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Abstract: Solid sago waste is a potential source of producing renewable energy in the form of biogas.
This study investigated the effects of solid sago waste particle size, biological pretreatment using a
microbial consortium of lignocelluloses, pretreatment with NaOH, and the ratio between solid sago
waste and cow rumen based on the biogas production rate. Several variations of these conditions
were used to achieve this. The anaerobic digestion process was conducted over two months at
30.42 ◦C ± 0.05 ◦C, and the biogas production rate was measured every two days. The 1:1 ratio
showed better results compared to the 2:1, because it allows the bacteria to achieve metabolic balance.
The highest cumulative biogas production (27.91 mL/g TS) was generated when the sago waste
underwent milling (±1 mm), pretreatment with 4% NaOH g/g TS, and treatment with microbial
consortium 5% v/v at a 1:1 ratio of solid sago waste to the rumen.

Keywords: anaerobic digestion; biogas; pretreatment; solid-state anaerobic digestion method; solid
sago waste

1. Introduction

Renewable energy sources, e.g., biogas, are alternatives to fossil fuels and are used
to overcome the energy crisis [1,2]. Biogas can be obtained from various organic wastes,
such as animal wastes (manures), various byproducts from human activities (sewage
sludge, wet market waste, and municipal solid waste), and plants (agricultural waste),
through anaerobic digestion in which the microorganisms degrade the organic matter in
four main steps hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The product
gas is then used as a renewable energy source [1–3]. Typically, biogas consists of methane
(CH4, 55–70%) and carbon dioxide (CO2, 30–45%) as well as some impurities, such as
H2S (0–0.5%), NH3 (0–0.05%), water vapor (1–5%), and N2 (0–5%) [4]. Biogas can be used
to produce heat and electricity or as a fuel for transportation after being subjected to a
special treatment such as the process of removing impurities and the process of increasing
heating value, causing high-quality biomethane and resulting in a significant reduction
in greenhouse gas emissions and other pollutants and reducing the dependence on fossil
fuels [1,5,6].

Solid sago waste is a readily available organic material that contains enough lignocel-
lulose as raw materials in biogas production. Co-digestion of different types of biomasses,
such as cattle dung with solid sago waste, offers great potential to increase the volume
of biogas. Co-digestion has many advantages, such as a C/N ratio optimization and
eliminates the accumulation of toxic compounds for microorganisms [6,7]. Additionally,
pretreatment can increase biogas productivity by removing lignin and hemicellulose, which
are difficult for microorganisms to digest. Several types of pretreatments, including physi-
cal; chemical; and biological pretreatments, can be used in biogas production [8]. Grinding
is the most common physical pretreatment [9]. Chemical pretreatments include alkali [10]
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and acid pretreatments [11]. Alternatively, biological pretreatment is conducted using
bacteria, fungi, or enzymes [8].

Two types of treatment methods are available to generate biogas from raw materials
containing lignocellulosic biomass: solid-state anaerobic digestion (SS-AD) or liquid anaer-
obic digestion (L-AD) [12]. SS-AD is used for raw materials with a high concentration of
solids, i.e., a total solid content of above 15%. Conversely, L-AD is used for raw materi-
als with solid concentrations between 0.5–15% [13]. SS-AD exhibits several advantages
compared to L-AD, such as smaller reactor volume, lower heating requirements, easy
handling of materials, and lower total parasitic energy. The SS-AD method was suitable for
biogas production using sago solid waste, which is characterized by its high lignocellulosic
biomass content. SS-AD practice offers an additional advantage, producing a granular
byproduct used as a fertilizer that can be easily handled and removed compared to the
L-AD byproducts [14,15].

Pretreatment can accelerate the slow process of lignocellulosic hydrolysis by anaerobic
digestion. Thus, using a combined physical, chemical, and biological pretreatment is
necessary to expedite and facilitate the process and enhance biogas productivity [16,17].
In the physical pretreatment of sago solid waste, the raw material size is decreased to
reduce the cellulose crystallinity to facilitate the enzymatic hydrolysis process [18]. In
chemical pretreatment, acids or bases are used under extreme conditions. Moreover,
biological treatment is conducted using microorganisms to process lignocellulose and
increase enzymatic hydrolysis [19]. In this study, physical pretreatment was conducted out
by sago waste grinding (±1 mm). The performance of the ground material was compared
to that of an unground material. Chemical pretreatment was conducted by adding NaOH,
and the performance of the pretreated material was compared to that of the untreated
one. Finally, biological treatment was performed using microbial consortium (cellulolytic,
ligninolytic, and proteolytic), and its effects were compared to a case involving no use
of microbial consortium. Additionally, the impact of the ratio (1:1 and 2:1) between sago
waste and rumen cattle solid waste was compared at a C/N ratio of 25 [20].

Therefore, the general aim of this study was to examine the production rate of biogas
from sago solid waste using physical, chemical, and biological pretreatments and to deter-
mine the optimum ratio between sago and rumen solid cattle wastes. The specific aim of
the study was to investigate the effects of physical, chemical, and biological pretreatments
on the production rate of biogas to compare the impact of the ratio of cow sago waste to
rumen solid waste on the volume of the biogas produced and to investigate the kinetics
reaction of biogas production from sago solid waste.

2. Materials and Methods
2.1. Materials

The solid sago waste used in this study was obtained from a sago plant located in
Plajan, Pakis Aji Jepara, Central Java, Indonesia. Microbial consortium (Decoprima) con-
taining several microorganisms, such as Trichoderma sp. (4.35 × 105 cfu/g); Streptomyces
sp. (1.16 × 106 cfu/g); and Geobacillus sp. (1.94 × 106 cfu/g), was used in addition to
analytical grade urea, NaOH, and HCl. A fresh rumen from a slaughterhouse in Semarang,
Central Java, Indonesia, was used as an inoculum.

2.2. Substrate Preparation

Table 1 shows the variables and the treatment of each variable. Coarse solid waste is
the solid waste without milling, and the waste in fine solid sago is produced by grinding it
to a size of 1 mm. For chemically treated samples, 4% NaOH g/g TS was added, and the
samples were soaked for 1 h. After that, for samples using biological treatment, the pH of
the pretreated substrate was neutralized by adding HCl, followed by the addition of the
microbial consortium (5% v/v). The solid waste of sago used for each sample weighs 200 g.



Sustainability 2021, 13, 7491 3 of 11

Table 1. Sample variants were used in this study.

Digester Code Size Substrate Microbial Consortium
(v/v)

NaOH
(g/g TS)

Ratio of
Sago Solid Waste

and Rumen

C-1 Coarse - - 1:1
C-2 Coarse - - 2:1

C-1-N Coarse - 4% 1:1
C-2-N Coarse - 4% 2:1
C-1-M Coarse 5% - 1:1
C-2-M Coarse 5% - 2:1

C-1-N-M Coarse 5% 4% 1:1
C-2-N-M Coarse 5% 4% 2:1

F-1 Fine - - 1:1
F-2 Fine - - 2:1

F-1-N Fine - 4% 1:1
F-2-N Fine - 4% 2:1
F-1-M Fine 5% - 1:1
F-2-M Fine 5% 2:1

F-1-N-M Fine 5% 4% 1:1
F-2-N-M Fine 5% 4% 2:1

2.3. Experimental Procedure

According to the predetermined ratio of solid waste of sago to the rumen, the pre-
treated substrate was mixed with cow rumen. Urea was then added until the volume
of the mixture reached 200 mL. The prepared samples were placed in 5-L anaerobic di-
gesters made from polyethylene bottles. Rubber plugs were used to tightly seal the reactors
equipped with valves for biogas measurement to achieve anaerobic conditions. The anaer-
obic digestion process was conducted over two months at 30.42 ◦C ± 0.05 ◦C, and the
biogas production rate was measured every two days for 60 days. The biogas volume was
measured by pouring the biogas into a water-filled glass utilizing Boyle’s law. The biogas
from the digester presses in all directions. Hence, by opening the valve of the digester, the
biogas directly flows into the glass measurement, and the volume difference is observed.

2.4. Kinetics Model of Biogas Production Rate

The nonlinear regression method was applied to determine the kinetics constant of
biogas production rate (U), maximum biogas production (A), and minimum time for biogas
production (λ). Furthermore, the Polymath 6.1 program was applied to solve numerical
calculations using nonlinear regression techniques.

Since the biogas production rate and specific growth rate of methanogenic microor-
ganisms were always proportional to the batch biodigester, the Gompertz equation was
applied [21]. This mathematical equation model represented a time series observation
model that considers the slowest of microbial growth at the start and end of the observation
period. The Gompertz Equation takes the following general form [22]:

P = A exp
{
− exp

[
Ue

A
(λ − t) + 1]

}
, (1)

P = Total biogas production (mL/g TS) at time t (days)
A = Maximum biogas production (ml/g TS)
U = The maximum biogas production rate constant (mL/g TS.day)
λ = Long lag phase (minimum time for biogas production) (days)
t = Cumulative time for biogas production (days)
e = Euler number (e = 2.71828)
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3. Results
3.1. Effects of NaOH Pretreatment on the Biogas Production

The effects of NaOH addition on the every two days and cumulative biogas produc-
tions were assessed in milled (refined) and unrefined sago solid wastes and the wastes
treated and untreated with the microbial consortium.

Figure 1a shows that the cumulative biogas volumes obtained from C-2-N and C-1-N
are higher than those obtained from C-2 and C-1. The most significant total volume of
biogas produced from crude sago solid waste with NaOH pretreatment at a ratio of 1:1 was
10.37 mL/g TS. Additionally, Figure 1b shows the positive effect of NaOH treatment on the
cumulative biogas volume. Every two days biogas production is presented in Figure 1c,d,
where on day 55 to day 60 simultaneously all variables show a decrease significantly
in biogas production. Figure 2a,b show that the presence of a microbial consortium as
the control variable with an independent variable in the form of NaOH addition has the
same cumulative biogas volume profile without a microbial consortium, which is equally
important. Furthermore, the highest volume rate of biogas produced from solid sago waste
(27.91 mL/g TS) was obtained by pretreatment with NaOH at a mixing ratio of 1:1.
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consortium with and without NaOH addition at sago solid waste: rumen mixing ratios of 2:1 and 1:1.

3.2. Effects of Microbial Consortium Addition to Sago Solid Waste on Biogas

The next step was mixing the pretreated sago with the cow rumen solid waste. Ad-
ditionally, the effect of the biological pretreatment on every two days and cumulative
biogas productions was assessed in fine and unground (coarse) sago solid waste treated
and untreated with NaOH.

Figure 3a shows that the cumulative biogas volumes from C-2-M and C-1-M were
higher than those from C-2 and C-1. The highest total biogas production was produced at
a 1:1 mixing ratio and the addition of microbial consortium was 12.26 mL/g TS. At this
point, the same phenomenon is observed in Figure 3b, which shows the positive effect
of microbial consortium on cumulative biogas production from fine sago solid waste. By
comparison, Figure 4a,b show that NaOH treatment did not affect the final cumulative
biogas volume. Additionally, the highest biogas volume (27.91 mL/g TS) in this case was
produced with the addition of microbial consortium at a 1:1 mixing ratio.
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Figure 4. Total biogas production of NaOH-treated (a) coarse and (b) fine sago solid wastes with and
without microbial consortium addition at sago solid waste: rumen ratios of 2:1 and 1:1.

3.3. Effect of Sago Solid Waste Size on Biogas Production

After mixing the physically, chemically, and microbially treated sago waste with cow
rumen, the effect of the waste size on the every two days and cumulative biogas production
was assessed in the ground (fine) and unground (coarse) sago waste at sago-to-rumen
mixing ratios of 1:1 and 2:1.

Figure 5a shows cumulative biogas volume generated using the following variations:
coarse sago at mixing ratios of 2:1 and 1:1 as well as fine sago at mixing ratios of 2:1 and
1:1. Summing up all four cases, the total volume of biogas began to increase from day 2 to
day 60. Additionally, the highest biogas production (11.87 mL/g TS) was obtained in the
case of fine sago at a mixing ratio of 1:1.
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Figure 5. Total production of biogas at sago solid waste: rumen ratios of 2:1 and 1:1 (a) without and
(b) with NaOH pretreatment.

Figure 5b shows the effect of NaOH addition on the cumulative biogas volume
produced using the following variations: coarse sago solid waste at mixing ratios of 2:1 and
1:1 as well as fine sago at mixing ratios of 2:1 and 1:1. Additionally, the highest total biogas
production (13.87 mL/g TS) among these was obtained using fine sago at a ratio of 1:1.

Figure 6a shows the effect of using microbial consortium on the cumulative biogas
volume generated using the following variations: coarse sago solid waste at mixing ratios
of 2:1 and 1:1 as well as fine sago at mixing ratios of 2:1 1:1. Further, the highest biogas
production (16.89 mL/g TS) was produced using fine sago at a mixing ratio of 1:1.
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Figure 6b shows the effect of adding both the NaOH and microbial consortium on the
total biogas volume generated using the same variations described above. Moreover, the
highest total biogas production (27.91 mL/g TS) was obtained using fine sago at a ratio of 1:1.

3.4. Kinetics Model of Biogas Production Rate

Table 2 shows the kinetics data of the digested waste obtained using a nonlinear
regression method (Gompertz equation).

Table 2. The kinetics data of the biogas production process obtained using the Gompertz equation 1.

Digester Code A
(mL/g TS)

U
(mL/g TS.Day) λ (Day)

C-1 7.45 0.15 5.16
C-2 10.35 0.20 4.73

C-1-N 14.17 0.22 8.02
C-2-N 10.87 0.28 7.32
C-1-M 13.79 0.26 8.27
C-2-M 14.98 0.29 9.88

C-1-N-M 16.03 0.30 10.95
C-2-N-M 15.03 0.27 6.09

F-1 12.61 0.23 8.65
F-2 22.92 0.25 11.00

F-1-N 16.50 0.29 8.57
F-2-N 17.23 0.32 9.27
F-1-M 14.81 0.33 2.56
F-2-M 20.04 0.43 10.20

F-1-N-M 29.18 0.47 12.07
F-2-N-M 43.86 0.54 7.11

1 A: maximum biogas production, U: maximum biogas production rate constant, and λ: long lag phase.

Table 2 shows that A ranged from 7.45 to 43.86 mL/g TS. The maximum value
(43.86 mL/g TS) was obtained in the experiment where physical pretreatment, the ad-
dition of microbial consortium, and NaOH addition were used at a 1:1 mixing ratio of sago
solid waste to the rumen.

The lowest U value (0.15 mL/g TS.day) was obtained without using a pretreatment at
a 2:1 mixing ratio of sago-to-rumen solid waste, whereas the highest U value (0.54 mL/g
TS.day) was obtained with the mixture that underwent physical, chemical, and biological
pretreatments at a 1:1 sago-to-rumen ratio.

The shortest (best) and longest (worst) λ, which is the time when the biogas is first
formed or increased [23], were obtained at 2 and 12 days, respectively. However, the former
was obtained with the mixtures that underwent only physical and biological pretreatment
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at a 2:1 ratio of sago-to-rumen ratio. In contrast, the latter was obtained with the mixture
that underwent all three types of pretreatments at the same sago-to-rumen ratio (2:1).

4. Discussion

Figures 1 and 2 show that the chemical pretreatment using NaOH can separate lignin,
hemicellulose, and cellulose, accelerating the microbial decomposition of lignocellulosic
biomass. Furthermore, it can reduce the degree of polymerization and crystallinity and de-
stroy the chains between lignin and other polymers [24–26]. At this time, NaOH molecules
enter the material and break down the lignin structure, which increases its solubility and
decreases its levels [27]. Therefore, the chemical pretreatment using NaOH is commonly
called the delignification process [28]. According to You et al. [29] and Chen et al. [30], the
addition of NaOH for pretreatment during biogas production causes the accumulative
biogas volume to increase.

The delignification process causes damage to the structure of lignin and releases
carbohydrate compounds [31]. Additionally, destroying the lignocellulosic content struc-
ture is one step to convert it into sugar compounds. Furthermore, the delignification
process can be used as a preliminary process to prepare the primary raw materials [32].
Thus, sago solid waste treated with NaOH produced more significant quantities of biogas
than untreated waste. NaOH pretreatment can significantly increase cellulose breakdown
and sugar degradation compared with acid pretreatment [33]. Pretreatment of lignocellu-
losic material with NaOH solution causes swelling, increased inner surface area, reduced
degree of polymerization, reduced crystallinity, separation of structural bonds between
carbohydrates and lignin, and breakdown of the lignin structure [34,35].

Figures 3 and 4 show that the cellulose is surrounded by hemicellulose and lignin
that act as barriers for cellulose, and hence destroying the structure by removing lignin
can enhance cellulose utilization [36,37]. Equally important, the intense bonding within
lignocellulose can be disturbed by eliminating most of the lignin, increasing the acces-
sibility of cellulose, which can be further enhanced by pretreatment with a microbial
consortium. This was proven by Zhong et al. [38], who used scanning electron microscope
analysis to examine wheat straw. Their study demonstrated that structural damage ac-
companied by an enlargement of the specific surface area can be achieved through this
pretreatment and that the structural disruption increases the accessibility of the remaining
cellulose (hemicellulose).

The existence of the microbial consortium in biogas production (Figure 4) can be
attributed to the microbial activity of the consortium species, including Streptomyces sp.,
Geobacillus sp., and Trichoderma mushroom [39]. At this point, the function of microorgan-
isms is assumed to be delignification, reduction in the degree of cellulose polymerization,
and hydrolysis of hemicellulose. The existence of microbial consortium accelerates the
degradation of cellulose, hemicellulose, and lignin into compounds required by biogas-
producing microorganisms, which increases biogas production [40,41]. In other words,
microbes can change the structure of components and increase enzymatic hydrolysis
because the added microorganisms can help the process of hydrolysis of cellulose into
glucose [42,43].

Furthermore, Figures 5 and 6 show that the biogas production using fine sago solid
waste was better than coarse sago. This can be attributed to the fact that physical pretreat-
ment enhances the enzymatic treatment, especially in lignocellulosic substrates [44]. At
this time, physical pretreatment is typically conducted to reduce the size of the substrate
by destroying its cell structure. This method aims to increase the biomass-specific surface
area, especially the size of the material, which affects its porosity during the delignification
process [45]. Additionally, decreasing the particle size breaks the long polymer chains into
shorter ones, facilitating the separation of lignin from cellulose bonds [46]. This can be
attributed to reducing the cellulose crystallinity and disrupting the lignin protective layer
caused by decreasing the particle size. Furthermore, this facilitates the hydrolysis process
and increases biogas production [47]. Besides, reducing sago solid waste size can increase
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the specific surface area and pore size and reduce the degree of cellulose polymerization
and crystallinity [32].

The findings given in Table 2 indicate that the physical (grinding), chemical (NaOH
addition), and biological (microbial consortium) pretreatments have a considerable effect
on the amount of biogas production owing to the degradation of lignin, cellulose, and
hemicellulose, which facilitates the hydrolysis of lignocellulosic biomass. In sago solid
waste with no pretreatment, the lowest A value was obtained at a 2:1 mixing ratio of sago-
to-rumen solid wastes. There was no process to speed up lignocellulose decomposition.
Moreover, these results of the lowest U value (Table 2) prove the roles of pretreatment and
the sago-to-rumen ratio in accelerating biogas production. The best results were obtained
at a 1:1 ratio.

In this study, the rate of the kinetics of the biogas production process was modeled
using the Gompertz equation. To conclude, the model’s predicted data were closely
correlated with the experimental data. Using physical (±1 mm grinding), chemical (NaOH
addition), and biological (microbial consortium addition) pretreatments resulted in the
maximum biogas production (U) and potential biogas production (A) from lignocellulosic
biomass compared to that obtained using no pretreatment. Additionally, the modification
of the Gompertz equation describes the correlation between the total biogas production
and residence time [48].

5. Conclusions

The highest cumulative biogas production (27.91 mL/g TS) was generated using
milling (±1 mm) of solid sago waste, NaOH pretreatment, and microbial consortium
addition at a 1:1 solid sago waste to the rumen. The combination of these variables becomes
the best fine solid powder which causes the surface area to increase, and the presence
of NaOH causes lignin and hemicellulose to break down. In addition, the microbial
consortium, which consists of microorganisms, creates a synergistic process to produce
high biogas.

The waste mixture that underwent the three types of pretreatments had the maximum
values of A, U, and λ (43.86 mL/g TS; 0.54 mL/g TS.day; and 7.11 days, respectively). Sago
solid waste that was not subjected to any preliminary treatment had A, U, and λ values of
7.45 mL/g TS; 0.15 mL/g TS.day, and 5.16 days, respectively.
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