Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter
Abstract
:1. Introduction
2. Passivity Control Based on the Hamiltonian Control Law
2.1. System Modeling Based on the Port-Hamiltonian pH
2.2. Proposed New Hamiltonian Control Law
3. Adaptive Hamiltonian Energy Control of the FC Converter
3.1. 2-Phase Interleaved Step-Up Power Circuit Model
3.2. Adaptive Hamiltonian Energy Control
- The DC bus voltage vC is the most essential variable so that, at the equilibrium point, vC = vCd (the desired set-point).
- The current sharing of each input inductor current at equilibrium point iL1 = iL2.
rL·x12 + rL·x22 + CB·x3·(dx3d/dt) + L·x1·(dx1d/dt) + L·x2·(dx2d/dt) + KII·x1·x5 − KII·x2·x5 + …
KR·x1·x1d + KR·x2·x2d)/(x1·x3d − x3·x1d + x2·x3d − x3·x2d).
3.3. Desired Set-Point Generation xd
3.4. Stability Proof and Control Conclusion
4. Performance Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezk, H.; Fathy, A. Performance Improvement of PEM Fuel Cell Using Variable Step-Size Incremental Resistance MPPT Technique. Sustainability 2020, 12, 5601. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G. Performance Prediction of Proton Exchange Membrane Fuel Cells (PEMFC) Using Adaptive Neuro Inference System (ANFIS). Sustainability 2020, 12, 4952. [Google Scholar] [CrossRef]
- Thounthong, P.; Phattanasak, M.; Guilbert, D.; Takorabet, N.; Pierfederici, S.; Nahid-Mobarakeh, B.; Bizon, N.; Kumam, P. Differential Flatness Based-Control Strategy of a Two-Port Bidirectional Supercapacitor Converter for Hydrogen Mobility Applications. Energies 2020, 13, 2794. [Google Scholar] [CrossRef]
- Thounthong, P.; Mungporn, P.; Guilbert, D.; Takorabet, N.; Pierfederici, S.; Nahid-Mobarakeh, B.; Hu, Y.; Bizon, N.; Huangfu, Y.; Kumam, P. Design and control of multiphase interleaved boost converters-based on differential flatness theory for PEM fuel cell multi-stack applications. Int. J. Electr. Power Energy Syst. 2021, 124, 106346. [Google Scholar] [CrossRef]
- Zhuo, S.; Gaillard, A.; Li, Q.; Ma, R.; Paire, D.; Gao, F. Current Ripple Optimization of Four-Phase Floating Interleaved DC–DC Boost Converter Under Switch Fault. IEEE Trans. Ind. Appl. 2020, 56, 4214–4224. [Google Scholar] [CrossRef]
- Thounthong, P. Port-Hamiltonian Formulation of Adaptive Hamiltonian PID controller to Solve Constant Power Load Stability Issue in DC Microgrid: Control of a Fuel Cell Converter. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition—Asia (ECCE-Asia) 2021, Singapore, 24–27 May 2021. [Google Scholar]
- Thounthong, P.; Nahid-Mobarakeh, B.; Pierfederici, S.; Mungporn, P.; Bizon, N.; Kumam, P. Hamiltonian Control Law Based on Lyapunov–Energy Function for Four-Phase Parallel Fuel Cell Boost Converter. In Proceedings of the 2020 International Conference on Power, Energy and Innovations (ICPEI), Chiang Mai, Thailand, 16–18 October 2020. [Google Scholar]
- Thounthong, P.; Mungporn, P.; Pierfederici, S.; Guilbert, D.; Bizon, N. Adaptive Control of Fuel Cell Converter Based on a New Hamiltonian Energy Function for Stabilizing the DC Bus in DC Microgrid Applications. Mathematics 2020, 8, 2035. [Google Scholar] [CrossRef]
- Naseri, F.; Farjah, E.; Kazemi, Z.; Schaltz, E.; Ghanbari, T.; Schanen, J. Dynamic Stabilization of DC Traction Systems Using a Supercapacitor-Based Active Stabilizer with Model Predictive Control. IEEE Trans. Transp. Electrif. 2020, 6, 228–240. [Google Scholar] [CrossRef]
- Wu, Y.; Mahmud, M.; Zhao, Y.; Mantooth, H. Uncertainty and Disturbance Estimator-Based Robust Tracking Control for Dual-Active-Bridge Converters. IEEE Trans. Transp. Electrif. 2020, 6, 1791–1800. [Google Scholar] [CrossRef]
- Glover, S.F.; Sudhoff, S.D. An experimentally validated nonlinear stabilizing control for power electronics based power systems. Soc. Automot. Eng. (SAE) J. 1998, 1, 981255. [Google Scholar]
- Emadi, A.; Khaligh, A.; Rivetta, C.; Williamson, G. Constant Power Loads and Negative Impedance Instability in Automotive Systems: Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor Drives. IEEE Trans. Veh. Technol. 2006, 55, 1112–1125. [Google Scholar] [CrossRef]
- Cespedes, M.; Xing, L.; Sun, J. Constant-Power Load System Stabilization by Passive Damping. IEEE Trans. Power Electron. 2011, 26, 1832–1836. [Google Scholar] [CrossRef]
- Liu, S.; Su, P.; Zhang, L. A Virtual Negative Inductor Stabilizing Strategy for DC Microgrid with Constant Power Loads. IEEE Access 2018, 6, 59728–59741. [Google Scholar] [CrossRef]
- You, J.; Fan, Z.; Hu, Y.; Deng, M. Virtual resistor based DBVC and active damping method for DC bus stabilization of cascaded power converters system. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) 2017, Harbin, China, 7–10 August 2017. [Google Scholar]
- Lu, X.; Sun, K.; Guerrero, J.; Vasquez, J.; Huang, L.; Wang, J. Stability Enhancement Based on Virtual Impedance for DC Microgrids with Constant Power Loads. IEEE Trans. Smart Grid 2015, 6, 2770–2783. [Google Scholar] [CrossRef]
- Mungporn, P.; Yodwong, B.; Thounthong, P.; Ekkaravarodome, C.; Bilsalam, A.; Nahid-Mobarakeh, B.; Pierfederici, S.; Guilbert, D.; Bizon, N.; Khomfoi, S.; et al. Study of Hamiltonian Energy Control of Multiphase Interleaved Fuel Cell Boost Converter. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, Thailand, 11–13 December 2019. [Google Scholar]
- Pang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Phattanasak, M.; Huangfu, Y.; Luo, G.; Gao, F. Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load. IEEE Trans. Ind. Appl. 2019, 55, 6476–6485. [Google Scholar] [CrossRef]
- Ravada, B.; Tummuru, N. Control of a Supercapacitor-Battery-PV Based Stand-Alone DC-Microgrid. IEEE Trans. Energy Convers. 2020, 35, 1268–1277. [Google Scholar] [CrossRef]
- Mungporn, P.; Thounthong, P.; Yodwong, B.; Ekkaravarodome, C.; Bilsalam, A.; Pierfederici, S.; Guilbert, D.; Nahid-Mobarakeh, B.; Bizon, N.; Shah, Z.; et al. Modeling and Control of Multiphase Interleaved Fuel-Cell Boost Converter Based on Hamiltonian Control Theory for Transportation Applications. IEEE Trans. Transp. Electrif. 2020, 6, 519–529. [Google Scholar] [CrossRef]
- Ma, R.; Xu, L.; Xie, R.; Zhao, D.; Huangfu, Y.; Gao, F. Advanced Robustness Control of DC–DC Converter for Proton Exchange Membrane Fuel Cell Applications. IEEE Trans. Ind. Appl. 2019, 55, 6389–6400. [Google Scholar] [CrossRef]
- Thammasiriroj, W.; Mungporn, P.; Nahid-Mobarakeh, B.; Pierfederici, S.; Bizon, N.; Thounthong, P. Comparative Study of Model-Based Control of Energy/Current Cascade Control for a Multiphase Interleaved Fuel Cell Boost Converter. In Proceedings of the 2020 International Conference on Power, Energy and Innovations (ICPEI), Chiang Mai, Thailand, 16–18 October 2020. [Google Scholar]
- Ramos-Paja, C.; Giral, R.; Martinez-Salamero, L.; Romano, J.; Romero, A.; Spagnuolo, G. A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estimation and Power-Electronics Interaction. IEEE Trans. Ind. Electron. 2010, 57, 1914–1924. [Google Scholar] [CrossRef]
- Ramos-Paja, C.; Bordons, C.; Romero, A.; Giral, R.; Martinez-Salamero, L. Minimum Fuel Consumption Strategy for PEM Fuel Cells. IEEE Trans. Ind. Electron. 2009, 56, 685–696. [Google Scholar] [CrossRef]
- Tang, X.; Wang, C.; Hu, Y.; Liu, Z.; Li, F. Adaptive Fuzzy PID Based on Granular Function for Proton Exchange Membrane Fuel Cell Oxygen Excess Ratio Control. Energies 2021, 14, 1140. [Google Scholar] [CrossRef]
- Ramos-Paja, C.; Spagnuolo, G.; Petrone, G.; Mamarelis, E. A perturbation strategy for fuel consumption minimization in polymer electrolyte membrane fuel cells: Analysis, Design and FPGA implementation. Appl. Energy 2014, 119, 21–32. [Google Scholar] [CrossRef]
- Thounthong, P.; Mungporn, P.; Pierfederici, S.; Guilbert, D.; Takorabet, N.; Nahid-Mobarakeh, B.; Hu, Y.; Bizon, N.; Huangfu, Y.; Kumam, P.; et al. Robust Hamiltonian Energy Control Based on Lyapunov Function for Four-Phase Parallel Fuel Cell Boost Converter for DC Microgrid Applications. IEEE Trans. Sustain. Energy 2021, 12, 1500–1511. [Google Scholar] [CrossRef]
- Thounthong, P. Port–Hamiltonian Formulation of Adaptive PI Controller for Constant Power Load Stability Issue: Case Study for Multiphase Fuel Cell Converters. In Proceedings of the 2021 9th International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 10–12 March 2021. [Google Scholar]
- Cupelli, M.; Gurumurthy, S.; Bhanderi, S.; Yang, Z.; Joebges, P.; Monti, A.; De Doncker, R. Port Controlled Hamiltonian Modeling and IDA-PBC Control of Dual Active Bridge Converters for DC Microgrids. IEEE Trans. Ind. Electron. 2019, 66, 9065–9075. [Google Scholar] [CrossRef]
- Pang, S.; Nahid-Mobarakeh, B.; Hashjin, S.; Pierfederici, S.; Martin, J.; Liu, Y.; Huangfu, Y.; Luo, G.; Gao, F. Stability Improvement of Cascaded Power Conversion Systems Based on Hamiltonian Energy Control Theory. IEEE Trans. Ind. Appl. 2021, 57, 1081–1093. [Google Scholar] [CrossRef]
- Montoya, O.; Garces, A.; Avila-Becerril, S.; Espinosa-Perez, G.; Serra, F. Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1212–1216. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, W.; Hui, Q. Power System Stabilization Using Energy-Dissipating Hybrid Control. IEEE Trans. Power Syst. 2019, 34, 215–224. [Google Scholar] [CrossRef]
- Harnefors, L.; Finger, R.; Wang, X.; Bai, H.; Blaabjerg, F. VSC Input-Admittance Modeling and Analysis above the Nyquist Frequency for Passivity-Based Stability Assessment. IEEE Trans. Ind. Electron. 2017, 64, 6362–6370. [Google Scholar] [CrossRef]
- Harnefors, L.; Yepes, A.; Vidal, A.; Doval-Gandoy, J. Passivity-Based Controller Design of Grid-Connected VSCs for Prevention of Electrical Resonance Instability. IEEE Trans. Ind. Electron. 2015, 62, 702–710. [Google Scholar] [CrossRef]
- Sriprang, S.; Nahid-Mobarakeh, B.; Takorabet, N.; Pierfederici, S.; Bizon, N.; Kuman, P.; Thounthong, P. Permanent Magnet Synchronous Motor Dynamic Modeling with State Observer-based Parameter Estimation for AC Servomotor Drive Application. Appl. Sci. Eng. Prog. 2019, 12. [Google Scholar] [CrossRef]
- Sriprang, S.; Nahid-Mobarakeh, B.; Takorabet, N.; Pierfederici, S.; Kumam, P.; Bizon, N.; Taghavi, N.; Vahedi, A.; Mungporn, P.; Thounthong, P. Design and control of permanent magnet assisted synchronous reluctance motor with copper loss minimization using MTPA. J. Electr. Eng. 2020, 71, 11–19. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
vFC | Nominal input FC voltage | 50 V |
vC | DC bus voltage | 110 V |
L = L1 = L2 | Inductance | 200 μH |
rL = rL1 = rL2 | Resistance ESRs | 0.1 Ω |
CB | Total dc bus capacitance | 500 μF |
S1 = S2 | MOSFET (IXFN90N85X) | 850 V, 90 A |
fS | Switching frequency | 25 kHz |
Symbol | Value/Unit |
---|---|
vCd | 110 V |
KR | 0.5 |
KIV | 120 |
KII | 20 |
Simulation Results | Experimental Result | |
---|---|---|
Settling time tst | ≈10 ms | ≈10 ms |
Undershoot voltage vC | 6 V | 8 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thounthong, P.; Mungporn, P.; Nahid-Mobarakeh, B.; Bizon, N.; Pierfederici, S.; Guilbert, D. Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter. Sustainability 2021, 13, 8093. https://doi.org/10.3390/su13148093
Thounthong P, Mungporn P, Nahid-Mobarakeh B, Bizon N, Pierfederici S, Guilbert D. Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter. Sustainability. 2021; 13(14):8093. https://doi.org/10.3390/su13148093
Chicago/Turabian StyleThounthong, Phatiphat, Pongsiri Mungporn, Babak Nahid-Mobarakeh, Nicu Bizon, Serge Pierfederici, and Damien Guilbert. 2021. "Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter" Sustainability 13, no. 14: 8093. https://doi.org/10.3390/su13148093
APA StyleThounthong, P., Mungporn, P., Nahid-Mobarakeh, B., Bizon, N., Pierfederici, S., & Guilbert, D. (2021). Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter. Sustainability, 13(14), 8093. https://doi.org/10.3390/su13148093