Hydraulic and Swell–Shrink Characteristics of Clay and Recycled Zeolite Mixtures for Liner Construction in Sustainable Waste Landfill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Compaction and Hydraulic Conductivity Tests
2.3. Swell–Shrinkage Characteristics and Hydraulic Conductivity after Drying–Wetting Cycles
3. Results
3.1. Basic Characteristics
3.2. Proctor Tests and Saturated Hydraulic Conductivity after Compaction
3.3. Swelling and Shrinkage Characteristics
3.4. Saturated Hydraulic Conductivity after Subsequent Cycles of Drying and Rewetting
4. Conclusions
- The application of NaP1 zeolite to the studied clayey soils positively affected their hydraulic characteristics after compaction allowing them to meet the required threshold of sealing capabilities for compacted clay liner, i.e., Ks lower than 1 × 10−9 m/s, in all studied cases for molding water content on both sides on Proctor curve.
- Addition of NaP1 zeolite to local clay soils increased their plasticity, so, as it could be expected, swelling and shrinkage characteristics of the studied specimens were also alerted.
- The observed swelling of clay–zeolite mixtures was higher in all studied cases, for all forming water contents, than observed for the reference samples.
- In most studied cases addition of zeolite to locally available clays did not change the type of deformation after shrinkage, but for some cases, the increase in shrinkage potential type for light-textured samples was observed.
- A clear increase in coefficient of saturated hydraulic conductivity and decrease in sealing capabilities of tested compacted clay–zeolite mixtures as well as reference samples, above the required threshold of 1 × 10−9 m/s, after subsequent cycles of drying and rewetting of samples were observed.
- In our opinion, according to the obtained results, the usage of zeolite, a sustainable recycled material, as an addition for improving the sealing capabilities of compacted clay liners of sustainable landfill may be useful in limiting the environmental and social impacts of the sustainable landfill.
- On the other hand, taking into account the increased expansiveness of studied clay–zeolite mixtures as well as their limited capability to sustain the sealing capabilities after considerable dissication, each material planned for compacted clay liner construction should be carefully tested and the constructed liner should be properly operated, especially to avoid extensive shrinkage and possible dissication cracking.
- Our research considering hydraulic and swell–shrinkage properties of locally available soils mixed with recycled zeolite should be continued in the future for different clay specimens, variable recycled zeolite addition, and for landfill leachate as the permeating liquid.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pires, A.; Martinho, G.; Chang, N.-B. Solid waste management in European countries: A review of system analysis techniques. J. Environ. Manag. 2011, 92, 1033–1050. [Google Scholar] [CrossRef]
- Othman, S.N.; Noor, Z.Z.; Abba, A.H.; Yusuf, R.O. Review of life cycle assessment of integrated solid waste management in some Asian countries. J. Clean. Prod. 2013, 43, 251–262. [Google Scholar] [CrossRef]
- Ozbay, I. Evaluation of municipal solid waste management practices for an industrialized city. Pol. J. Environ. Stud. 2015, 24, 637–644. [Google Scholar] [CrossRef]
- Allen, A. Containment landfills: The myth of sustainability. Eng. Geol. 2000, 60, 3–19. [Google Scholar] [CrossRef]
- Brogaard, L.K.; Stentsoe, S.; Willumsen, H.C.; Christensen, T.H. Quantifying capital goods for waste landfilling. Waste Manag. Res. 2013, 31, 555–598. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M. Municipal solid waste management in China: Status, problems and challenges. J. Environ. Manag. 2010, 91, 1623–1633. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.E.; Farahbakhsh, K. Systems approaches to integrated solid waste management in developing countries. Waste Manag. 2013, 33, 988–1003. [Google Scholar] [CrossRef]
- Yang, N.; Damgaard, A.; Lu, F.; Shao, L.M.; Brogaard, L.K.S.; He, P.J. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag. 2014, 34, 929–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU. Council Directive 99/31/EC of 26 April 1999 on the Landfill of Waste; Council of the European Union: Brussels, Belgium, 1999. [Google Scholar]
- Regulation of the Minister of Environment of 30 April 2013 about Landfilling of Wastes; Journal of Laws from 2013 item 523; Sejm of the Republic of Poland: Warsaw, Poland, 2013. (In Polish)
- (DepV, 2009) German Landfill Ordinance, Deponieverordnung—DepV: Degree on Landfills (Ordinance to Simplify the Landfill Law)—Germany; In the form of the resolution of the Federal Cabinet dated 27 April 2009; Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft: Bonn, Germany, 2009.
- Heerten, G. Geosynthetic clay liner performance in geotechnical applications. In Clay Geosynthetic Barriers; Zanzinger, H., Koerner, R.M., Gartung, E., Eds.; A.A. Balkema Publishers: Lisse, The Netherlands, 2002; pp. 3–19. [Google Scholar]
- Finsterwalder, K. Bemessung der Sicherungssysteme von Deponien und Altlasten unter Einbeziehung der stochastischen Natur der Variablen (Design of barrier systems for landfills and the remediation of contaminated sites taking into account the stochastic nature of the variables). In Neue Entwicklungen bei Oberflächenabdichtungen von Deponien; Schulz, H., Ed.; Universität der Bundeswehr: München, Germany, 2003. [Google Scholar]
- Simon, F.G.; Müller, W.W. Standard and alternative landfill capping design in Germany. Environ. Sci. Policy 2004, 7, 277–290. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H.; Lee, C.; Queen, B. Compacted soil liner interface strength importance. J. Geotech. Geoenviron. 2012, 138, 544–550. [Google Scholar] [CrossRef]
- Aldaeef, A.A.; Rayhani, M.T. Hydraulic performance of compacted clay liners under simulated daily thermal cycles. J. Environ. Manag. 2015, 182, 171–178. [Google Scholar] [CrossRef]
- Widomski, M.K.; Stępniewski, W.; Musz-Pomorska, A. Clays of Different Plasticity as Materials for Landfill Liners in Rural Systems of Sustainable Waste Management. Sustainability 2018, 10, 2489. [Google Scholar] [CrossRef] [Green Version]
- Chapuis, R. Full-Scale Evaluation of the Performance of Three Compacted Clay Liners. Geotech. Test. J. 2013, 36, 575–583. [Google Scholar] [CrossRef]
- Widomski, M.K.; Stępniewski, W.; Horn, R.; Bieganowski, A.; Gazda, L.; Franus, M.; Pawlowska, M. Shrink-swell potential, hydraulic conductivity and geotechnical properties of two clay materials for landfill liner construction. Int. Agrophys. 2015, 29, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Regadio, M.; Black, J.A.; Thoronton, S.F. The role of natural clays in the sustainability of landfill liners. Multidiscip. J. Waste Resour. Residues 2020, 12, 100–113. [Google Scholar] [CrossRef]
- Najafi, E.K.; Chenari, R.J.; Payan, M.; Arabani, M. A sustainable landfill liner material: Clay-fly ash geopolymers. Bull. Eng. Geol. Environ. 2021, 80, 4111–4124. [Google Scholar] [CrossRef]
- Foged, N.; Baumann, J. Clay membrane made of natural high plasticity clays: Leachate migration due to advection and diffusion. Eng. Geol. 1999, 54, 129–137. [Google Scholar] [CrossRef]
- Beck-Broichsitter, S.; Gerke, H.H.; Horn, R. Effect of Compaction on Soil Physical Properties of Differently Textured Landfill Liner Materials. Geosci. J. 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Okeke, C.; Abbey, S.; Oti, J.; Eyo, E.; Johnson, A.; Ngambi, S.; Abam, T.; Ujile, M. Appropriate use of lime in the study of the physicochemical behavior of stabilized soil under continuous water ingress. Sustainability 2021, 13, 257. [Google Scholar] [CrossRef]
- Wu, H.; Wen, Q.; Hu, L.; Gong, M.; Tang, Z. Feasibility study on the application of coal gangue as landfill liner material. Waste Manag. 2017, 63, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, C.; Zhang, Z. Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals. Mater. Des. 2017, 114, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Endende, E.; Anggraini, V.; Asadi, A.; Raghunandan, M.E. Interaction of landfill leachate with olivine-treated marine clay: Suitability for bottom liner application. Environ. Technol. Innov. 2020, 17, 100574. [Google Scholar]
- Kaya, A.; Durukan, S. Utilization of bentonite-embedded zeolite as clay liner. Appl. Clay Sci. 2004, 25, 83–91. [Google Scholar] [CrossRef]
- Bartelt-Hunt, S.L.; Smith, J.A.; Burns, S.E.; Rabideau, A.J. Evaluation of Granular Activated Carbon, Shale, and Two Organoclays for Use as Sorptive Amendments in Clay Landfill Liners. J. Geotech. Geoenviron. 2005, 131, 848–856. [Google Scholar] [CrossRef]
- Kalkan, E. Influence of silica fume on the desiccation cracks of compacted clayey soils. Appl. Clay Sci. 2009, 43, 296–302. [Google Scholar] [CrossRef]
- Morandini, T.L.C.; Leite, A.L. Characterization and hydraulic conductivity of tropical soils and bentonite mixtures for CCL purposes. Eng. Geol. 2015, 196, 251–267. [Google Scholar] [CrossRef]
- Correia, N.S.; Caldas, R.C.S.; Oluremi, J.R. Feasibility of using CDW fine fraction and bentonite mixtures as alternative landfill barrier material. J. Mater. Cycles Waste 2020, 22, 1877–1886. [Google Scholar] [CrossRef]
- Nambiar, N.; Remya, N.; Varghese, G.K. Effective reuse of waste material as an amendment in composite landfill liner: Assessment of geotechnical properties and pollutant retention capacity. Waste Manag. Res. 2019, 38, 134–141. [Google Scholar] [CrossRef]
- Basma, A.A.; Al-Homoud, A.S.; Malkawi, A.I.H.; Al-Bashebsheh, M.A. Swelling-shrinkage behavior of natural expansive clays. Appl. Clay Sci. 1996, 11, 211–227. [Google Scholar] [CrossRef]
- Kalkan, E. Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume. Appl. Clay Sci. 2011, 52, 345–352. [Google Scholar] [CrossRef]
- Jones, L.D.; Hobbs, P.P.R. The Shrinkage and Swelling Behavoiur of UK Soils: The Clays of the Lambeth Group; Research Report RR/04/001; British Geological Survey: Keyworth, Notingam, 2005. [Google Scholar]
- Gebhardt, S.; Fleige, H.; Horn, R. Anisotropic shrinkage of mineral and organic soils and its impact on soil hydraulic properties. Soil Tillage Res. 2012, 125, 96–104. [Google Scholar] [CrossRef]
- Tay, Y.; Stewart, D.I.; Cousens, T.W. Shrinkage and desiccation cracking in bentonite–sand landfill liners. Eng. Geol. 2001, 60, 263–274. [Google Scholar] [CrossRef]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Change of shrinkage behavior of an Andisol in southern Chile: Effects of land use and wetting/drying cycles. Soil Tillage Res. 2009, 106, 45–53. [Google Scholar] [CrossRef]
- Tang, C.S.; Cui, Y.J.; Shi, B.; Tang, A.M.; Liu, C. Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles. Geoderma 2011, 166, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.S.; Shi, B.; Liu, C.; Suo, W.B.; Gao, L. Experimental characterization of shrinkage and desiccation cracking in this clay layer. Appl. Clay Sci. 2011, 52, 69–77. [Google Scholar] [CrossRef]
- Lu, H.; He, W.; Liao, Z.W.; Chen, W. The swelling, shrinkage and cracking properties of compacted clay. EJGE 2013, 18, 1037–1044. Available online: https://scholar.google.com/scholar_lookup?title=The+swelling,+shrinkage+and+cracking+properties+of+compacted+clay&author=Lu,+H.&author=He,+W.&author=Liao,+Z.W.&author=Chen,+W.&publication_year=2013&journal=Electron.+J.+Geotech.+Eng.&volume=18&pages=1037%E2%80%931044 (accessed on 20 May 2021).
- Fernandes, M.; Denis, A.; Fabre, R.; Lataste, J.F.; Chretien, M. In situ study of the shrinkage of a clay soil cover over several cycles of drought-rewetting. Eng. Geol. 2015, 192, 63–75. [Google Scholar] [CrossRef]
- Beck-Broichsitter, S.; Gerke, H.H.; Horn, R. Shrinkage Characteristics of Boulder Marl as Sustainable Mineral Liner Material for Landfill Capping Systems. Sustainability 2018, 10, 4025. [Google Scholar] [CrossRef] [Green Version]
- Statistics Poland. Statistical Yearbook of the Republic of Poland; Statistics Poland: Warsaw, Poland, 2017; p. 114. ISBN 1506-0632. [Google Scholar]
- Xiubin, H.; Zhanbin, H. Zeolite application for enhancing water infiltration and retention in loess soil. Resour. Conserv. Recycl. 2001, 34, 45–52. [Google Scholar] [CrossRef]
- He, Z.L.; Calvert, D.V.; Alva, A.K.; Li, Y.; Banks, D.J. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil 2002, 247, 253–260. Available online: https://link.springer.com/article/10.1023/A:1021584300322 (accessed on 25 May 2021). [CrossRef]
- Gholizadeh-Sarabi, S.; Sepaskhah, A.R. Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures. Arch. Agron. Soil Sci. 2013, 59, 753–764. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Öncü, S.; Bilsel, H. Effect of zeolite utilization on volume change and strength properties of expansive soil as landfill barrier. Can. Geotech. J. 2017, 54, 1320–1330. [Google Scholar] [CrossRef]
- Mahabadi, A.A.; Hajabbasi, M.; Khademi, H.; Kazemian, H. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 2007, 137, 388–393. [Google Scholar] [CrossRef]
- Lin, C.; Lo, S.; Lin, H.; Lee, Y. Stabilization of cadmium contaminated soils using synthesized zeolite. J. Hazard. Mater. 1998, 60, 217–226. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj12OrG7bTwAhXrxIsKHQN8A_IQFjAAegQIBBAD&url=http%3A%2F%2Fntur.lib.ntu.edu.tw%2Fbitstream%2F246246%2F96761%2F1%2F15.pdf&usg=AOvVaw0VjY-S_3WKRM-mrvVPWmtL (accessed on 20 May 2021). [CrossRef]
- Al-Busaidi, A.; Yamamoto, T.; Inoue, M.; Eneji, A.E.; Mori, Y.; Irshad, M. Effects of Zeolite on Soil Nutrients and Growth of Barley Following Irrigation with Saline Water. J. Plant Nutr. 2008, 31, 1159–1173. [Google Scholar] [CrossRef]
- Turkoz, M.; Vural, P. The effects of cement and natural zeolite additives on problematic clay soils. Sci. Eng. Compos. Mater. 2013, 20, 395–405. [Google Scholar] [CrossRef]
- Oren, A.H.; Kaya, A. Compaction and volumetric shrinkage of bentonitic mixtures. Proc. Inst. Civ. Eng. Geotech. Eng. 2014, 167, 51–61. [Google Scholar] [CrossRef]
- Reddy, N.G.; Tahasildar, J.; Rao, B.H. Evaluating the Influence of Additives on Swelling Characteristics of Expansive Soils. Int. J. Geosynth. Ground Eng. 2015, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Abbey, S.J.; Eyo, E.U.; Ng’ambi, S. Swell and microstructural characteristics of high-plasticity clay blended with cement. Bull. Eng. Geol. Environ. 2020, 79, 2119–2130. [Google Scholar] [CrossRef] [Green Version]
- Savas, H. Consolidation and swell characteristics of dispersive soils stabilized with lime and natural zeolite. Sci. Eng. Compos. Mater. 2016, 23, 589–598. [Google Scholar] [CrossRef]
- Chenarboni, H.A.; Lajevardi, S.H.; MolaAbasi, H.; Zeighami, E. The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Constr. Build. Mater. 2021, 272, 121630. [Google Scholar] [CrossRef]
- Sharo, A.A.; Shaqour, F.M.; Ayyad, J.M. Maximizing Strength of CKD—Stabilized Expansive Clayey Soil Using Natural Zeolite. KSCE J. Civ. Eng. 2021, 25, 1204–1213. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build. Mater. 2016, 114, 556–563. [Google Scholar] [CrossRef]
- Bandura, L.; Franus, M.; Józefaciuk, G.; Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 2015, 147, 100–107. [Google Scholar] [CrossRef]
- Bandura, L.; Kołodyńska, D.; Franus, W. Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process. Saf. Environ. Prot. 2017, 109, 214–223. [Google Scholar] [CrossRef]
- Francisca, F.M.; Glatstein, D.A. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl. Clay Sci. 2010, 49, 187–193. [Google Scholar] [CrossRef]
- Researches of Soil Samples; PN-B-04481; Polish Committee for Standardization: Warsaw, Poland, 1988. (In Polish)
- ASTM. Standard Test. Method for Sieve Analysis of Fine and Coarse Aggregates ASTM C136/C136M—19; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Geotechnical Investigation and Testing. Laboratory testing of soil. In Part 12: Determination of Atterberg Limits; PKN-CEN ISO/TS 17892-12; Polish Committee for Standardization: Warsaw, Poland, 2009. (In Polish) [Google Scholar]
- ASTM. Standard Test. Method for Total Evaporable Moisture Content of Aggregate by Drying; ASTM C566-13; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM. Standard Test. Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)); ASTM D698-12e1; ASTM: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Coefficient of Permeability—Falling Head Method; FM 5-513; Florida Department of Transportation: Tallahassee, FL, USA, 2000.
- Peng, X.; Horn, R.; Smucker, A. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Sci. Soc. Am. J. 2007, 71, 1095–1104. [Google Scholar] [CrossRef]
- Grossman, R.H.; Brasher, B.R.; Franzmeier, D.P.; Walker, J.L. Linear extensibility as calculated from natural-clod bulk density measurements. Soil Sci. Soc. Am. Proc. 1968, 32, 570–573. [Google Scholar] [CrossRef]
- Bronswijk, J.J.B. Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci. Soc. Am. J. 1990, 54, 1500–1502. [Google Scholar] [CrossRef]
- Parker, J.C.; Amos, D.F.; Kaster, D.L. Evaluation of several methods of estimating soil volume change. Soil Sci. Soc. Am. J. 1977, 41, 1059–1064. [Google Scholar] [CrossRef]
- Horn, R.; Stępniewski, W. Modification of mineral liner to improve its long-term stability. Int. Agrophys. 2004, 18, 317–323. Available online: https://scholar.google.com/scholar_lookup?title=Modification+of+mineral+liner+to+improve+its+longterm+stability&author=Horn,+R.&author=St%C4%99pniewski,+W.&publication_year=2004&journal=Int.+Agrophys.&volume=18&pages=317%E2%80%93323 (accessed on 20 May 2021).
- Bauer, B.; Taubner, H.; Tippkötter, R. The measurement of mechanical and hydraulic consolidation of clayey substrates using an improved Proctor method. Wasser Boden. 2001, 53, 27–29. (In German). Available online: https://scholar.google.com/scholar_lookup?title=The+measurement+of+mechanical+and+hydraulic+consolidation+of+clayey+substrates+using+an+improved+Proctor+method&author=Bauer,+B.&author=Taubner,+H.&author=Tippk%C3%B6tter,+R.&publication_year=2001&journal=Wasser+Boden&volume=53&pages=27%E2%80%9329 (accessed on 20 May 2021).
rs | COLE | ||
---|---|---|---|
Value | Deformation type | Value | Shrinkage potential |
1.0 | vertical | <0.03 | low |
1.0–3.0 | predominant vertical | 0.03–0.06 | moderate |
3.0 | isotropic | 0.06–0.09 | high |
>3.0 | predominant horizontal | >0.09 | very high |
G | J | L | P | Z | ||
---|---|---|---|---|---|---|
Particle composition | Sand (%) | 74 | 43 | 4.5 | 29 | 41 |
Silt (%) | 7 | 26 | 51 | 35 | 35 | |
Clay (%) | 19 | 31 | 54.5 | 36 | 24 | |
Soil texture type | Sandy loam | Clay loam | Silty clay | Clay loam | Loam | |
Solid particle density (Mg/m3) | 2.86 | 2.74 | 2.61 | 2.61 | 2.76 | |
Ratio of non-swelling to swelling clay minerals (K + Ch)/(I + S) * | 0.66 | 0.36 | 0.11 | 0.45 | 0.50 | |
Saturated hydraulic conductivity in situ, ±SD (m/s) | 4.73 × 10−10 ± 1.5 × 10−11 | 1.16 × 10−10 ± 1.3 × 10−11 | 1.37 × 10−10 ± 3.54 × 10−12 | 2.51 × 10−10 ± 1.4 × 10−11 | 5.81 × 10−10 ± 9.9 × 10−11 |
Specimen | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index (%) |
---|---|---|---|
G (reference) | 21.4 | 13.70 | 7.70 |
G + 10% NaP1 | 26 | 19.50 | 6.50 |
J (reference) | 32.2 | 15.40 | 16.80 |
J + 10% NaP1 | 34.7 | 19.60 | 15.10 |
L (reference) | 51.3 | 21.40 | 29.90 |
L + 10% NaP1 | 53.4 | 26.50 | 26.90 |
P (reference) | 63.2 | 27.80 | 35.40 |
P + 10% NaP1 | 68.5 | 29.80 | 38.70 |
Z (reference) | 40 | 21.50 | 18.50 |
Z + 10% NaP1 | 49 | 26.10 | 22.90 |
Specimen | CEC (cm(+)/kg) |
---|---|
G (reference) | 4.8 ± 0.7 |
G + 10% NaP1 | 15.65 ± 1.85 |
J (reference) | 40.3 ± 0.7 |
J + 10% NaP1 | 47.7 ± 0.4 |
L (reference) | 41.01 ± 0.49 |
L + 10% NaP1 | 49.1 ± 0.4 |
P (reference) | 20.8 ± 0.1 |
P + 10% NaP1 | 29.2 ± 4.3 |
Z (reference) | 12.1 ± 0.6 |
Z + 10% NaP1 | 23.2 ± 4.7 |
Specimen | Optimal Water Content wopt (kg/kg) | Ks (m/s) | Molding Water Content wf < wopt (kg/kg) | Ks (m/s) | Molding Water Content wopt < wf < 1.2 wopt (kg/kg) | Ks (m/s) |
---|---|---|---|---|---|---|
G (reference) | 0.12 | 2.16 × 10−9 * | 0.10 | 2.55 × 10−9 * | 0.14 | 1.27 × 10−10 |
G + 10% NaP1 | 0.16 | 5.98 × 10−11 | 0.10 | 9.82 × 10−10 | 0.19 | 7.01 × 10−11 |
J (reference) | 0.13 | 2.77 × 10−10 | 0.10 | 3.35 × 10−9 * | 0.16 | 9.56 × 10−11 |
J + 10% NaP1 | 0.20 | 2.13 × 10−10 | 0.15 | 6.00 × 10−10 | 0.24 | 3.73 × 10−11 |
L (reference) | 0.19 | 7.57 × 10−11 | 0.16 | 2.85 × 10−10 | 0.22 | 5.78 × 10−11 |
L + 10% NaP1 | 0.23 | 1.28 × 10−10 | 0.17 | 8.37 × 10−10 | 0.26 | 5.68 × 10−11 |
P (reference) | 0.22 | 4.90 × 10−11 | 0.19 | 7.96 × 10−10 | 0.24 | 3.44 × 10−11 |
P + 10% NaP1 | 0.22 | 9.00 × 10−10 | 0.19 | 8.49 × 10−10 | 0.26 | 4.76 × 10−10 |
Z (reference) | 0.18 | 2.48 × 10−10 | 0.12 | 3.99 × 10−9 * | 0.22 | 1.77 × 10−10 |
Z + 10% NaP1 | 0.20 | 6.31 × 10−11 | 0.13 | 3.46 × 10−10 | 0.23 | 9.93 × 10−11 |
Specimen | Mean SI (%) | Mean COLE | Shrinkage Potential | Mean rs | Deformation Type |
---|---|---|---|---|---|
G (reference) | 2.50 | 0.020 | low | 2.683 | predominant vertical |
G + 10% NaP1 | 4.99 | 0.041 | moderate | 1.611 | predominant vertical |
L (reference) | 2.86 | 0.097 | very high | 2.292 | predominant vertical |
L + 10% NaP1 | 6.65 | 0.088 | very high | 2.222 | predominant vertical |
Z (reference) | 5.99 | 0.072 | high | 2.341 | predominant vertical |
Z + 10% NaP1 | 14.60 | 0.099 | very high | 2.145 | predominant vertical |
P (reference) | 10.65 | 0.133 | very high | 2.768 | predominant vertical |
P + 10% NaP1 | 13.50 | 0.129 | very high | 2.677 | predominant vertical |
J (reference) | 2.12 | 0.069 | high | 2.195 | predominant vertical |
J + 10% NaP1 | 8.60 | 0.072 | high | 2.129 | predominant vertical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widomski, M.K.; Musz-Pomorska, A.; Franus, W. Hydraulic and Swell–Shrink Characteristics of Clay and Recycled Zeolite Mixtures for Liner Construction in Sustainable Waste Landfill. Sustainability 2021, 13, 7301. https://doi.org/10.3390/su13137301
Widomski MK, Musz-Pomorska A, Franus W. Hydraulic and Swell–Shrink Characteristics of Clay and Recycled Zeolite Mixtures for Liner Construction in Sustainable Waste Landfill. Sustainability. 2021; 13(13):7301. https://doi.org/10.3390/su13137301
Chicago/Turabian StyleWidomski, Marcin K., Anna Musz-Pomorska, and Wojciech Franus. 2021. "Hydraulic and Swell–Shrink Characteristics of Clay and Recycled Zeolite Mixtures for Liner Construction in Sustainable Waste Landfill" Sustainability 13, no. 13: 7301. https://doi.org/10.3390/su13137301
APA StyleWidomski, M. K., Musz-Pomorska, A., & Franus, W. (2021). Hydraulic and Swell–Shrink Characteristics of Clay and Recycled Zeolite Mixtures for Liner Construction in Sustainable Waste Landfill. Sustainability, 13(13), 7301. https://doi.org/10.3390/su13137301