Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study
Abstract
:1. Introduction
1.1. Background
1.2. Definition of Basic Concepts: Circular Economy, Bioeconomy and Sustainability
1.3. Sustainable Effects of the Joint Application of Bioeconomy and Circular Economy
1.4. Motivation, Research Issues, Objective and Main Contribution of This Research
- How has scientific production evolved during the period analyzed?
- In which subject areas have the published articles been classified?
- What have been the most productive journals, authors, research institutions and countries?
- What were the main lines of research developed?
2. Materials and Methods
3. Results and Discussion
3.1. Evolution of Scientific Production
3.2. Analysis of Scientific Production by Subject Area
3.3. Identification of the Most Prolific Journals
3.4. Productivity of the Most Prolific Authors from 2004 to May 2021
3.5. Characteristics of the Main Institutions Throughout the Investigation
3.6. Main Countries in Scientific Production
3.7. Analysis of the Keywords Used during 2004–May 2021
3.8. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorissen, L.; Vrancken, K.; Manshoven, S. Transition Thinking and Business Model Innovation—Towards a Transformative Business Model and New Role for the Reuse Centers of Limburg, Belgium. Sustainability 2016, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental and Economic Implications of Recovering Resources from Food Waste in a Circular Economy. Sci. Total Environ. 2019, 693, 133516. [Google Scholar] [CrossRef] [PubMed]
- Greyson, J. An Economic Instrument for Zero Waste, Economic Growth and Sustainability. J. Clean. Prod. 2007, 15, 1382–1390. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental Life Cycle Assessment of Different Biorefinery Platforms Valorizing Municipal Solid Waste to Bioenergy, Microbial Protein, Lactic and Succinic Acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [Google Scholar] [CrossRef]
- de Villiers, C.; Kuruppu, S.; Dissanayake, D. A (New) Role for Business—Promoting the United Nations’ Sustainable Development Goals through the Internet-of-Things and Blockchain Technology. J. Bus. Res. 2021, 131, 598–609. [Google Scholar] [CrossRef]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An Integrative Review as a Contribution to the Sustainable Management of the Whole of Nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Hoehn, D.; Laso, J.; Margallo, M.; Ruiz-Salmón, I.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Sarabia, C.; Quiñones, A.; Vázquez-Rowe, I.; Bala, A.; et al. Introducing a Degrowth Approach to the Circular Economy Policies of Food Production, and Food Loss and Waste Management: Towards a Circular Bioeconomy. Sustainability 2021, 13, 3379. [Google Scholar] [CrossRef]
- Sampedro, J.; Smith, S.J.; Arto, I.; González-Eguino, M.; Markandya, A.; Mulvaney, K.M.; Pizarro-Irizar, C.; Van Dingenen, R. Health Co-Benefits and Mitigation Costs as per the Paris Agreement under Different Technological Pathways for Energy Supply. Environ. Int. 2020, 136, 105513. [Google Scholar] [CrossRef]
- Ramcilovic-Suominen, S.; Pülzl, H. Sustainable Development—A ‘Selling Point’ of the Emerging EU Bioeconomy Policy Framework? J. Clean. Prod. 2018, 172, 4170–4180. [Google Scholar] [CrossRef]
- Janssens, C.; Havlík, P.; Krisztin, T.; Baker, J.; Frank, S.; Hasegawa, T.; Leclère, D.; Ohrel, S.; Ragnauth, S.; Schmid, E.; et al. Global Hunger and Climate Change Adaptation through International Trade. Nat. Clim. Chang. 2020, 10, 829–835. [Google Scholar] [CrossRef]
- Moosmann, D.; Majer, S.; Ugarte, S.; Ladu, L.; Wurster, S.; Thrän, D. Strengths and Gaps of the EU Frameworks for the Sustainability Assessment of Bio-Based Products and Bioenergy. Energy Sustain. Soc. 2020, 10, 22. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Purnell, P. Circulating Blame in the Circular Economy: The Case of Wood-Waste Biofuels and Coal Ash. Energy Policy 2019, 129, 168–172. [Google Scholar] [CrossRef]
- Abad-Segura, E.; Morales, M.E.; Cortés-García, F.J.; Belmonte-Ureña, L.J. Industrial Processes Management for a Sustainable Society: Global Research Analysis. Processes 2020, 8, 631. [Google Scholar] [CrossRef]
- Timko, M.T. A World Without Waste. IEEE Eng. Manag. Rev. 2019, 47, 106–109. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular Economy—From Review of Theories and Practices to Development of Implementation Tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Chen, T.-L.; Kim, H.; Pan, S.-Y.; Tseng, P.-C.; Lin, Y.-P.; Chiang, P.-C. Implementation of Green Chemistry Principles in Circular Economy System towards Sustainable Development Goals: Challenges and Perspectives. Sci. Total Environ. 2020, 716, 136998. [Google Scholar] [CrossRef] [PubMed]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring Circular Economy Strategies through Index Methods: A Critical Analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Zijp, M.C.; Waaijers-van der Loop, S.L.; Heijungs, R.; Broeren, M.L.M.; Peeters, R.; Van Nieuwenhuijzen, A.; Shen, L.; Heugens, E.H.W.; Posthuma, L. Method Selection for Sustainability Assessments: The Case of Recovery of Resources from Waste Water. J. Environ. Manag. 2017, 197, 221–230. [Google Scholar] [CrossRef]
- Kjaer, L.L.; Pigosso, D.C.A.; McAloone, T.C.; Birkved, M. Guidelines for Evaluating the Environmental Performance of Product/Service-Systems through Life Cycle Assessment. J. Clean. Prod. 2018, 190, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Fisher, O.; Watson, N.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Cloud Manufacturing as a Sustainable Process Manufacturing Route. J. Manuf. Syst. 2018, 47, 53–68. [Google Scholar] [CrossRef]
- Vandewalle, D.; Antunes, V.; Neves, J.; Freire, A.C. Assessment of Eco-Friendly Pavement Construction and Maintenance Using Multi-Recycled Rap Mixtures. Recycling 2020, 5, 17. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Winkler, K.J.; Toppinen, A. Thinking Green, Circular or Bio: Eliciting Researchers’ Perspectives on a Sustainable Economy with Q Method. J. Clean. Prod. 2019, 230, 460–476. [Google Scholar] [CrossRef]
- Meyer, R. Bioeconomy Strategies: Contexts, Visions, Guiding Implementation Principles and Resulting Debates. Sustainability 2017, 9, 1031. [Google Scholar] [CrossRef] [Green Version]
- Istudor, L.G.; Suciu, M.C. Bioeconomy and Circular Economy in the European Food Retail Sector. Eur. J. Sustain. Dev. 2020, 9, 501–511. [Google Scholar] [CrossRef]
- Jander, W.; Grundmann, P. Monitoring the Transition towards a Bioeconomy: A General Framework and a Specific Indicator. J. Clean. Prod. 2019, 236, 117564. [Google Scholar] [CrossRef]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef] [Green Version]
- Tsolakis, N.; Niedenzu, D.; Simonetto, M.; Dora, M.; Kumar, M. Supply Network Design to Address United Nations Sustainable Development Goals: A Case Study of Blockchain Implementation in Thai Fish Industry. J. Bus. Res. 2021, 131, 495–519. [Google Scholar] [CrossRef]
- D’Amato, D.; Korhonen, J.; Toppinen, A. Circular, Green, and Bio Economy: How Do Companies in Land-Use Intensive Sectors Align with Sustainability Concepts? Ecol. Econ. 2019, 158, 116–133. [Google Scholar] [CrossRef]
- Dimic-Misic, K.; Barceló, E.; Brkić, V.S.; Gane, P. Identifying the Challenges of Implementing a European Bioeconomy Based on Forest Resources: Reality Demands Circularity. FME Trans. 2019, 47, 60–69. [Google Scholar] [CrossRef]
- Gatto, F.; Re, I. Circular Bioeconomy Business Models to Overcome the Valley of Death. A Systematic Statistical Analysis of Studies and Projects in Emerging Bio-Based Technologies and Trends Linked to the SME Instrument Support. Sustainability 2021, 13, 1899. [Google Scholar] [CrossRef]
- Ryabchenko, O.; Golub, G.; Turčeková, N.; Adamičková, I.; Zapototskyi, S. Sustainable Business Modeling of Circular Agriculture Production: Case Study of Circular Bioeconomy. J. Secur. Sustain. Issues 2017, 7, 301–309. [Google Scholar] [CrossRef]
- Liobikiene, G.; Chen, X.; Streimikiene, D.; Balezentis, T. The Trends in Bioeconomy Development in the European Union: Exploiting Capacity and Productivity Measures Based on the Land Footprint Approach. Land Use Policy 2020, 91, 104375. [Google Scholar] [CrossRef]
- Liobikiene, G.; Balezentis, T.; Streimikiene, D.; Chen, X. Evaluation of Bioeconomy in the Context of Strong Sustainability. Sustain. Dev. 2019, 27, 955–964. [Google Scholar] [CrossRef]
- Stewart, R.; Niero, M. Circular Economy in Corporate Sustainability Strategies: A Review of Corporate Sustainability Reports in the Fast-Moving Consumer Goods Sector. Bus. Strategy Environ. 2018, 27, 1005–1022. [Google Scholar] [CrossRef] [Green Version]
- Abad-Segura, E.; Cortés-García, F.J.; Belmonte-Ureña, L.J. The Sustainable Approach to Corporate Social Responsibility: A Global Analysis and Future Trends. Sustainability 2019, 11, 5382. [Google Scholar] [CrossRef] [Green Version]
- Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N. Circular Economy, Degrowth and Green Growth as Pathways for Research on Sustainable Development Goals: A Global Analysis and Future Agenda. Ecol. Econ. 2021, 185, 107050. [Google Scholar] [CrossRef]
- Leal Filho, W.; Azeiteiro, U.; Alves, F.; Pace, P.; Mifsud, M.; Brandli, L.; Caeiro, S.S.; Disterheft, A. Reinvigorating the Sustainable Development Research Agenda: The Role of the Sustainable Development Goals (SDG). Int. J. Sustain. Dev. World Ecol. 2018, 25, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Bebbington, J.; Unerman, J. Achieving the United Nations Sustainable Development Goals: An Enabling Role for Accounting Research. Account. Audit. Account. J. 2018, 31, 2–24. [Google Scholar] [CrossRef]
- Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Zeug, W.; Bezama, A.; Moesenfechtel, U.; Jähkel, A.; Thrän, D. Stakeholders’ Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework. Sustainability 2019, 11, 1511. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Ringler, C.; Zhu, T.; Tokgoz, S.; Bhandary, P. Water and Food in the Bioeconomy: Challenges and Opportunities for Development. Agric. Econ. 2013, 44, 139–150. [Google Scholar] [CrossRef]
- Hagemann, N.; Gawel, E.; Purkus, A.; Pannicke, N.; Hauck, J. Possible Futures towards Awood-Based Bioeconomy: A Scenario Analysis for Germany. Sustainability 2016, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Cristóbal, J.; Matos, C.T.; Aurambout, J.P.; Manfredi, S.; Kavalov, B. Environmental Sustainability Assessment of Bioeconomy Value Chains. Biomass Bioenergy 2016, 89, 159–171. [Google Scholar] [CrossRef]
- Siebert, A.; Bezama, A.; O’Keeffe, S.; Thrän, D. Social Life Cycle Assessment Indices and Indicators to Monitor the Social Implications of Wood-Based Products. J. Clean. Prod. 2018, 172, 4074–4084. [Google Scholar] [CrossRef]
- Calicioglu, Ö.; Bogdanski, A. Linking the Bioeconomy to the 2030 Sustainable Development Agenda: Can SDG Indicators Be Used to Monitor Progress towards a Sustainable Bioeconomy? New Biotechnol. 2021, 61, 40–49. [Google Scholar] [CrossRef]
- Dodson, J.R.; Parker, H.L.; García, A.M.; Hicken, A.; Asemave, K.; Farmer, T.J.; He, H.; Clark, J.H.; Hunt, A.J. Bio-Derived Materials as a Green Route for Precious & Critical Metal Recovery and Re-Use. Green Chem. 2015, 17, 1951–1965. [Google Scholar] [CrossRef]
- Zabaniotou, A. Redesigning a Bioenergy Sector in EU in the Transition to Circular Waste-Based Bioeconomy-A Multidisciplinary Review. J. Clean. Prod. 2018, 177, 197–206. [Google Scholar] [CrossRef]
- Krishnan, R.; Agarwal, R.; Bajada, C.; Arshinder, K. Redesigning a Food Supply Chain for Environmental Sustainability—An Analysis of Resource Use and Recovery. J. Clean. Prod. 2020, 242, 118374. [Google Scholar] [CrossRef]
- Guan, Z.; Lu, X.; Yang, W.; Wu, L.; Wang, N.; Zhang, Z. Achieving Efficient and Privacy-Preserving Energy Trading Based on Blockchain and ABE in Smart Grid. J. Parallel Distrib. Comput. 2021, 147, 34–45. [Google Scholar] [CrossRef]
- Alhola, K.; Ryding, S.O.; Salmenperä, H.; Busch, N.J. Exploiting the Potential of Public Procurement: Opportunities for Circular Economy. J. Ind. Ecol. 2019, 23, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Bröring, S.; Laibach, N.; Wustmans, M. Innovation Types in the Bioeconomy. J. Clean. Prod. 2020, 266, 121939. [Google Scholar] [CrossRef]
- Sheridan, K. Making the Bioeconomy Circular: The Biobased Industries’ Next Goal? Ind. Biotechnol. 2016, 12, 339–340. [Google Scholar] [CrossRef]
- Jonnalagadda, S.R.; Goyal, P.; Huffman, M.D. Automating Data Extraction in Systematic Reviews: A Systematic Review. Syst. Rev. 2015, 4, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Robert, G.; Macfarlane, F.; Bate, P.; Kyriakidou, O. Diffusion of Innovations in Service Organizations: Systematic Review and Recommendations. Milbank Q. 2004, 82, 581–629. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; LeBlanc, A.G. Systematic Review of the Health Benefits of Physical Activity and Fitness in School-Aged Children and Youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Salcedo, M.; Martínez, M.Á.; Moral-Munoz, J.A.; Herrera-Viedma, E.; Cobo, M.J. Some Bibliometric Procedures for Analyzing and Evaluating Research Fields. Appl. Intell. 2018, 48, 1275–1287. [Google Scholar] [CrossRef]
- Abad-Segura, E.; de la Fuente, A.B.; González-Zamar, M.D.; Belmonte-Ureña, L.J. Effects of Circular Economy Policies on the Environment and Sustainable Growth: Worldwide Research. Sustainability 2020, 12, 5792. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- Harzing, A.W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A Longitudinal and Cross-Disciplinary Comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Vatananan-Thesenvitz, R.; Schaller, A.-A.; Shannon, R. A Bibliometric Review of the Knowledge Base for Innovation in Sustainable Development. Sustainability 2019, 11, 5783. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Lai, K.H.; Cai, W. Responsible Production for Sustainability: Concept Analysis and Bibliometric Review. Sustainability 2021, 13, 1275. [Google Scholar] [CrossRef]
- Cossarini, D.M.; MacDonald, B.H.; Wells, P.G. Communicating Marine Environmental Information to Decision Makers: Enablers and Barriers to Use of Publications (Grey Literature) of the Gulf of Maine Council on the Marine Environment. Ocean. Coast. Manag. 2014, 96, 163–172. [Google Scholar] [CrossRef]
- Gusmão Caiado, R.G.; Leal Filho, W.; Quelhas, O.L.G.; Luiz de Mattos Nascimento, D.; Ávila, L.V. A Literature-Based Review on Potentials and Constraints in the Implementation of the Sustainable Development Goals. J. Clean. Prod. 2018, 198, 1276–1288. [Google Scholar] [CrossRef]
- Cahn, E.S. Journal Rankings. Int. J. Inf. Syst. Serv. Sect. 2014, 6, 92–103. [Google Scholar] [CrossRef]
- Hirsch, J.E. An Index to Quantify an Individual’s Scientific Research Output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Bar-Ilan, J. Which H-Index?—A Comparison of WoS, Scopus and Google Scholar. Scientometrics 2008, 74, 257–271. [Google Scholar] [CrossRef]
- Costas, R.; Bordons, M. The H-Index: Advantages, Limitations and Its Relation with Other Bibliometric Indicators at the Micro Level. J. Informetr. 2007, 1, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Hodge, D.R.; Lacasse, J.R. Evaluating Journal Quality: Is the H-Index a Better Measure than Impact Factors? Res. Soc. Work Pract. 2011, 21, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Cronin, B. Bibliometrics and beyond: Some Thoughts on Web-Based Citation Analysis. J. Inf. Sci. 2001, 27, 1–7. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A Unified Approach to Mapping and Clustering of Bibliometric Networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Rafols, I.; Porter, A.L.; Leydesdorff, L. Science Overlay Maps: A New Tool for Research Policy and Library Management. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1871–1887. [Google Scholar] [CrossRef] [Green Version]
- Strebel, H.; Posch, A. Interorganisational Cooperation for Sustainable Management in Industry: On Industrial Recycling Networks and Sustainability Networks. Prog. Ind. Ecol. 2004, 1, 348–362. [Google Scholar] [CrossRef]
- United Nations The Sustainable Development Agenda—United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 11 June 2021).
- Burnham, J.F. Scopus Database: A Review. Biomed. Digit. Libr. 2006, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Eysenbach, G. Citation Advantage of Open Access Articles. PLoS Biol. 2006, 4, e157. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and Its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, Circular, Bio Economy: A Comparative Analysis of Sustainability Avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Amato, A.; Beolchini, F. End-of-Life CIGS Photovoltaic Panel: A Source of Secondary Indium and Gallium. Prog. Photovolt. Res. Appl. 2019, 27, 229–236. [Google Scholar] [CrossRef]
- Amato, A.; Becci, A.; Mariani, P.; Carducci, F.; Ruello, M.L.; Monosi, S.; Giosuè, C.; Beolchini, F. End-of-Life Liquid Crystal Display Recovery: Toward a Zero-Waste Approach. Appl. Sci. 2019, 9, 2985. [Google Scholar] [CrossRef] [Green Version]
- Amato, A.; Bigi, G.P.; Baldini, C.; Beolchini, F. Sustainable Reduction of the Odor Impact of Painting Wooden Products for Interior Design. Appl. Sci. 2020, 10, 8124. [Google Scholar] [CrossRef]
- Amato, A.; Mastrovito, M.; Becci, A.; Beolchini, F. Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation. Sustainability 2021, 13, 3990. [Google Scholar] [CrossRef]
- Amato, A.; Becci, A.; Birloaga, I.; De Michelis, I.; Ferella, F.; Innocenzi, V.; Ippolito, N.M.M.; Pillar Jimenez Gomez, C.; Vegliò, F.; Beolchini, F. Sustainability Analysis of Innovative Technologies for the Rare Earth Elements Recovery. Renew. Sustain. Energy Rev. 2019, 106, 41–53. [Google Scholar] [CrossRef]
- Imbert, E.; Ladu, L.; Morone, P.; Quitzow, R. Comparing Policy Strategies for a Transition to a Bioeconomy in Europe: The Case of Italy and Germany. Energy Res. Soc. Sci. 2017, 33, 70–81. [Google Scholar] [CrossRef]
- Helmholtz-Centre for Environmental Research. Internships. Available online: https://www.ufz.de/index.php?en=36937 (accessed on 11 May 2021).
- Siebert, A.; Bezama, A.; O’Keeffe, S.; Thrän, D. Social Life Cycle Assessment: In Pursuit of a Framework for Assessing Wood-Based Products from Bioeconomy Regions in Germany. Int. J. Life Cycle Assess. 2018, 23, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Purkus, A.; Hagemann, N.; Bedtke, N.; Gawel, E. Towards a Sustainable Innovation System for the German Wood-Based Bioeconomy: Implications for Policy Design. J. Clean. Prod. 2018, 172, 3955–3968. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Bocken, N.M.P.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product Design and Business Model Strategies for a Circular Economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Hou, H.; Zhang, J.; Zhang, H.; Gong, W. Education for Regional Sustainable Development: Experiences from the Education Framework of HHCEPZ Project. J. Clean. Prod. 2006, 14, 994–1002. [Google Scholar] [CrossRef]
- Ribeiro Siman, R.; Yamane, L.H.; de Lima Baldam, R.; Pardinho Tackla, J.; de Assis Lessa, S.F.; Mendonça de Britto, P. Governance Tools: Improving the Circular Economy through the Promotion of the Economic Sustainability of Waste Picker Organizations. Waste Manag. 2020, 105, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Dietz, T.; Börner, J.; Förster, J.J.; von Braun, J. Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies. Sustainability 2018, 10, 3190. [Google Scholar] [CrossRef] [Green Version]
- Cullen, U.A.; De Angelis, R. Circular Entrepreneurship: A Business Model Perspective. Resour. Conserv. Recycl. 2021, 168, 105300. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage Sludge Disposal Strategies for Sustainable Development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Zessner, M. Overview and Description of Technologies for Recovering Phosphorus from Municipal Wastewater. Resour. Conserv. Recycl. 2015, 105, 325–346. [Google Scholar] [CrossRef]
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of Indicators of Circular Economy as Instruments for the Evaluation of Sustainability and Efficiency in Wastewater from Pig Farming Industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- Cavicchi, B.; Palmieri, S.; Odaldi, M. The Influence of Local Governance: Effects on the Sustainability of Bioenergy Innovation. Sustainability 2017, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Hahladakis, J.N.; Iacovidou, E. An Overview of the Challenges and Trade-Offs in Closing the Loop of Post-Consumer Plastic Waste (PCPW): Focus on Recycling. J. Hazard. Mater. 2019, 380, 120887. [Google Scholar] [CrossRef] [PubMed]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and Strategies for Effective Plastic Waste Management during and Post COVID-19 Pandemic. Sci. Total Environ. 2021, 750, 141514. [Google Scholar] [CrossRef] [PubMed]
- Dahlbo, H.; Poliakova, V.; Mylläri, V.; Sahimaa, O.; Anderson, R. Recycling Potential of Post-Consumer Plastic Packaging Waste in Finland. Waste Manag. 2018, 71, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Ferronato, N.; Gorritty Portillo, M.A.; Guisbert Lizarazu, E.G.; Torretta, V.; Bezzi, M.; Ragazzi, M. The Municipal Solid Waste Management of La Paz (Bolivia): Challenges and Opportunities for a Sustainable Development. Waste Manag. Res. 2018, 36, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Vaish, B.; Singh, R.P.; Singh, P. An Insight to Municipal Solid Waste Management of Varanasi City, India, and Appraisal of Vermicomposting as Its Efficient Management Approach. Environ. Monit. Assess. 2020, 192, 191. [Google Scholar] [CrossRef] [PubMed]
Stage | Process | Result |
---|---|---|
Search definition | Define concepts that refer to the field of study. Design the search with the appropriate parameters to enter in Scopus. | [TITLE-ABS-KEY (Bioeconomy OR “Circular Economy”) AND TITLE-ABS-KEY (Sustainability)] |
Sample processing | Filter the sample to only articles. Download the sample in RIS format and process in SciMAT to avoid duplication. | Sample of 1961 articles without duplications |
Analysis of the results | Download the sample in CSV format to work in VOSviewer. Load data into Excel to analyze variables. | Graphs and tables of the bibliometric study |
Period | A | AU | C | TC | TC/A | J |
---|---|---|---|---|---|---|
2004–2006 | 3 | 9 | 3 | 2 | 1 | 3 |
2007–2009 | 12 | 28 | 5 | 19 | 2 | 12 |
2010–2012 | 13 | 45 | 11 | 82 | 6 | 11 |
2013–2015 | 52 | 163 | 23 | 289 | 6 | 44 |
2016–2018 | 453 | 1550 | 64 | 4163 | 9 | 187 |
2019–2021 (*) | 1428 | 4947 | 87 | 23,412 | 16 | 450 |
Journal | A | TC | TC/A | Hi (A) | Hi (J) | SJR | C | R(A) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2004–2006 | 2007–2009 | 2010–2012 | 2013–2015 | 2016–2018 | 2019–2021 (*) | ||||||||
Sustainability Switzerland | 291 | 2796 | 9.61 | 24 | 68 | 0.58(Q2) | Switzerland | 0 | 0 | 0 | 1(4) | 2(58) | 1(229) |
Journal of Cleaner Production | 254 | 7060 | 27.80 | 40 | 173 | 1.89(Q1) | Netherlands | 1(1) | 6(1) | 6(1) | 3(2) | 1(73) | 2(176) |
Resources Conservation and Recycling | 99 | 2303 | 23.26 | 25 | 119 | 2.22(Q1) | Netherlands | 0 | 0 | 0 | 5(2) | 3(19) | 3(78) |
Science of the Total Environment | 37 | 532 | 14.38 | 15 | 224 | 1.66(Q1) | Netherlands | 0 | 0 | 0 | 0 | 5(8) | 5(29) |
Business Strategy and the Environment | 33 | 345 | 10.45 | 10 | 94 | 1.83(Q1) | USA | 0 | 0 | 0 | 0 | 27(3) | 4(30) |
Journal of Environmental Management | 27 | 296 | 10.96 | 10 | 161 | 1.32(Q1) | USA | 0 | 0 | 0 | 0 | 18(4) | 6(23) |
Waste Management | 27 | 378 | 14.00 | 10 | 145 | 1.63(Q1) | UK | 0 | 0 | 0 | 0 | 6(7) | 7(20) |
Journal of Industrial Ecology | 23 | 641 | 27.87 | 12 | 95 | 1.81(Q1) | USA | 0 | 8(1) | 8(1) | 0 | 19(4) | 9(17) |
Sustainable Production and Consumption | 20 | 83 | 4.15 | 4 | 20 | 0.97(Q1) | Netherlands | 0 | 0 | 0 | 42(1) | 52(2) | 10(17) |
Applied Sciences Switzerland | 18 | 40 | 2.22 | 3 | 35 | 0.42(Q1) | Switzerland | 0 | 0 | 0 | 0 | 0 | 8(18) |
ACS Sustainable Chemistry and Engineering | 17 | 101 | 5.94 | 6 | 85 | 1.77(Q1) | USA | 0 | 0 | 0 | 0 | 10(4) | 11(13) |
Ecological Economics | 17 | 1235 | 72.65 | 10 | 189 | 1.72(Q1) | Netherlands | 0 | 0 | 0 | 0 | 8(6) | 13(11) |
Procedia Environmental Science Engineering and Management | 15 | 43 | 2.87 | 4 | 5 | 0.16(Q3) | Romania | 0 | 0 | 0 | 4(2) | 4(9) | 55(4) |
Renewable and Sustainable Energy Reviews | 14 | 182 | 13.00 | 8 | 258 | 3.63(Q1) | Netherlands | 0 | 0 | 0 | 0 | 168(1) | 12(13) |
Energies | 13 | 143 | 11.00 | 7 | 78 | 0.64(Q2) | Switzerland | 0 | 0 | 0 | 2(2) | 38(2) | 19(9) |
Environmental Science and Pollution Research | 12 | 43 | 3.58 | 5 | 98 | 0.79(Q2) | Germany | 0 | 0 | 0 | 0 | 42(2) | 16(10) |
International Journal of Environmental Research and Public Health | 12 | 80 | 6.67 | 5 | 92 | 0.74(Q2) | Switzerland | 0 | 0 | 0 | 0 | 121(1) | 14(11) |
Resources | 12 | 93 | 7.75 | 6 | 24 | 0.72(Q2) | Switzerland | 0 | 0 | 0 | 0 | 33(3) | 20(9) |
Technological Forecasting and Social Change | 12 | 289 | 24.08 | 6 | 103 | 1.82(Q1) | USA | 0 | 0 | 0 | 0 | 177(1) | 15(11) |
Forest Policy and Economics | 11 | 201 | 18.27 | 8 | 64 | 1.13(Q1) | Netherlands | 0 | 0 | 0 | 0 | 30(3) | 21(8) |
Author | A | TC | TC/A | Institution | C | 1st A | Last A | H-Index |
---|---|---|---|---|---|---|---|---|
Thrän, D. | 14 | 206 | 14.71 | Helmholtz Zentrum für Umweltforschung | Germany | 2017 | 2020 | 9 |
Toppinen, A. | 11 | 554 | 50.36 | Helsingin Yliopisto | Finland | 2014 | 2021 | 9 |
Bezama, A. | 9 | 165 | 18.33 | Helmholtz Zentrum für Umweltforschung | Germany | 2017 | 2020 | 7 |
Molina-Moreno, V. | 9 | 218 | 24.22 | Universidad de Granada | Spain | 2017 | 2021 | 7 |
Ulgiati, S. | 9 | 1523 | 169.22 | Beijing Normal University | China | 2014 | 2021 | 6 |
Bocken, N. | 8 | 256 | 32.00 | The International Institute for Industrial Environmental Economics | Sweden | 2018 | 2021 | 5 |
Dewulf, J. | 8 | 280 | 35.00 | Universiteit Gent | Belgium | 2017 | 2020 | 5 |
Kopnina, H. | 8 | 141 | 17.63 | The Hague University of Applied Sciences | Netherlands | 2014 | 2020 | 7 |
Azapagic, A. | 7 | 138 | 19.71 | The University of Manchester | UK | 2019 | 2020 | 7 |
Iacovidou, E. | 7 | 259 | 37.00 | Brunel University London | UK | 2017 | 2021 | 5 |
Institution | C | A | TC | TC/A | H-Index | IC (%) | TCIC | TCNIC | 2004–2018 | 2019–2021 (*) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IC | NIC | IC | NIC | |||||||||
Delft University of Technology | Netherlands | 47 | 1985 | 42.23 | 16 | 55.3% | 63.65 | 15.71 | 13 | 5 | 13 | 16 |
Aalto University | Finland | 25 | 274 | 10.96 | 9 | 48.0% | 13.75 | 8.38 | 4 | 6 | 8 | 7 |
Danmarks Tekniske Universitet | Denmark | 24 | 313 | 13.04 | 8 | 50.0% | 11.75 | 14.33 | 2 | 3 | 10 | 9 |
Alma Mater Studiorum Università di Bologna | Italy | 23 | 1577 | 68.57 | 8 | 30.4% | 212.14 | 5.75 | 4 | 4 | 3 | 12 |
Helsingin Yliopisto | Finland | 22 | 779 | 35.41 | 10 | 50.0% | 55.18 | 15.64 | 5 | 3 | 6 | 8 |
Wageningen University & Research | Netherlands | 22 | 570 | 25.91 | 10 | 63.6% | 37.00 | 6.50 | 5 | 1 | 9 | 7 |
Parthenope University of Naples | Italy | 22 | 1616 | 73.45 | 9 | 63.6% | 110.79 | 8.13 | 7 | 1 | 7 | 7 |
Lunds Universitet | Sweden | 21 | 702 | 33.43 | 12 | 76.2% | 27.44 | 52.60 | 7 | 3 | 9 | 2 |
Utrecht University | Netherlands | 20 | 586 | 29.30 | 8 | 45.0% | 32.00 | 27.09 | 1 | 2 | 8 | 9 |
Helmholtz Zentrum für Umweltforschung | Germany | 20 | 704 | 35.20 | 13 | 20.0% | 98.50 | 19.38 | 2 | 5 | 2 | 11 |
Country | A | TC | TC/A | H-Index | R(A) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2004–2006 | 2007–2009 | 2010–2012 | 2013–2015 | 2016–2018 | 2019–2021 (*) | |||||
Italy | 331 | 5057 | 15.28 | 30 | 0 | 5(1) | 6(1) | 3(7) | 1(74) | 1(248) |
UK | 232 | 6295 | 27.13 | 37 | 0 | 3(3) | 10(1) | 2(9) | 2(72) | 3(147) |
Spain | 223 | 2086 | 9.35 | 23 | 0 | 0 | 0 | 6(4) | 3(49) | 2(170) |
Germany | 177 | 2424 | 13.69 | 25 | 0 | 0 | 0 | 8(3) | 5(43) | 4(131) |
USA | 168 | 2496 | 14.86 | 28 | 0 | 1(4) | 3(2) | 4(7) | 6(43) | 5(112) |
Netherlands | 151 | 3917 | 25.94 | 28 | 0 | 0 | 8(1) | 5(4) | 4(45) | 6(101) |
China | 134 | 3380 | 25.22 | 26 | 2(1) | 2(3) | 1(4) | 1(10) | 9(25) | 7(91) |
Finland | 114 | 2965 | 26.01 | 26 | 0 | 0 | 0 | 14(1) | 7(38) | 11(75) |
Sweden | 112 | 3985 | 35.58 | 24 | 0 | 0 | 9(1) | 9(3) | 8(30) | 10(78) |
France | 100 | 1375 | 13.75 | 23 | 0 | 0 | 0 | 15(1) | 10(21) | 9(78) |
Country | NC | Main Collaborators | IC (%) | TC/A | |
---|---|---|---|---|---|
IC | NIC | ||||
Italy | 46 | Spain. Germany. France. Sweden. Netherlands. | 42.0% | 23.09 | 9.63 |
UK | 61 | Spain. USA. Netherlands. China. France. | 57.3% | 24.61 | 30.53 |
Spain | 49 | Italy. UK. Germany. Portugal. Belgium. | 46.6% | 10.60 | 8.27 |
Germany | 51 | Italy. Netherlands. Austria. Finland. France. | 46.9% | 15.86 | 11.79 |
USA | 42 | China. France. UK. Italy. Finland. | 58.9% | 17.27 | 11.39 |
Netherlands | 38 | Germany. Belgium. Italy. UK. France. | 59.6% | 33.21 | 15.21 |
China | 43 | USA. Italy. UK. Malaysia. Australia. | 64.9% | 32.22 | 12.28 |
Finland | 30 | Sweden. Germany. USA. Austria. France. | 50.9% | 37.26 | 14.36 |
Sweden | 36 | Finland. Italy. UK. Netherlands. France. | 64.3% | 42.42 | 23.28 |
France | 57 | Italy. USA. Netherlands. Germany. UK. | 76.0% | 16.21 | 5.96 |
Keyword | 2004–2021 | 2004–2006 | 2007–2009 | 2010–2012 | 2013–2015 | 2016–2018 | 2019–2021 (*) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | % | R (A) | % | R (A) | % | R (A) | % | R (A) | % | R (A) | % | R (A) | % | |
Sustainable Development | 820 | 42% | 1 (3) | 100% | 1 (4) | 33% | 1 (6) | 46% | 1 (25) | 48% | 1 (197) | 43% | 1 (585) | 41% |
Recycling | 294 | 15% | 0 | 0% | 4 (3) | 25% | 101 (1) | 8% | 2 (8) | 15% | 2 (66) | 15% | 2 (216) | 15% |
Waste Management | 247 | 13% | 2 (2) | 67% | 0 | 0% | 0 | 0% | 31 (3) | 6% | 4 (54) | 12% | 3 (188) | 13% |
Life Cycle Assessment (LCA) | 213 | 11% | 0 | 0% | 0 | 0% | 0 | 0% | 371 (1) | 2% | 3 (65) | 14% | 5 (147) | 10% |
Life Cycle | 212 | 11% | 0 | 0% | 0 | 0% | 0 | 0% | 64 (2) | 4% | 5 (52) | 11% | 4 (158) | 11% |
Environmental Impact | 178 | 9% | 0 | 0% | 0 | 0% | 56 (1) | 8% | 26 (3) | 6% | 7 (43) | 9% | 6 (131) | 9% |
Environmental Sustainability | 165 | 8% | 0 | 0% | 0 | 0% | 0 | 0% | 27 (3) | 6% | 8 (38) | 8% | 7 (124) | 9% |
Environmental Economics | 153 | 8% | 0 | 0% | 0 | 0% | 0 | 0% | 9 (5) | 10% | 9 (32) | 7% | 8 (116) | 8% |
Economics | 152 | 8% | 0 | 0% | 56 (1) | 8% | 45 (1) | 8% | 5 (6) | 12% | 6 (48) | 11% | 9 (96) | 7% |
Decision Making | 120 | 6% | 0 | 0% | 46 (1) | 8% | 29 (1) | 8% | 44 (2) | 4% | 17 (25) | 6% | 10 (91) | 6% |
Life Cycle Analysis | 120 | 6% | 0 | 0% | 99 (1) | 8% | 0 | 0% | 65 (2) | 4% | 10 (32) | 7% | 11 (85) | 6% |
Climate Change | 114 | 6% | 0 | 0% | 35 (1) | 8% | 19 (1) | 8% | 8 (5) | 10% | 18 (24) | 5% | 12 (83) | 6% |
Biomass | 104 | 5% | 0 | 0% | 26 (1) | 8% | 15 (1) | 8% | 7 (5) | 10% | 16 (25) | 5% | 14 (72) | 5% |
Economic Aspect | 101 | 5% | 0 | 0% | 0 | 0% | 0 | 0% | 47 (2) | 4% | 22 (19) | 4% | 13 (80) | 6% |
Supply Chains | 98 | 5% | 0 | 0% | 0 | 0% | 0 | 0% | 78 (2) | 4% | 13 (27) | 6% | 16 (69) | 5% |
Innovation | 97 | 5% | 0 | 0% | 0 | 0% | 0 | 0% | 10 (5) | 10% | 11 (29) | 6% | 17 (63) | 4% |
Economic and Social Effects | 90 | 5% | 0 | 0% | 0 | 0% | 0 | 0% | 46 (2) | 4% | 15 (26) | 6% | 18 (62) | 4% |
Industrial Economics | 88 | 4% | 0 | 0% | 0 | 0% | 0 | 0% | 14 (4) | 8% | 12 (27) | 6% | 20 (57) | 4% |
Supply Chain Management | 82 | 4% | 0 | 0% | 0 | 0% | 113 (1) | 8% | 0 | 0% | 21 (20) | 4% | 19 (61) | 4% |
Environmental Management | 80 | 4% | 0 | 0% | 0 | 0% | 57 (1) | 8% | 56 (2) | 4% | 19 (23) | 5% | 22 (54) | 4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Segura, E.; Batlles-delaFuente, A.; González-Zamar, M.-D.; Belmonte-Ureña, L.J. Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study. Sustainability 2021, 13, 7182. https://doi.org/10.3390/su13137182
Abad-Segura E, Batlles-delaFuente A, González-Zamar M-D, Belmonte-Ureña LJ. Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study. Sustainability. 2021; 13(13):7182. https://doi.org/10.3390/su13137182
Chicago/Turabian StyleAbad-Segura, Emilio, Ana Batlles-delaFuente, Mariana-Daniela González-Zamar, and Luis Jesús Belmonte-Ureña. 2021. "Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study" Sustainability 13, no. 13: 7182. https://doi.org/10.3390/su13137182
APA StyleAbad-Segura, E., Batlles-delaFuente, A., González-Zamar, M.-D., & Belmonte-Ureña, L. J. (2021). Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study. Sustainability, 13(13), 7182. https://doi.org/10.3390/su13137182