Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Substrate Preparation
2.3. Experimental Procedure
2.4. Kinetics Model of Biogas Production Rate
3. Results
3.1. Effects of NaOH Pretreatment on the Biogas Production
3.2. Effects of Microbial Consortium Addition to Sago Solid Waste on Biogas
3.3. Effect of Sago Solid Waste Size on Biogas Production
3.4. Kinetics Model of Biogas Production Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Al-Zuhairi, F.; Micoli, L.; Florio, C.; Ausiello, A.; Turco, M.; Pirozzi, D.; Toscano, G. Anaerobic co-digestion of municipal solid wastes with giant reed under mesophilic conditions. J. Mater. Cycles Waste Manag. 2019, 21, 1332–1340. [Google Scholar] [CrossRef]
- Jonsson, S.; Westman, J. Cryogenic Biogas Upgrading Using Plate Heat Exchangers. Master’s Thesis, Department of Energy and Environment, Division of Energy Technology, Chalmers Universityof Technology, Göteborg, Sweden, 2011; p. 76. [Google Scholar]
- Yavini, T.D.; Silas, K.; Grema, M.B.; Luria, J.A. Kinetic study of agricultural wastes conversion to biogas using cow dung/poultry droppings as inoculums. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 46–51. [Google Scholar] [CrossRef]
- Putri, D.A.; Saputro, R.R.; Budiyono, B. Biogas Production from cow manure. Int. J. Renew. Energy Dev. 2012, 1, 61–64. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, D.; Li, G.; Lu, J.; Li, S. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production. Bioresour. Technol. 2016, 217, 50–55. [Google Scholar] [CrossRef]
- Dobre, P.; Nicolae, F.; Matei, F. Main factors affecting biogas production—An overview. Rom. Biotechnol. Lett. 2014, 19, 9283–9296. [Google Scholar]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, S.; Benyounis, K.Y.; Olabi, A.G. Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland. Energy 2013, 61, 27–33. [Google Scholar] [CrossRef]
- Kim, I.; Han, J.I. Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 2012, 46, 210–217. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Z.; Zhang, R.; Li, M.; Lei, Z.; Utsumi, M.; Sugiura, N. Methane production from rice straw pretreated by a mixture of acetic–propionic acid. Bioresour. Technol. 2010, 101, 990–994. [Google Scholar] [CrossRef]
- Brown, D.; Shi, J.; Li, Y. Comparison of Solid-State to Liquid Anaerobic Digestion of Lignocellulosic Feedstocks for Biogas Production. Bioresour. Technol. 2012, 124, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Heiske, S.; Jurgutis, L.; Kádár, Z. Evaluation of novel inoculation strategies for solid state anaerobic digestion of yam peelings in low-tech digesters. Energies 2015, 8, 1802–1816. [Google Scholar] [CrossRef] [Green Version]
- Sumardiono, S.; Widiasa, I.N.; Matin, H.H.A. Long term stability test of biogas production from cattle manure using rumen fluid as inoculum. Adv. Sci. Lett. 2018, 24, 9559–9562. [Google Scholar]
- Wicaksono, A.; Rahmawan, A.; Matin, H.H.A.; Wardani, L.G.K.; Kusworo, D.T.; Sumardiono, S. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste. MATEC Web. Conf. 2017, 101, 02011. [Google Scholar]
- Sumardiono, S.; Mardiani, D.T. The effect of microwave power and heating time pretreatment on biogas production from fresh and dried water hyacinth (Eichhornia crassipes). AIP Conf. Proc. 2015, 1699, 050018. [Google Scholar]
- Sumardiono, S.; Riyanta, A.B.; Matin, H.H.A.; Kusworo, D.T.; Jos, B.; Budiyono. Increasing biogas production from sugar cane baggase by anaerobic co-digestion with animal manure. MATEC Web. Conf. 2017, 101, 02014. [Google Scholar] [CrossRef] [Green Version]
- Prasetyo, T.; Sumardiono, S.; Aji, H.A.; Pratama, A.Y. Effect of C/N Ratio and pH on biogas production from industrial cassava starch wastewater through anaerobic process. Adv. Sci. Lett. 2017, 23, 5810–5814. [Google Scholar] [CrossRef]
- Nopharatana, A.; Pullammanappallil, P.C.; Clarke, W.P. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag. 2007, 27, 595–603. [Google Scholar] [CrossRef]
- Adiga, S.; Ramya, R.; Shankar, B.B.; Patil, J.H.; Geetha, C.R. Kinetics of anaerobic digestion of Water Hyacinth, poultry litter, cow manure and primary sludge: A comparative study. Int. Proc. Chem. Biol. Environ. Eng. 2012, 42, 73–78. [Google Scholar]
- Yono, B.; Syaichurrozi, I.; Sumardiono, S. Biogas production kinetic from vinasse waste in batch mode anaerobic digestion. World Appl. Sci. J. 2013, 26, 1464–1472. [Google Scholar]
- He, Y.; Pang, Y.; Liu, Y.; Li, X.; Wang, K. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 2008, 22, 2775–2781. [Google Scholar] [CrossRef]
- He, Y.; Pang, Y.; Li, X.; Liu, Y.; Li, R.; Zheng, M. Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production. Energy Fuels 2009, 23, 2220–2224. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Sumardiono, S.; Matin, H.H.A.; Widiasa, I.N. Optimization of Total Solid (TS), temperature, and rumen fluid content during biogas production from cattle manure using response surface methodology. Adv. Sci. Lett. 2018, 24, 9791–9793. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- You, Z.; Pan, S.Y.; Sun, N.; Kim, H.; Chiang, P.C. Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. J. Clean. Prod. 2019, 238, 117813. [Google Scholar] [CrossRef]
- Chen, G.; Chang, Z.; Zheng, Z. Feasibility of NaOH-treatment for improving biogas production of digested Spartina alterniflora. Int. Biodeterior. Biodegrad. 2014, 93, 131–137. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Z.; Zhang, R. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2009, 2, 51. [Google Scholar]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talebnia, F.; Karakashev, D.; Angelidaki, I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 2010, 101, 4744–4753. [Google Scholar] [CrossRef] [PubMed]
- Wardhani, D.H.; Cahyono, H.; Dwinanda, M.F.H.; Nabila, P.R.; Aryanti, N.; Pangestuti, D.R. Effect of KOH as deacetylation agent on physicochemical properties of glucomannan. J. Phys. Conf. Ser. 2019, 1295, 012037. [Google Scholar] [CrossRef]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.I. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef] [PubMed]
- Berlin, A.; Balakshin, M.; Gilkes, N.; Kadla, J.; Maximenko, V.; Kubo, S.; Saddler, J. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J. Biotechnol. 2006, 125, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Rahikainen, J.L.; Martin-Sampedro, R.; Heikkinen, H.; Rovio, S.; Marjamaa, K.; Tamminen, T.; Rojas, O.J.; Kruus, K. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresour. Technol. 2013, 133, 270–278. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, C.; Wang, F.; Jia, H.; Wei, P.; Zhao, Y. Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment. RSC Adv. 2016, 6, 60187–60195. [Google Scholar] [CrossRef]
- Tuesorn, S.; Wongwilaiwalin, S.; Champreda, V.; Leethochawalit, M.; Nopharatana, A.; Techkarnjanaruk, S.; Chaiprasert, P. Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresour. Technol. 2013, 144, 579–586. [Google Scholar] [CrossRef]
- Yuan, X.; Cao, Y.; Li, J.; Wen, B.; Zhu, W.; Wang, X.; Cui, Z. Effect of pretreatment by a microbial consortium on methane production of waste paper and cardboard. Bioresour. Technol. 2012, 118, 281–288. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Tian, M.; Mao, Z.; Tang, L.; Zhang, J.; Zhang, H. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour. Technol. 2011, 102, 8899–8906. [Google Scholar] [CrossRef]
- Taniguchi, M.; Suzuki, H.; Watanabe, D.; Sakai, K.; Hoshino, K.; Tanaka, T. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 2005, 100, 637–643. [Google Scholar] [CrossRef]
- Kurakake, M.; Ide, N.; Komaki, T. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr. Microbiol. 2007, 54, 424–428. [Google Scholar] [CrossRef]
- Montgomery, L.F.R.; Bochmann, G. Pretreatment of Feedstock for Enhanced Biogas Production; IEA Bioenergy: Tulln, Austria, 2014; Available online: https://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/pretreatment_web.pdf (accessed on 7 January 2021).
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Sumardiono, S.; Sari, A.R.; Santoso, H.M.; Jos, B.; Pudjihastuti, I. Production of Biobuthanol from Various Lignocellulose Waste With Clostridium Acetobutylicum Bacteria Using ABE (acetone-buthanol-ethanol) Fermentation. AIP Conf. Proc. 2020, 2197, 030012. [Google Scholar]
- Li, H.; Saeed, A.; Jahan, M.S.; Ni, Y.; van Heiningen, A. Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production process. J. Wood Chem. Technol. 2010, 30, 48–60. [Google Scholar] [CrossRef]
- Syaichurrozi, I.; Sumardiono, S. Effect of total solid content to biogas production rate from Vinasse. Int. J. Eng. Trans. B 2014, 27, 177–184. [Google Scholar]
Digester Code | Size Substrate | Microbial Consortium (v/v) | NaOH (g/g TS) | Ratio of Sago Solid Waste and Rumen |
---|---|---|---|---|
C-1 | Coarse | - | - | 1:1 |
C-2 | Coarse | - | - | 2:1 |
C-1-N | Coarse | - | 4% | 1:1 |
C-2-N | Coarse | - | 4% | 2:1 |
C-1-M | Coarse | 5% | - | 1:1 |
C-2-M | Coarse | 5% | - | 2:1 |
C-1-N-M | Coarse | 5% | 4% | 1:1 |
C-2-N-M | Coarse | 5% | 4% | 2:1 |
F-1 | Fine | - | - | 1:1 |
F-2 | Fine | - | - | 2:1 |
F-1-N | Fine | - | 4% | 1:1 |
F-2-N | Fine | - | 4% | 2:1 |
F-1-M | Fine | 5% | - | 1:1 |
F-2-M | Fine | 5% | 2:1 | |
F-1-N-M | Fine | 5% | 4% | 1:1 |
F-2-N-M | Fine | 5% | 4% | 2:1 |
Digester Code | A (mL/g TS) | U (mL/g TS.Day) | λ (Day) |
---|---|---|---|
C-1 | 7.45 | 0.15 | 5.16 |
C-2 | 10.35 | 0.20 | 4.73 |
C-1-N | 14.17 | 0.22 | 8.02 |
C-2-N | 10.87 | 0.28 | 7.32 |
C-1-M | 13.79 | 0.26 | 8.27 |
C-2-M | 14.98 | 0.29 | 9.88 |
C-1-N-M | 16.03 | 0.30 | 10.95 |
C-2-N-M | 15.03 | 0.27 | 6.09 |
F-1 | 12.61 | 0.23 | 8.65 |
F-2 | 22.92 | 0.25 | 11.00 |
F-1-N | 16.50 | 0.29 | 8.57 |
F-2-N | 17.23 | 0.32 | 9.27 |
F-1-M | 14.81 | 0.33 | 2.56 |
F-2-M | 20.04 | 0.43 | 10.20 |
F-1-N-M | 29.18 | 0.47 | 12.07 |
F-2-N-M | 43.86 | 0.54 | 7.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumardiono, S.; Adisukmo, G.; Hanif, M.; Budiyono, B.; Cahyono, H. Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion. Sustainability 2021, 13, 7491. https://doi.org/10.3390/su13137491
Sumardiono S, Adisukmo G, Hanif M, Budiyono B, Cahyono H. Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion. Sustainability. 2021; 13(13):7491. https://doi.org/10.3390/su13137491
Chicago/Turabian StyleSumardiono, Siswo, Gebyar Adisukmo, Muthia Hanif, Budiyono Budiyono, and Heri Cahyono. 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion" Sustainability 13, no. 13: 7491. https://doi.org/10.3390/su13137491