Quality and Quantification of Roughness
3.3. Testing Procedure
4. Test Results
4.1. Tensile Bond Strength
4.2. Load-Slip Behaviour and Failure Mode
5. Evaluation of Test Results and Discussion
6. Conclusions and Outlook
- -
- The failure type in the shown experiments varied based on the treatment method of the interface between adhesive failure, cohesive failure (cohesive) and a mixed failure mode (adhesive/cohesive). The minimum shear bond strength was reached by specimens with an adhesive failure and the maximum value was reached in case of a cohesive failure.
- -
- If the joint surface is prepared by water jetting, very rough joint surfaces can be achieved. However, the increase in maximum bond strength was disproportionate to the roughness increase. The specimens failed with a cohesive failure mode in the NSC substrate.
- -
- The joint preparation using grooving showed the best results concerning the load-bearing capacity of the joint. Therefore, grooving seems to be an effective and gentle preparation method for the preparation of the joint surface before the application of UHPC-overlays. It appeared that the high energy applied to the surface during water jetting led to microcracking and damaging of the substrate.
- -
- The investigations showed that for NSC-UHPFRC interfaces the cohesive failure mode in NSC substrate has to be considered as an upper bound for the design of UHPFRC overlays.
- -
- The calculation of shear bond strength based on roughness categories in design codes appears too crude for a UHPFRC overlay concrete to exploit the potential of the UHPFRC and should be reconsidered.
- -
- By evaluation of tests results, the approaches with a linear or power function between interface roughness parameter and shear bond strength of the interface showed better results in comparison to design approaches. However, as all calculation methods are derived empirically for NSC-NSC interfaces, the shear bond strength was underestimated in all cases.
- -
- Based on the observed failure modes, the effect of the fibres was not fully understood. It appeared that in the case of cohesive failure modes there is no significant influence on the shear bond strength, however, in the case of mixed failure mode and the post-peak behaviour there is a certain influence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brühwiler, E.; Bastien Masse, M. Strengthening the Chillon viaducts deck slabs with reinforced UHPFRC. In Proceedings of the IABSE Conference—Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, 23–25 September 2015; pp. 1171–1178. [Google Scholar]
- Pelke, E.; Jaborek, A.; Berger, D.; Brühwiler, E. Überführungsbauwerk der L3378 bei Fulda-Lehnerz—Erster Einsatz von UHPC in Deutschland im Straßenbrückenbau, Teil 1: Projektentwicklung und Baudurchführung. Beton-und Stahlbetonbau 2018, 113, 831–841. [Google Scholar] [CrossRef]
- Hadl, P.; delle Pietra, R.; Hoang, K.H.; Pilch, E.; Tue, N.V. Application of UHPC as road bridge topping within the adaptation of an existing conventional bridge to an integral abutment bridge in Austria. Beton-und Stahlbetonbau 2015, 110, 162–170. [Google Scholar] [CrossRef]
- Methner, R.; Müller, R. Bridge repair, strengthening and sealing with Ultra High Performance Concrete (UHPC)—Experience from three Swiss major bridges. Beton-und Stahlbetonbau 2019, 114, 126–133. [Google Scholar] [CrossRef]
- Orgass, M.; Klitsch, B.; Wißler, M.; Tauscher, F.; Dehn, F. Overpass bridge of the L 3378 road near Fulda-Lehnerz. First application of UHPC in road bridge construction in Germany. Part 2. Beton-und Stahlbetonbau 2018, 113, 821–830. [Google Scholar] [CrossRef]
- Adam, V.; Bielak, J.; Will, N.; Hegger, J. Experimental investigations regarding strengthening of bridge deck slabs with textile reinforced concrete. Beton-und Stahlbetonbau 2020, 115, 952–961. [Google Scholar] [CrossRef]
- Vande Voort, T.L.; Suleiman, M.T.; Sritharan, S. Design and Performance Verification of UHPC Piles for Deep Foundations; Center for Transportation Research and Education, Iowa State University: Ames, IA, USA, 2008. [Google Scholar]
- Tayeh, B.A.; Abu Bakar, B.H.; Mergat Johari, M.A.; Voo, J.L. Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fibre concrete overlay. Constr. Build. Mater. 2012, 36, 538–548. [Google Scholar] [CrossRef]
- Zanotti, C.; Talukdar, S.; Banthia, N. Astate-of-the-art on concrete repairs and some thoughts on ways to achieve durability in repairs. In Infrastructure Corrosion and Durability—A Sustainability Study; OMICS Group eBooks: Constanta, Romania, 2014. [Google Scholar]
- Empelmann, M.; Oettel, V.; Cramer, J. Calculation of crack width of concrete components reinforced with steel fibres and reinforcing bars. Beton-und Stahlbetonbau 2020, 115, 136–145. [Google Scholar] [CrossRef]
- Minelli, F.; Plizzari, G. Derivation of a simplified stress-crack width law for Fibre Reinforced Concrete through a revised round panel test. Cem. Concr. Compos. 2015, 58, 95–104. [Google Scholar] [CrossRef]
- Cuenca, E.; Conforti, A.; Monfardini, L.; Minelli, F. Shear transfer across a crack in ordinary and alkali activated concrete reinforced by different fibre types. Mater. Struct. 2020, 53, 24. [Google Scholar] [CrossRef]
- Banthia, N.; Chokri, K.; Ohama, Y.; Mindess, S. Fibre-reinforced cement based composites under tensile impact. Adv. Cem. Based Compos. 1994, 1, 131–141. [Google Scholar] [CrossRef]
- Banthia, N.; Bindiganavile, V.; Azhari, F.; Zanotti, C. Curling control in concrete slabs using fibre reinforcement. J. Test. Eval. 2014, 42, 390–397. [Google Scholar] [CrossRef]
- Empelmann, M.; Henke, V.; Sender, C. Strengthening of Flexural Members with a Post-Installed Concrete Overlay (in German). Final Report; Fraunhofer IRB Verlag: Stuttgart, Germany, 2009. [Google Scholar]
- Randl, N. Investigations on the load transmission between old and new concrete with different joint roughnesses (in German: Untersuchungen zur Kraftübertragung zwischen Alt- und Neubeton bei Unterschiedlichen Fugenrauigkeiten). Ph.D. Thesis, Universität Innsbruck, Innsbruck, Austria, 1997. [Google Scholar]
- Lenz, P. Concrete-Concrete bond potentials for shear joints (in German: Beton-Beton-Verbund Potenziale für Schubfugen). Ph.D. Thesis, Technische Universität München, München, Germany, 2012. [Google Scholar]
- Zilch, K.; Müller, A. Experimentelle Untersuchung zum Ermüdungstragverhalten von unbewehrten Schubfugen an nachträglich ergänzten Betonbauteilen. DAfStb Research Report; Technische Universität München: München, Germany, 2004. [Google Scholar]
- Santos, P.M.D.; Julio, E.N.B.S. Interface shear transfer on concrete composite members. ACI Struct. J. 2014, 111, 1–10. [Google Scholar]
- Erhard, D.; Chorinsky, G. Repair of Concrete Floors with Polymer Modified Cement Mortars. Adhesion between Polymers and Concrete; Springer US: Boston, MA, USA, 1986; pp. 230–234. [Google Scholar]
- Gowripalan, N.; Gilbert, R.I. Design Guidelines for Ductal Prestressed Concrete Beams-Design Guide; School of Civil and Environmental Engineering, The University of New South Wales: Sydney, NSW, Australia, 2000. [Google Scholar]
- Jang, H.-O.; Lee, H.-S.; Cho, K.; Kim, J. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC). Constr. Build. Mater. 2017, 152, 16–23. [Google Scholar] [CrossRef]
- Farzad, M.; Shafieifar, M.; Azizinamini, A. Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC). Eng. Struct. 2019, 186, 297–305. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Zhu, Y.; Cao, J.; Schao, X. An experimental study: Various influence factors affecting interfacial shear performance of UHPC-NSC. Constr. Build. Mater. 2020, 236, 117480. [Google Scholar] [CrossRef]
- Valikhani, A.; Jaberi Jahromi, A.; Mantawy, I.M.; Aziziamini, A. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application. Constr. Build. Mater. 2020, 238, 117753. [Google Scholar] [CrossRef]
- Randl, N.; Steiner, M.; Peyerl, M. Hochfester Aufbeton zur Tragwerksverstärkung. Teil 1: Kleinkörperversuche. Beton-und Stahlbetonbau 2020, 115, 106–116. [Google Scholar] [CrossRef]
- Walraven, J.C. Fundamental analysis of aggregate interlock. ASCE J. Struct. Div. 1981, 107, 2245–2270. [Google Scholar] [CrossRef]
- Santos, P.M.D.; Julio, E.N.B.S. A state-of-the-art review on shear-friction. Eng. Struct. 2012, 45, 435–448. [Google Scholar] [CrossRef]
- EN 1992-1-1: Eurocode 2: Eurocode 2. Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization CEN. 2004. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf (accessed on 15 July 2021).
- Fib—International Federation for Structural Concrete (2013): Fib Model Code for Structures; Ernst & Sohn: Berlin, Germany, 2010.
- Kaufmann, N. Das Sandflächenverfahren. Straßenbautechnik 1971, 24, 131–135. [Google Scholar]
- ISO 25178-2. Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- prEN 1992-1-1 Eurocode 2: Design of concrete structures—Part 1-1: General rules—Rules for buildings. Bridges Civ. Eng. Struct. Rev. 2020, 11, 16.
- Gohnert, M. Horizontal shear transfer across a roughened surface. Cem. Concr. Compos. 2003, 25, 379–385. [Google Scholar] [CrossRef]
- Santos, P.M.D. Júlio ENBS. Factors affecting bond between new and old concrete. ACI Mater. J. 2011, 108, 449–456. [Google Scholar]
- AFGC. Ultra High Performance Fibre-Reinforced Concretes—Recommendations; Association Française de Génie Civil: Paris, France, 2013. [Google Scholar]
- SIA 2052: Ultra-Hochleistungs-Faserbeton (UHFB)—Baustoffe, Bemessung und Ausführung; Schweizerischer Ingenieur und Architektenverein: Zürich, Switzerland, March 2016; Available online: http://shop.sia.ch/normenwerk/ingenieur/sia%202052/d/D/Product (accessed on 15 July 2021).
- Empelmann, M.; Javidmehr, S.; Zühlsdorf, M.-R.; Wilkening, M.; Oettel, V. Shear Load Transfer in UHPFRC-NSC Joints. Final Report of DAfStb-Project No. V 504. 21. 20 March. (in press)
- EN 12350-5: Testing Fresh Concrete. Part 5: Flow Table Test. CEN/TC 104; Deutsches Institut für Normung e.V.: Berlin, Germany, 2009.
- EN 12390-6 Testing harDened Concrete. Tensile Splitting Strength of Test Specimens, CEN/TC 104/DIN; Deutsches Institut für Normung e.V.: Berlin, Germany, 2009.
- EN 12390-3: Testing Hardened Concrete. Compressive Strength of Test Specimens, CEN/TC 104/DIN; Deutsches Institut für Normung e.V.: Berlin, Germany, 2009.
- EN 12390-13: Testing Hardened Concrete. Determination of Secant Modulus of Elasticity in Compression, CEN/TC 104/DIN; Deutsches Institut für Normung e.V.: Berlin, Germany, 2009.
- MountainsLab® Premium: Surface Imaging, Analysis and Metrology Software. Digital Surf, License Number DS-0D475CF1. Available online: www.digitalsurf.com (accessed on 15 July 2021).
Category | Peak to Mean Roughness Value |
---|---|
very rough (e.g., using water jetting or grooving) | ≥3.0 mm |
rough (e.g., using water jetting or sand blasting) | ≥1.5 mm |
smooth | <1.5 mm |
very smooth | not measurable |
Category | Peak to Mean Roughness Value | Coefficient | Effectiveness Factor | |||
---|---|---|---|---|---|---|
EC2/MC2010 | prEC2 | EC2 | MC2010 | prEC2 | ||
very rough (e.g., using water jetting or grooving) | ≥3.0 mm | 0.50 | 0.19 | 0.70 | 0.25 | |
rough (e.g., using water jetting or sandblasting) | ≥1.5 mm | 0.40 | 0.15 | 0.50 | ||
smooth | <1.5 mm | 0.20 | 0.075 | 0.20 | ||
very smooth | not measurable | 0.025 | 0.0095 | 0.0 |
NSC C30/37 | UHPFRC M4Q-1.25 | ||
---|---|---|---|
Components | [kg/m3] | Components | [kg/m3] |
Cement CEM II / B-S 42.5N | 360.0 | Cement CEM I 52.5 R | 795.4 |
Silica fume | 50.0 | Silica fume | 168.6 |
Superplasticiser | 1.1 | Superplasticiser | 24.1 |
Quartz sand 0/2 mm | 706.0 | Quartz powder | 198.4 |
Quartz sand 2/8 mm | 531 | Quartz sand 0.125/0.5 mm | 971.0 |
Quartz sand 8/16 mm | 525 | Steel fibres (Weidacon FM 0.19/13.0) | 99.39 |
Water | 185 | Water | 188 |
Specime | NSC (Age of 35 Days) | UHPFRC | NSC-UHPFRC | ||||
---|---|---|---|---|---|---|---|
Splitting Tensile Strength [40] [N/mm2] | Compressive Strength [41] [N/mm2] | Young’s Modulus [42] [N/mm2] | Compressive Strength (Age of 7 Days) | Compressive Strength (Age of 28 Days) | Young’s Modulus [N/mm2] | Tensile Bond Strength [N/mm2] | |
monolithic | 2.3 | 29.9 | 32,833 | - | - | - | 2.0 |
BD | 2.9 | 35.3 | 30,000 | 101.0 | 154.9 | 43,133 | - |
B | 2.7 | 35.3 | 29,700 | 119.5 | 157.9 | 45,500 | - |
S | 2.7 | 34.6 | 27,367 | 106.0 | - | 42,833 | 2.2 |
J | 2.8 | 36.2 | 33,833 | 101.8 | 145.8 | 41,567 | 2.7 |
G | 3.0 | 38.1 | 34,800 | 115.5 | 161.8 | 43,900 | 3.0 |
Specimen | Peak to Mean Roughness Values [mm] | Maximum Peak Height [mm] | Mean Height [mm] | Maximum Height [mm] | Developed Interfacial Area Ratio [%] |
---|---|---|---|---|---|
BD | - | 0.15 | 0.018 | 0.82 | 18.6 |
B | - | 0.15 | 0.017 | 0.79 | 16.6 |
S | 0.52 | 0.24 | 0.04 | 1.65 | 37.8 |
J | 2.87 | 0.98 | 0.11 | 6.52 | 163.8 |
G | 1.81 | 0.45 | 0.05 | 3.63 | 79.9 |
Specimen | Tensile Bond Strength [N/mm2] | Mod. Tensile Bond Strength [N/mm2] | [-] |
---|---|---|---|
monolithic | 2.0 | 2.0 | 1.0 |
S | 2.2 | 1.59 | 0.76 |
J | 2.7 | 1.05 | 0.5 |
G | 3.0 | 1.60 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javidmehr, S.; Empelmann, M. Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates. Sustainability 2021, 13, 8229. https://doi.org/10.3390/su13158229
Javidmehr S, Empelmann M. Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates. Sustainability. 2021; 13(15):8229. https://doi.org/10.3390/su13158229
Chicago/Turabian StyleJavidmehr, Sara, and Martin Empelmann. 2021. "Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates" Sustainability 13, no. 15: 8229. https://doi.org/10.3390/su13158229
APA StyleJavidmehr, S., & Empelmann, M. (2021). Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates. Sustainability, 13(15), 8229. https://doi.org/10.3390/su13158229