Parametric Design and Comfort Optimization of Dynamic Shading Structures
Abstract
:1. Introduction
1.1. Benchmarks of Outdoor Thermal Comfort
1.2. Benchmarks of Optimization Design
2. The Study Area
3. Methods
3.1. Parametric Modelling of the Dynamic Shading Structures
- Eight ‘component units’ that form up the dynamic shading. Each unit is triangular shaped with specific dimensions as Figure 4 depicts. Then, six folding axes (80°, 2 × 90°, 2 × 45°, and 25°) are set to allow the structure to bend.
- A vertical axis was used at the center point of the basis structure to allow the entire shading to rotate 360°.
3.2. Simulation of Environmental Parameters
3.3. Shape Optimization with Evolutionary Algorithms
- Maximize the shaded area within a ground area of 144 m2. This area was pondered from the shaded area produced during winter solstices, which is expected to be the biggest throughout the year (Figure 5).
- Minimize the UTCI (°C) within the shaded area. Proper UTCI values are considered according to the previous step (Section 3.2). Then, the ‘condition of person’ is derived from the UTCI stress categories. To better understand the thermal conditions under the shadings, the grid area of 144 m2 was subdivided into modules of 10 cm × 10 cm. At the center of each module, the UTCI value (°C) was calculated. Then, the resulting UTCI degrees were classified according to the UTCI ranges (Table 1) and their representative modules were stored in subareas corresponding to the UTCI stress categories (Table 1). Lastly, the squared meters of each subarea was reported. In addition, all UTCI values were averaged to obtain a representative value for the entire grid area when no shadings were placed on site. This average value allows further comparison between the outdoor thermal conditions with and without shadings.
- First, an optimization was performed with a population size of 20 individuals per generation with a total of 50 generations. As a result, a total population size of 1000 genomes was considered. The first exercise took approximately 24 h.
- Second, an optimization was performed with a population size of 10 individuals per generation with a total of 50 generations. From here, a total population size of 500 genomes was evaluated. The second exercise took approximately 14 h.
3.4. Environmental Verification of the Optimal Solutions
4. Results
4.1. Fitness Values and Optimization Results
- No thermal stress (+9 to +26)
- Slight heat stress (+26 to +28)
- Moderate heat stress (+28 to +32)
- Strong heat stress (+32 to +38)
4.2. Verification of Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alijani, S.; Pourahmad, A.; Nejad, H.H.; Ziari, K.; Sodoudi, S. A new approach of urban livability in Tehran: Thermal comfort as a primitive indicator. Case study, district 22. Urban Clim. 2020, 33, 100656. [Google Scholar] [CrossRef]
- Nazarian, N.; Acero, J.A.; Norford, L. Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design. Build. Environ. 2019, 155, 145–160. [Google Scholar] [CrossRef]
- Manchanda, S.; Steemers, K. Environmental Control and the Creation of Well-Being; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Katzschner, L. Open Space Design Strategies Based on Thermal Confort Analysis. In Proceedings of the PLEA Conference, Eindhoven, The Netherlands, 19–21 September 2004; pp. 47–52. [Google Scholar]
- Kashef, M. Urban livability across disciplinary and professional boundaries. Front. Arch. Res. 2016, 5, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Borja, J.; Muxí, Z. El Espacio Público: Ciudad y Ciudadanía; Barcelona, D., Ed.; First; Electa Barcelona: Barcelona, Spanish, 2003; ISBN 84-8156-343-9. [Google Scholar]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- Thorsson, S.; Lindqvist, M.; Lindqvist, S. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int. J. Biometeorol. 2004, 48, 149–156. [Google Scholar] [CrossRef]
- Ng, E.; Cheng, V. Urban human thermal comfort in hot and humid Hong Kong. Energy Build. 2012, 55, 51–65. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W.; Liu, K.; Chen, Q. A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 2020, 742, 140092. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Jusuf, S.K. Thermal comfort in outdoor urban spaces in Singapore. Build. Environ. 2013, 59, 426–435. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Tahbaz, M. Primary stage of solar energy use in architecture-Shadow control. J. Central South Univ. 2012, 19, 755–763. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Mackey, C.; Roudsari, M.S.; Samaras, P. ComfortCover: A Novel Method for the Design of Outdoor Shades. In SimAUD 15: Proceedings of the Symposium on Simulation for Architecture and Urban Design; Society for Computer Simulation International: Alexandria, Virginia, 2015; pp. 111–118. [Google Scholar]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, R. Urban Climate in the Tropics: Rethinking, Planning and Design Opportunities; Imperial College Press: London, UK, 2016; ISBN 978-1783268405. [Google Scholar]
- Heng, S.L.; Chow, W.T.L. How ‘hot’ is too hot? Evaluating acceptable outdoor thermal comfort ranges in an equatorial urban park. Int. J. Biometeorol. 2019, 63, 801–816. [Google Scholar] [CrossRef] [Green Version]
- Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020, 32, 12363–12379. [Google Scholar] [CrossRef] [Green Version]
- Caetano, I.; Santos, L.; Leitão, A. Computational design in architecture: Defining parametric, generative, and algorithmic design. Front. Arch. Res. 2020, 9, 287–300. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor thermal comfort. Front. Biosci. 2011, 3, 1552–1568. [Google Scholar] [CrossRef] [PubMed]
- Alfano, F.R.D.; Palella, B.I.; Riccio, G. Thermal Environment Assessment Reliability Using Temperature —Humidity Indices. Ind. Health 2011, 49, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Hill, M., Ed.; McGraw Hill: New York, NY, USA, 1970. [Google Scholar]
- Jendritzky, G.; De Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2011, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. A Standard Predictive Index of Human Response to the Thermal Environment. ASHRAE Trans. 1986, 92, 85–101. [Google Scholar]
- Höppe, P.R. Heat balance modelling. Cell. Mol. Life Sci. 1993, 49, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2011, 56, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bröde, P.; Krüger, E.; Rossi, F.A.; Fiala, D. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil. Int. J. Biometeorol. 2011, 56, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Broede, P.; Fiala, D.; Blazejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2011, 56, 481–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A. Universal Thermal Climate Index; UTCI, 2017; Available online: http://www.utci.org/ (accessed on 12 April 2021).
- Roudsari, M.S. Ladybug: A Plugin for Environmental Analysis (GPL). Available online: https://github.com/mostaphaRoudsari/ladybug (accessed on 10 May 2021).
- Roudsari, M.S. Outdoor Comfort Calculator—Source Code. In Ladybug Primer; Available online: https://mostapharoudsari.gitbooks.io/ladybug-primer/content/text/components/Outdoor_Comfort_Calculator.html (accessed on 16 June 2021).
- Alharthi, M.; Sharples, S. Modelling and Testing Extendable Shading Devices to Mitigate Thermal Discomfort in a Hot Arid Climate. In Proceedings of the 35th PLEA 2020 Planning Post Carbon Cities, A Coruña, Spain, 1–3 September 2020; pp. 654–659. [Google Scholar] [CrossRef]
- Gane, V. Parametric Design—A Paradigm Shift? Master’s Thesis, Massachusetts Institute of Technology, Department of Architecture, Boston, MA, USA, 2004. [Google Scholar]
- Østergård, T.; Jensen, R.L.; Maagaard, S.E. Building simulations supporting decision making in early design—A review. Renew. Sustain. Energy Rev. 2016, 61, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zmeureanu, R.; Rivard, H. Applying multi-objective genetic algorithms in green building design optimization. Build. Environ. 2005, 40, 1512–1525. [Google Scholar] [CrossRef]
- Day, M. Rhino Grasshopper. AEC Magazine, X3DMedia. 2010. Available online: https://aecmag.com/news/rhino-grasshopper/ (accessed on 12 April 2021).
- Davidson, S. Grasshopper: Algorithmic Modelling for Rhino. 2019. Available online: http://www.grasshopper3d.com (accessed on 21 January 2021).
- Roudsari, M.S.; Pak, M.; Smith, A. Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. In Proceedings of the 13th Conference of International Building Peformance Simulation Association, Chambery, France, 26–28 August 2013; pp. 3128–3135. [Google Scholar]
- Fuller, D.; McNeil, A. Radiance—A Validated Lighting Simulation Tool—Radsite. Available online: https://www.radiance-online.org/ (accessed on 12 April 2021).
- U.S. Department of Energy (DOE). EnergyPlus Energy Simulation Software Version 9.3.0. 2020. Available online: https://energyplus.net/downloads (accessed on 12 April 2021).
- Mackey, C.; Galanos, T.; Norford, L.; Roudsari, M. Wind, Sun, Surface Temperature, and Heat Island: Critical Variables for High-Resolution Outdoor Thermal Comfort. In Proceedings of the 15th International Building Performance Simulation Association (IBPSA) Conferece, San Francisco, CA, USA, 7–9 August 2017; pp. 985–993. [Google Scholar]
- Elwy, I.; Ibrahim, Y.; Fahmy, M.; Mahdy, M. Outdoor microclimatic validation for hybrid simulation workflow in hot arid climates against ENVI-met and field measurements. Energy Procedia 2018, 153, 29–34. [Google Scholar] [CrossRef]
- Makki, M.; Showkatbakhsh, M. An Evolutionary Multi-Objective Optimization and Analytic Engine for Grasshopper 3D. Available online: https://www.wallacei.com/research (accessed on 10 May 2021).
- Ali, A.K.; Song, H.; Lee, O.J.; Kim, E.S.; Ali, H.H.M. Multi-Agent-Based Urban Vegetation Design. Int. J. Environ. Res. Public Health 2020, 17, 3075. [Google Scholar] [CrossRef]
- Navarro-Mateu, D.; Makki, M.; Cocho-Bermejo, A. Urban-Tissue Optimization through Evolutionary Computation. Mathematics 2018, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Remesar, A. New Urban Decorum? Aesthetics To and Fro. In Aesthetic Energy of the City; Gralińska-Toborek, A., Kazimierska-Jerzyk, W., Eds.; Wydawnictwo Uniwersytetu Łódzkiego (Łódź University Press): Lodz, Poland, 2016; ISBN 978-83-8088-152-5. [Google Scholar]
- Gonzalez, E.; Chi, D.A.; Gutierrez, E.; Valdivia, R. Performative Shading Structures for Public Spaces Applied in San Andrés Cholula, México. In Proceedings of the International Association for Shell and Spatial Structures (IASS) Annual Symposium, Barcelona, Spain, 7–10 October 2019; pp. 1295–1932. [Google Scholar]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Hirashima, S.Q.D.S.; de Assis, E.S.; Nikolopoulou, M. Daytime thermal comfort in urban spaces: A field study in Brazil. Build. Environ. 2016, 107, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Oropeza-Perez, I.; Petzold-Rodriguez, A.H.; Bonilla-Lopez, C. Adaptive thermal comfort in the main Mexican climate conditions with and without passive cooling. Energy Build. 2017, 145, 251–258. [Google Scholar] [CrossRef]
- Arens, E.; Hoyt, T.; Zhou, X.; Huang, L.; Zhang, H.; Schiavon, S. Modeling the comfort effects of short-wave solar radiation indoors. Build. Environ. 2015, 88, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Arens, E.A.; Gonzalez, R.; Berglund, L. Thermal Comfort under an Extended Range of Environmental Conditions. ASHRAE Trans. 1986, 92, 18–26. [Google Scholar]
- Makki, M.; Showkatbakhsh, M.; Tabony, A.; Weinstock, M. Evolutionary algorithms for generating urban morphology: Variations and multiple objectives. Int. J. Arch. Comput. 2019, 17, 5–35. [Google Scholar] [CrossRef]
- Makki, M.; Showkatbakhsh, M.; Song, Y. Wallacei Primer 2.0. 2019. Available online: https://www.wallacei.com/ (accessed on 12 April 2021).
UTCI (°C) Range | Stress Category |
---|---|
>+46 | Extreme heat stress |
+38 to +46 | Very strong heat stress |
+32 to +38 | Strong heat stress |
+26 to +32 | Moderate heat stress |
+9 to +26 | No thermal stress |
+9 to 0 | Slight cold stress |
0 to −13 | Moderate cold stress |
−13 to −27 | Strong cold stress |
−27 to −40 | Very strong cold stress |
<−40 | Extreme cold stress |
Integer Value | UTCI (°C) | Condition of Person | |
---|---|---|---|
+3 | >+32 | Strong heat stress | Potential public health hazard with higher-than-normal mortality rates |
+2 | +28 to +32 | Moderate heat stress | Hot but no public health hazard |
+1 | +26 to +28 | Slight heat stress | Warm but comfortable for short periods of time |
0 | +9 to +26 | No thermal stress | Comfortable conditions |
−1 | +9 to 0 | Slight cold stress | Cool but comfortable for short periods of time |
−2 | 0 to −13 | Moderate cold stress | Cold but no public health hazard |
−3 | <−13 | Strong cold stress | Potential public health hazard with higher-than-normal mortality rates |
Date | Hour | Altitude | Azimuth | Sun Position |
---|---|---|---|---|
21 December | 8 | 19.31 | 125.90 | Minimum inclination throughout the year |
12 | 45.39 | 184.64 | ||
16 | 13.82 | 237.76 | ||
21 June | 8 | 37.22 | 75.93 | Maximum inclination throughout the year |
12 | 86.56 | 314.79 | ||
16 | 32.42 | 285.10 |
Population | Fitness Values | UTCI (Stress Category) | ||||||
---|---|---|---|---|---|---|---|---|
Day & Hour | Generation | Genoma | Shaded area (m2) | Average UTCI (°C)— Unshaded Area | Shaded Area | |||
No Thermal Stress (m2) | Slight Heat Stress (m2) | Moderate Heat Stress (m2) UTCI (°C) | Strong Heat Stress (m2) UTCI (°C) | |||||
21 June 8 h | 49 | 0 | 18.02 | 37.0 | 0 | 0 | 10.7 | 7.4 |
49 | 1 | 17.94 | 37.0 | 0 | 0 | 10.8 | 7.4 | |
49 | 2 | 18.18 | 37.0 | 0 | 0 | 10.4 | 7.8 | |
49 | 3 | 18 | 37.0 | 0 | 0 | 10.7 | 7.3 | |
49 | 4 | 17.9 | 37.0 | 0 | 0 | 10.9 30.6 | 7.0 37.0 | |
49 | 5 | 17.94 | 37.0 | 0 | 0 | 10.8 | 7.1 | |
49 | 6 | 18.1 | 37.0 | 0 | 0 | 10.5 | 7.6 | |
47 | 2 | 18.18 | 37.0 | 0 | 0 | 10.4 | 7.8 | |
48 | 4 | 17.9 | 37.0 | 0 | 0 | 10.9 | 7.0 | |
21 June 12 h | 49 | 0 | 9.13 | 41.5 | 0 | 0 | 7.8 30.2 | 1.4 39.2 |
49 | 1 | 9.34 | 41.5 | 0 | 0 | 7.5 | 1.4 | |
49 | 2 | 9.26 | 41.5 | 0 | 0 | 7.8 | 1.3 | |
49 | 3 | 9.28 | 41.5 | 0 | 0 | 7.8 | 1.3 | |
49 | 4 | 9.22 | 41.5 | 0 | 0 | 7.8 | 1.3 | |
49 | 5 | 9.31 | 41.5 | 0 | 0 | 7.5 | 1.5 | |
49 | 6 | 9.3 | 41.5 | 0 | 0 | 7.6 | 1.5 | |
49 | 7 | 9.23 | 41.5 | 0 | 0 | 7.8 | 1.4 | |
49 | 8 | 9.28 | 41.5 | 0 | 0 | 7.8 | 1.3 | |
49 | 9 | 9.31 | 41.5 | 0 | 0 | 7.5 | 1.5 | |
47 | 1 | 9.34 | 41.5 | 0 | 0 | 7.5 | 1.4 | |
48 | 1 | 9.13 | 41.5 | 0 | 0 | 7.8 | 1.4 | |
21 June 16 h | 49 | 0 | 19.92 | 34.9 | 0 | 0 | 14.6 26.7 | 5.3 32.0 |
49 | 1 | 20.21 | 34.9 | 0 | 0 | 14.9 | 5.3 | |
49 | 2 | 20.05 | 34.9 | 0 | 0 | 14.7 | 5.4 | |
49 | 3 | 20.06 | 34.9 | 0 | 0 | 14.7 | 5.4 | |
49 | 4 | 20.18 | 34.9 | 0 | 0 | 14.8 | 5.4 | |
49 | 5 | 20.18 | 34.9 | 0 | 0 | 14.8 | 5.4 | |
49 | 6 | 20.21 | 34.9 | 0 | 0 | 14.9 | 5.3 | |
49 | 7 | 20.21 | 34.9 | 0 | 0 | 14.9 | 5.3 | |
49 | 8 | 20.02 | 34.9 | 0 | 0 | 14.7 | 5.4 | |
48 | 0 | 19.92 | 34.9 | 0 | 0 | 14.6 | 5.3 | |
48 | 1 | 20.21 | 34.9 | 0 | 0 | 14.9 | 5.3 |
Population | Fitness Values | UTCI (Stress Category) | ||||||
---|---|---|---|---|---|---|---|---|
Day & Hour | Generation | Genoma | Shaded Area (m2) | Average UTCI (°C)— Unshaded Area | Shaded Area | |||
No Thermal Stress (m2) UTCI (°C) | Slight Heat Stress (m2) UTCI (°C) | Moderate Heat Stress (m2) UTCI (°C) | Strong Heat Stress (m2) | |||||
21 December 8 h | 49 | 0 | 25.37 | 28.1 | 15.3 | 10.1 | 0 | 0 |
49 | 1 | 25.37 | 28.1 | 15.3 24.7 | 10.1 27.1 | 0 | 0 | |
49 | 2 | 25.31 | 28.1 | 15.4 | 9.9 | 0 | 0 | |
49 | 3 | 24.56 | 28.1 | 16.2 | 8.4 | 0 | 0 | |
49 | 4 | 25.19 | 28.1 | 15.6 | 9.6 | 0 | 0 | |
49 | 5 | 24.76 | 28.1 | 15.9 | 8.9 | 0 | 0 | |
49 | 6 | 25.32 | 28.1 | 15.5 | 9.8 | 0 | 0 | |
49 | 7 | 25.31 | 28.1 | 15.4 | 9.9 | 0 | 0 | |
49 | 8 | 25.37 | 28.1 | 15.3 | 10.1 | 0 | 0 | |
46 | 6 | 25.37 | 28.1 | 15.31 | 10.1 | 0 | 0 | |
47 | 8 | 24.56 | 28.1 | 16.2 | 8.4 | 0 | 0 | |
21 December 12 h | 49 | 0 | 15.63 | 33.6 | 0 | 10.4 26.7 | 5.2 30.0 | 0 |
49 | 1 | 15.69 | 33.6 | 0 | 10.2 | 5.5 | 0 | |
49 | 2 | 15.64 | 33.6 | 0 | 10.4 | 5.2 | 0 | |
47 | 4 | 15.63 | 33.6 | 0 | 10.4 | 5.2 | 0 | |
48 | 1 | 15.69 | 33.6 | 0 | 10.2 | 5.5 | 0 | |
21 December 16 h | 49 | 0 | 27.87 | 27.0 | 22.4 | 5.4 | 0 | 0 |
49 | 1 | 27.82 | 27.0 | 22.5 | 5.4 | 0 | 0 | |
49 | 2 | 27.79 | 27.0 | 22.4 24.8 | 5.4 26.0 | 0 | 0 | |
49 | 3 | 27.79 | 27.0 | 22.5 | 5.3 | 0 | 0 | |
49 | 4 | 27.84 | 27.0 | 22.5 | 5.4 | 0 | 0 | |
49 | 5 | 27.8 | 27.0 | 22.5 | 5.3 | 0 | 0 | |
49 | 6 | 27.76 | 27.0 | 22.4 | 5.4 | 0 | 0 | |
49 | 7 | 27.87 | 27.0 | 22.4 | 5.4 | 0 | 0 | |
49 | 8 | 27.8 | 27.0 | 22.4 | 5.4 | 0 | 0 | |
45 | 0 | 27.73 | 27.0 | 22.4 | 5.4 | 0 | 0 | |
48 | 0 | 27.87 | 27.0 | 22.4 | 5.4 | 0 | 0 | |
49 | 0 | 25.37 | 28.1 | 22.5 | 5.3 | 0 | 0 | |
49 | 1 | 25.37 | 28.1 | 22.5 | 5.4 | 0 | 0 | |
49 | 2 | 25.31 | 28.1 | 22.5 | 5.3 | 0 | 0 | |
49 | 3 | 24.56 | 28.1 | 22.4 | 5.4 | 0 | 0 | |
49 | 4 | 25.19 | 28.1 | 22.4 | 5.4 | 0 | 0 |
Population | Fitness Values | ||||
---|---|---|---|---|---|
Day/Hour | Generation | Genoma | Shadows (m2) | Average UTCI (°C)—Shaded Area | Average UTCI (°C)—Unshaded Area |
21 June 8 h | 49 | 4 | 17.9 | 33.1 | 37.0 |
21 June 12 h | 49 | 0 | 9.13 | 34.1 | 41. 5 |
21 June 16 h | 49 | 0 | 19.92 | 31.8 | 34.9 |
21 December 8 h | 49 | 1 | 25.37 | 26.7 | 28.1 |
21 December 12 h | 49 | 0 | 15.63 | 30.1 | 33.6 |
21 December 16 h | 49 | 2 | 27.79 | 25.0 | 27.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, D.A.; González M., E.; Valdivia, R.; Gutiérrez J., E. Parametric Design and Comfort Optimization of Dynamic Shading Structures. Sustainability 2021, 13, 7670. https://doi.org/10.3390/su13147670
Chi DA, González M. E, Valdivia R, Gutiérrez J. E. Parametric Design and Comfort Optimization of Dynamic Shading Structures. Sustainability. 2021; 13(14):7670. https://doi.org/10.3390/su13147670
Chicago/Turabian StyleChi, Doris A., Edwin González M., Renato Valdivia, and Eduardo Gutiérrez J. 2021. "Parametric Design and Comfort Optimization of Dynamic Shading Structures" Sustainability 13, no. 14: 7670. https://doi.org/10.3390/su13147670
APA StyleChi, D. A., González M., E., Valdivia, R., & Gutiérrez J., E. (2021). Parametric Design and Comfort Optimization of Dynamic Shading Structures. Sustainability, 13(14), 7670. https://doi.org/10.3390/su13147670