Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework
Abstract
:1. Introduction
2. Theoretical Framework
3. Materials and Methods
4. Results
4.1. Kalundborg Industrial District/Denmark
4.1.1. Action Situation
4.1.2. Biophysical Conditions
4.1.3. Community Attributes
4.1.4. Rules in Use
4.2. Ulsan Industrial District, South Korea
4.2.1. Action Situation
4.2.2. Biophysical Conditions
4.2.3. Community Attributes
4.2.4. Rules in Use
4.3. Kwinana Industrial District, Australia
4.3.1. Action Situation
4.3.2. Biophysical Conditions
4.3.3. Community Attributes
4.3.4. Rules in Use
5. Discussion
- There must be a diversity of industries in the region.
- Exchanges of by-products must be economically viable.
- Environmental issues such as water scarcity and pollution drive the adoption of IS practices.
- Initial exchanges are based on bilateral agreements over energy cogeneration, cascading use of resources, and shared services.
- Stakeholder engagement occurs in forums, clubs, councils, and associations.
- The level of trust in relationships corresponds to the level of cooperation between companies.
- Communication and information sharing strategies reinforce relationships of trust and cooperation.
- The regulatory framework must be consistent with policies for sustainable industrial development and integrated at national, regional, and local levels.
- The government and companies’ actions must be congruent to create a cooperative environment.
- The ideal governance structure should involve local government, companies, R&D institutions, and a coordinating entity or champion.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colby, M.E. Environmental Management in Development: The Evolution of Paradigms. Ecol. Econ. 1991, 3, 193–213. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, Circular, Bio Economy: A Comparative Analysis of Sustainability Avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Saavedra, Y.M.B.B.; Iritani, D.R.; Pavan, A.L.R.R.; Ometto, A.R. Theoretical Contribution of Industrial Ecology to Circular Economy. J. Clean. Prod. 2018, 170, 1514–1522. [Google Scholar] [CrossRef]
- Baas, L. Industrial Symbiosis in the Rotterdam Harbour and Industry Complex: Reflections on the Interconnection of the Techno-Sphere with the Social System. Bus. Strateg. Environ. 2008, 17, 330–340. [Google Scholar] [CrossRef]
- Bursztyn, M.; Bursztyn, M.A. Fundamentos de Política e Gestão Ambiental; Garamond: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Wallner, H.P. Towards Sustainable Development of Industry: Networking, Complexity and Eco-Clusters. J. Clean. Prod. 1999, 7, 49–58. [Google Scholar] [CrossRef]
- Boons, F.A.; Howard-Grenville, J. Introducing the Social Embeddedness of Industrial Ecology. In The Social Embeddedness of Industrial Ecology; Boons, F.A., Howard-Grenville, J., Eds.; Edward Elgar Publishing Ltd.: Cheltenham, UK; Northampton, MA, USA, 2009; pp. 3–27. [Google Scholar]
- Ayres, R.U.; Ayres, L.W. A Handbook of Industrial Ecology; Edward Elgar Publishing Ltd.: Cheltenham, UK; Northampton, MA, USA,, 2002. [Google Scholar] [CrossRef]
- Chertow, M.R. INDUSTRIAL SYMBIOSIS: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef] [Green Version]
- Erkman, S. Industrial Ecology: An Historical View. J. Clean. Prod. 1997, 5, 1–10. [Google Scholar] [CrossRef]
- Frosch, R.A.; Gallopoulos, N.E. Strategies for Manufacturing. Sci. Am. 1989, 144–152. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Azevedo, S.G.; Matias, J.C.O.O. A Comprehensive Review of Industrial Symbiosis. J. Clean. Prod. 2020, 247, 119113. [Google Scholar] [CrossRef]
- Bain, A.; Shenoy, M.; Ashton, W.S.; Chertow, M.R. Industrial Symbiosis and Waste Recovery in an Indian Industrial Area. Resour. Conserv. Recycl. 2010, 54, 1278–1287. [Google Scholar] [CrossRef]
- Chertow, M.R.; Lombardi, D.R. Quantifying Economic and Environmental Benefits of Co-Located Firms. Environ. Sci. Technol. 2005, 39, 6535–6541. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, N.B. Industrial Symbiosis in Kalundborg, Denmark-A Quantitative Assessment of Economic and Environmental Aspects. J. Ind. Ecol. 2006, 10, 239–255. [Google Scholar] [CrossRef]
- van Berkel, R. Comparability of Industrial Symbioses. J. Ind. Ecol. 2009, 13. [Google Scholar] [CrossRef]
- European Commission. Cooperation Fostering Industrial Symbiosis: Market. Potential, Good Practice and Policy Actions; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Laybourn, P.; Morrissey, M. National Industrial Symbiosis Programme The Pathway To A Low Carbon Sustainable Economy; International Synergies Ltd.: Birmingham, UK, 2009. [Google Scholar]
- Branca, T.A.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe. Metals 2020, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dong, L.; Li, H.; Fujita, T.; Ohnishi, S.; Tang, Q. Analysis of Low-Carbon Industrial Symbiosis Technology for Carbon Mitigation in a Chinese Iron/Steel Industrial Park: A Case Study with Carbon Flow Analysis. Energy Policy 2013, 61, 1400–1411. [Google Scholar] [CrossRef]
- Yu, B.; Li, X.; Shi, L.; Qian, Y. Quantifying CO2emission Reduction from Industrial Symbiosis in Integrated Steel Mills in China. J. Clean. Prod. 2015, 103, 801–810. [Google Scholar] [CrossRef]
- Ammenberg, J.; Baas, L.; Eklund, M.; Feiz, R.; Helgstrand, A.; Marshall, R. Improving the CO2 Performance of Cement, Part III: The Relevance of Industrial Symbiosis and How to Measure Its Impact. J. Clean. Prod. 2015, 98, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, S.; Fujita, T.; Geng, Y.; Nagasawa, E. Realizing CO2 Emission Reduction through Industrial Symbiosis: A Cement Production Case Study for Kawasaki. Resour. Conserv. Recycl. 2010, 54, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Marconi, M.; Gregori, F.; Germani, M.; Papetti, A.; Favi, C. An Approach to Favor Industrial Symbiosis: The Case of Waste Electrical and Electronic Equipment. Procedia Manuf. 2018, 21, 502–509. [Google Scholar] [CrossRef]
- Cohen-Rosenthal, E. A Walk on the Human Side of Industrial Ecology. Am. Behav. Sci. 2000, 44, 245–264. [Google Scholar] [CrossRef]
- Boons, F.; Spekkink, W.; Jiao, W. A Process Perspective on Industrial Symbiosis: Theory, Methodology, and Application. J. Ind. Ecol. 2014, 18, 341–355. [Google Scholar] [CrossRef]
- Gibbs, D.; Deutz, P.; Proctor, A. Industrial Ecology and Eco-Industrial Development: A Potential Paradigm for Local and Regional Development? Reg. Stud. 2005, 39, 171–183. [Google Scholar] [CrossRef]
- Belaud, J.P.; Adoue, C.; Vialle, C.; Chorro, A.; Sablayrolles, C. A Circular Economy and Industrial Ecology Toolbox for Developing an Eco-Industrial Park: Perspectives from French Policy. Clean Technol. Environ. Policy 2019, 21, 967–985. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Liu, C.; Côté, R.; Liu, W. Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China. Sustainability 2018, 10, 3873. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ma, C.; Zhang, K. Going beyond the Sectoral Boundary: A Key Stage in the Development of a Regional Industrial Ecosystem. J. Clean. Prod. 2012, 22, 42–49. [Google Scholar] [CrossRef]
- Lombardi, R. Non-Technical Barriers to (And Drivers for) the Circular Economy through Industrial Symbiosis: A Practical Input. Econ. Policy Energy Environ. 2017, 2017, 171–189. [Google Scholar] [CrossRef]
- Mortensen, L.; Kørnøv, L. Critical Factors for Industrial Symbiosis Emergence Process. J. Clean. Prod. 2019, 212, 56–69. [Google Scholar] [CrossRef]
- Valentine, S.V. Kalundborg Symbiosis: Fostering Progressive Innovation in Environmental Networks. J. Clean. Prod. 2016, 118, 65–77. [Google Scholar] [CrossRef]
- Walls, J.L.; Paquin, R.L. Organizational Perspectives of Industrial Symbiosis: A Review and Synthesis. Organ. Environ. 2015, 28, 32–53. [Google Scholar] [CrossRef]
- Jiao, W.; Boons, F. Toward a Research Agenda for Policy Intervention and Facilitation to Enhance Industrial Symbiosis Based on a Comprehensive Literature Review. J. Clean. Prod. 2014, 67, 14–25. [Google Scholar] [CrossRef]
- Boons, F.; Chertow, M.R.; Park, J.; Spekkink, W.; Shi, H. Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework. J. Ind. Ecol. 2016, 21, 938–952. [Google Scholar] [CrossRef]
- Doménech, T.; Davies, M. The Social Aspects of Industrial Symbiosis: The Application of Social Network Analysis to Industrial Symbiosis Networks. Prog. Ind. Ecol. 2009, 6, 68–99. [Google Scholar] [CrossRef]
- McGinnis, M.D. An Introduction to IAD and the Language of the Ostrom Workshop: A Simple Guide to a Complex Framework. Policy Stud. J. 2011, 39, 169–183. [Google Scholar] [CrossRef]
- Branson, C.R.C. Re-Constructing Kalundborg: The Reality of Bilateral Symbiosis and Other Insights. J. Clean. Prod. 2016, 112, 4344–4352. [Google Scholar] [CrossRef]
- Lombardi, D.R.; Laybourn, P. Redefining Industrial Symbiosis: Crossing Academic-Practitioner Boundaries. J. Ind. Ecol. 2012, 16, 28–37. [Google Scholar] [CrossRef]
- Mirata, M. Experiences from Early Stages of a National Industrial Symbiosis Programme in the UK: Determinants and Coordination Challenges. J. Clean. Prod. 2004, 12, 967–983. [Google Scholar] [CrossRef]
- Heeres, R.R.; Vermeulen, W.J.V.; de Walle, F.B. Eco-Industrial Park Initiatives in the USA and the Netherlands: First Lessons. J. Clean. Prod. 2004, 12, 985–995. [Google Scholar] [CrossRef]
- Jacobsen, N.B. Do Social Factors Really Matter When Companies Engage in Industrial Symbiosis? Prog. Ind. Ecol. 2007, 4, 440–462. [Google Scholar] [CrossRef]
- Roberts, B.H. The Application of Industrial Ecology Principles and Planning Guidelines for the Development of Eco-Industrial Parks: An Australian Case Study. J. Clean. Prod. 2004, 12, 997–1010. [Google Scholar] [CrossRef]
- Hewes, A.K.; Lyons, D.I. The Humanistic Side of Eco-Industrial Parks: Champions and the Role of Trust. Reg. Stud. 2008, 42, 1329–1342. [Google Scholar] [CrossRef]
- Jensen, P.D.; Basson, L.; Hellawell, E.E.; Bailey, M.R.; Leach, M. Quantifying “Geographic Proximity”: Experiences from the United Kingdom’s National Industrial Symbiosis Programme. Resour. Conserv. Recycl. 2011, 55, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.C.S.D.; Ceglia, D. On the Implementation of a Circular Economy: The Role of Institutional Capacity-Building through Industrial Symbiosis. Resour. Conserv. Recycl. 2018, 138, 99–109. [Google Scholar] [CrossRef]
- Jensen, P.D. The role of geospatial industrial diversity in the facilitation of regional industrial symbiosis. Resour. Conserv. Recycl. 2016, 107, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Ashton, W.S. Understanding the Organization of Industrial Ecosystems: A Social Network Approach. J. Ind. Ecol. 2008, 12, 34–51. [Google Scholar] [CrossRef]
- Chertow, M.R.; Ashton, W.S.; Espinosa, J.C. Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies. Reg. Stud. 2008, 42, 1299–1312. [Google Scholar] [CrossRef]
- Ashton, W.S.; Bain, A.C. Assessing the “Short Mental Distance” in Eco-Industrial Networks. J. Ind. Ecol. 2012, 16, 70–82. [Google Scholar] [CrossRef]
- Corder, G.D.; Golev, A.; Fyfe, J.; King, S. The Status of Industrial Ecology in Australia: Barriers and Enablers. Resources 2014, 3, 340–361. [Google Scholar] [CrossRef]
- Golev, A.; Corder, G.D.; Giurco, D.P. Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid. J. Ind. Ecol. 2015, 19, 141–153. [Google Scholar] [CrossRef]
- Kokoulina, L.; Ermolaeva, L.; Patala, S.; Ritala, P. Championing Processes and the Emergence of Industrial Symbiosis. Reg. Stud. 2019, 53, 528–539. [Google Scholar] [CrossRef]
- Ceglia, D.; de Abreu, M.C.S.; Da Silva, F.J.C.L. Critical Elements for Eco-Retrofitting a Conventional Industrial Park: Social Barriers to Be Overcome. J. Environ. Manag. 2017, 187, 375–383. [Google Scholar] [CrossRef]
- Gibbs, D. Trust and Networking in Inter-Firm Relations: The Case of Eco-Industrial Development. Local Econ. 2003, 18, 222–236. [Google Scholar] [CrossRef]
- Branson, C.R.C. Bilaterial Industrial Symbiosis: An Assessment of Its Potential in New South Wales to Deal Sustainably with Manufacturing Waste. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2011. [Google Scholar]
- Spekkink, W. Institutional Capacity Building for Industrial Symbiosis in the Canal Zone of Zeeland in the Netherlands: A Process Analysis. J. Clean. Prod. 2013, 52, 342–355. [Google Scholar] [CrossRef]
- Ristola, P.; Mirata, M. Industrial Symbiosis for More Sustainable, Localised Industrial Systems. Prog. Ind. Ecol. An. Int. J. 2007, 4, 184. [Google Scholar] [CrossRef]
- Yap, N.T.; Devlin, J.F. Explaining Industrial Symbiosis Emergence, Development, and Disruption: A Multilevel Analytical Framework. J. Ind. Ecol. 2017, 21, 6–15. [Google Scholar] [CrossRef]
- Behera, S.K.; Kim, J.H.; Lee, S.Y.; Suh, S.; Park, H.S. Evolution of “designed” Industrial Symbiosis Networks in the Ulsan Eco-Industrial Park: “Research and Development into Business” as the Enabling Framework. J. Clean. Prod. 2012, 29–30, 103–112. [Google Scholar] [CrossRef]
- Lehtoranta, S.; Nissinen, A.; Mattila, T.; Melanen, M. Industrial Symbiosis and the Policy Instruments of Sustainable Consumption and Production. J. Clean. Prod. 2011, 19, 1865–1875. [Google Scholar] [CrossRef]
- Van Berkel, R.; Fujita, T.; Hashimoto, S.; Geng, Y. Industrial and Urban Symbiosis in Japan: Analysis of the Eco-Town Program 1997–2006. J. Environ. Manage 2009, 90, 1544–1556. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.A.; Tan, H. Progress toward a Circular Economy in China: The Drivers (and Inhibitors) of Eco-Industrial Initiative. J. Ind. Ecol. 2011, 13, 435–457. [Google Scholar] [CrossRef]
- Boons, F.; Spekkink, W.; Mouzakitis, Y. The Dynamics of Industrial Symbiosis: A Proposal for a Conceptual Framework Based upon a Comprehensive Literature Review. J. Clean. Prod. 2011, 19, 905–911. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Jensen, P.D. Promoting Industrial Symbiosis: Using the Concept of Proximity to Explore Social Network Development. J. Ind. Ecol. 2016, 20, 700–709. [Google Scholar] [CrossRef] [Green Version]
- van Beers, D.; Corder, G.; Bossilkov, A.; Van Berkel, R. Industrial Symbiosis in the Australian Minerals Industry: The Cases of Kwinana and Gladstone. J. Ind. Ecol. 2007, 11, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Rene, E.R.; Choi, S.M.; Chiu, A.S.F. Strategies for Sustainable Development of Industrial Park in Ulsan, South Korea-From Spontaneous Evolution to Systematic Expansion of Industrial Symbiosis. J. Environ. Manag. 2008, 87, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ruth, M. The Development of Regional Collaboration for Resource Efficiency: A Network Perspective on Industrial Symbiosis. Comput. Environ. Urban. Syst. 2014, 44, 37–46. [Google Scholar] [CrossRef]
- Cronin, P.; Ryan, F.; Coughlan, M. Undertaking a Literature Review: A Step-by-Step Approach. Br. J. Nurs. 2008, 17, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.; Cumpston, M.; Thomas, J.; Higgins, J.P.T.; Deeks, J.J.C.M. Introduction. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J.W.V., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2021. [Google Scholar]
- Hess, C.; Ostrom, E. A Framework for Analyzing the Knowledge Commons. In Understanding Knowledge as a Commons: From Theory to Practice; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Ostrom, E. Background on the Institutional Analysis and Development Framework. Policy Stud. J. 2011, 39, 7–27. [Google Scholar] [CrossRef]
- Cole, D.H.; Epstein, G.; McGinnis, M.D. Combining the IAD and SES Frameworks. Int. J. Commons 2019, 13, 244. [Google Scholar] [CrossRef]
- Grann, H. The Industrial Symbiosis at Kalundborg, Denmark. In The Industrial Green Game: Implications for Environmental Design and Management; National Academy Press: Washington, DC, USA, 1997; pp. 117–123. [Google Scholar] [CrossRef]
- Bailey, R.; Bras, B.; Allen, J.K. Using Robust Concept Exploration and Systems Dynamics Models in the Design of Complex Industrial Ecosystems. Eng. Optim. 1999, 32, 33–58. [Google Scholar] [CrossRef]
- Domenech, T.; Davies, M. Structure and Morphology of Industrial Symbiosis Networks: The Case of Kalundborg. Procedia Soc. Behav. Sci. 2011, 10, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, N.B.; Anderberg, S. Understanding the Evolution of Industrial Symbiotic Networks: The Case of Kalundborg. In Economics of Industrial Ecology: Materials, Structural Change, and Spatial Scales; MIT Press: Cambridge, MA, USA, 2005; pp. 313–336. [Google Scholar]
- Ehrenfeld, J.; Gertler, N. Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. J. Ind. Ecol. 1997, 1, 67–79. [Google Scholar] [CrossRef]
- Lowe, E.a. Eco-Industrial Handbook for Asian Developing Countries. Rep. to Environ. Dep. Asian Dev. Bank 2001, 2001, 1–312. [Google Scholar]
- Garg, S. Venture Boards: Distinctive Monitoring and Implications for Firm Performance. Acad. Manag. Rev. 2013, 38, 90–108. [Google Scholar] [CrossRef]
- Chertow, M.R. Uncovering Industrial Symbiosis. J. Ind. Ecol. 2007, 11, 11–30. [Google Scholar] [CrossRef]
- Desrochers, P. Cities and Industrial Symbiosis: Some Historical Perspectives and Policy Implications. J. Ind. Ecol. 2001, 5, 29–44. [Google Scholar] [CrossRef]
- Olesen, M.P. Industrial Symbiosis in Kalundborg. VGB PowerTech 1999, 79, 52–54. [Google Scholar]
- Chertow, M.R.; Ashton, W.S. The Social Embeddedness of Industrial Symbiosis Linkages in Puerto Rican Industrial Regions. In The Social Embeddedness of Industrial Ecology; Boons, F.A., Howard-Grenville, J., Eds.; Edward Elgar Publishing Ltd.: Cheltenham, UK; Northampton, MA, USA, 2009. [Google Scholar]
- Nooij, S. An Ontology of Industrial Symbiosis: The Design of a Support Tool for Collaborative Industrial Symbiosis Research with as Test Cases from Tianjin Economic Development Area and Kalundborg. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2014. [Google Scholar]
- Zaoual, A.-R.R.; Lecocq, X. Orchestrating Circularity within Industrial Ecosystems: Lessons from Iconic Cases in Three Different Countries. Calif. Manage. Rev. 2018, 60, 133–156. [Google Scholar] [CrossRef]
- Symbiosis Center Denmark. Available online: https://symbiosecenter.dk/en/the-process/ (accessed on 23 February 2021).
- Park, H.S. Eco-Efficient and Sustainable Urban. Infrastruture Development in Asia and Latin America-Case Study: Eco-Industrial Park in Ulsan, Republic of Korea; Economic Commission for Latin America and the Caribbean (ECLAC): Ulsan, Korea, 2008. [Google Scholar]
- Park, H.S.; Won, J.Y. Ulsan Eco-Industrial Park: Challenges and Opportunities. J. Ind. Ecol. 2007, 11, 11–13. [Google Scholar] [CrossRef]
- Park, H.S.; Choi, S.-M.; Lee, S.Y. Strategies for Sustainable Development of Industrial Park—Planning for Eco-Industrial Park in Ulsan, Korea. In Proceedings of the 13th Northeast Asian Conference on Environmental Cooperation, Seoul, Korea, 20–22 December 2004. [Google Scholar]
- The World Bank Group. An. International Framework for Eco-Industrial Parks; The World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Kim, E.J. Greening Industrial Parks—A Case Study on South. Korea’s Eco- Industrial Park Program; Global Green Growth Institute: Seoul, Korea, 2017. [Google Scholar]
- Han, S. Memories of the City, the Old Future of Ulsan (26): Air Pollution from Industrial Complexes Chocked Students and Teachers Nearby (in Korean). Available online: http://www.ksilbo.co.kr/news/articleView.html?idxno=507062 (accessed on 15 January 2021).
- Lee, Y. Pollution Caused Damage to Agricultural Products in Ulsan Worth of KRW 1.1 Billion (in Korean). Available online: http://www.seoul.co.kr/news/newsView.php?id=19910128010001&rftime=20150630&redirect=false. (accessed on 5 January 2021).
- Moon, T.H. Korea ’s Sustainable Development Strategy. Korea Obs. 2009, 40, 85–114. [Google Scholar]
- Park, H.S.; Behera, S.K. Role of Eco-Production in Managing Energy and Environmental Sustainability in Cities: A Lesson from Ulsan Metropolis, South Korea. In Cities and Sustainability: Issues and Strategic Pathways; Springer: New Delhi, India, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Park, J.M.; Park, J.Y.; Park, H.S. A Review of the National Eco-Industrial Park Development Program in Korea: Progress and Achievements in the First Phase, 2005. J. Clean. Prod. 2015, 114, 33–44. [Google Scholar] [CrossRef]
- Susur, E.; Hidalgo, A.; Chiaroni, D. The Emergence of Regional Industrial Ecosystem Niches: A Conceptual Framework and a Case Study. J. Clean. Prod. 2019, 208, 1642–1657. [Google Scholar] [CrossRef]
- Mat, N.; Cerceau, J.; Shi, L.; Park, H.S.; Junqua, G.; Lopez-Ferber, M. Socio-Ecological Transitions toward Low-Carbon Port Cities: Trends, Changes and Adaptation Processes in Asia and Europe. J. Clean. Prod. 2016, 114, 362–375. [Google Scholar] [CrossRef]
- MacLachlan, I. Kwinana Industrial Area: Agglomeration Economies and Industrial Symbiosis on Western Australia’s Cockburn Sound. Aust. Geogr. 2013, 44, 383–400. [Google Scholar] [CrossRef]
- van Beers, D.; Bossilkov, A.; van Berkel, R. A Regional Synergy Approach to Advance Sustainable Water Use: A Case Study Using Kwinana (Western Australia). Australas. J. Environ. Manag. 2008, 15, 149–158. [Google Scholar] [CrossRef]
- van Beers, D. Application of the Cleaner Production Framework to the Development of Regional Synergies in Heavy Industrial Areas: A Case Study of Kwinana (Western, Australia). Ph.D. Thesis, Curtin University of Technology, Bentley, Australia, 2009. [Google Scholar]
- Harris, S. Industrial Symbiosis in the Kwinana Industrial Area (Western Australia). Meas. Control. 2007, 40, 239–244. [Google Scholar] [CrossRef]
- van Beers, D.; Corder, G.D.; Bossilkov, A.; van Berkel, R. Regional Synergies in the Australian Minerals Industry: Case-Studies and Enabling Tools. Miner. Eng. 2007, 20, 830–841. [Google Scholar] [CrossRef]
- Rosano, M.; Schianetz, K. Measuring Sustainability Performance in Industrial Parks: A Case Study of the Kwinana Industrial Area. Int. J. Sustain. Dev. 2014, 17, 261–280. [Google Scholar] [CrossRef] [Green Version]
- van Beers, D. Capturing Regional Synergies in the Kwinana Industrial Area; Centre for Sustainable Resource Processing (CSRP): Bentley, Australia, 2008. [Google Scholar]
- Kurup, B.; Stehlik, D. Towards a Model to Assess the Sustainability Implications of Industrial Symbiosis in Eco-Industrial Parks. Prog. Ind. Ecol. 2009, 6, 103–119. [Google Scholar] [CrossRef]
- Rayner, K. Development of an Environmental Protection Policy for Air Quality at Kwinana; Environmental Protection Authority: Perth, Australia, 1992; pp. 1–42. [Google Scholar]
- Verstegen, P. Capacity Building and Resource Exchange Kwinana Industries—A Western Australian Contribution to Industrial Ecology Examining Mechanisms for Sustainable Industrial Development. In Proceedings of the International Sustainability Conference, Fremantle, Australia, 17–19 September 2003. [Google Scholar]
- Bossilkov, A.; Van Beers, D.; Van Behkel, R. Industrial Symbiosis as an Integrative Business Practice in Kwinana Industrial Area, Lessons Learnt and Ways Forward. In Proceedings of the 11th International Sustainable Development Research Conference, Helsinki, Finland, 6–8 June 2005. [Google Scholar]
- Giurco, D.; Bossilkov, A.; Patterson, J.; Kazaglis, A. Developing Industrial Water Reuse Synergies in Port Melbourne: Cost Effectiveness, Barriers and Opportunities. J. Clean. Prod. 2011, 19, 867–876. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Van Berkel, R.; Kurup, B. Fostering Industrial Symbiosis for Regional Sustainable Development Outcomes. In Proceedings of the Corporate Responsibility Research Conference, Belfast, UK, 7–9 September 2008; pp. 1–21. [Google Scholar]
- Kurup, B.R. Methodology for Capturing Environmental, Social and Economic Implications of Industrial Symbiosis in Heavy Industrial Areas. Ph.D. Thesis, Curtin University of Technology, Bentley, Australia, 2007. [Google Scholar]
- Higham, A.; Verstegen, P. Sustainable Production and Consumption Policy Development: A Case Study from Western Australia Andrew. In The International Handbook on Environmental Technology Management; Edward Elgar Publishing Limited: Northampton, MA, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Williamson, O.E. Transaction-Cost Economics: The Governance of Contractual Relations. J. Law Econ. 1979, 22, 233–261. [Google Scholar] [CrossRef]
- Ceglia, D. An Analysis of Instituional Dynamic for Industrial Symbiosis in the United Kingdom. Master’s Thesis, Universidade Federal do Ceará, Ceará, Brazil, 2015. [Google Scholar]
- Ostrom, E. Governing the Commons; Cambridge University Press: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- van Beers, D.; Bossilkov, A.; Lund, C. Development of Large Scale Reuses of Inorganic By-Products in Australia: The Case Study of Kwinana, Western Australia. Resour. Conserv. Recycl. 2009, 53, 365–378. [Google Scholar] [CrossRef]
- Watkins, G.; Husgafvel, R.; Pajunen, N.; Dahl, O.; Heiskanen, K. Overcoming Institutional Barriers in the Development of Novel Process Industry Residue Based Symbiosis Products-Case Study at the EU Level. Miner. Eng. 2013, 41, 31–40. [Google Scholar] [CrossRef]
Protocol Steps | Description | Application |
---|---|---|
(i) Formulate the research question | The research question identifies the problem to be studied and drives the entire SLR process. | How did the implementation process for the industrial ecosystems of the industrial parks of Kalundborg, Denmark; Ulsan, South Korea; and Kwinana, Australia arise? |
(ii) Set inclusion or exclusion criteria | The selection criteria might include databases, keywords, types of journals, language, research period. | We collected data from three major databases: Scopus, Web of Science, and Science Direct. We selected only scientific papers without defining any criteria relative to time. As for keywords, we used combinations that included the terms “industrial ecology” OR “industrial symbiosis” OR “industrial ecosystem” and each of the cases “Ulsan,” “Kalundborg,” and “Kwinana” and in the titles, abstracts, and keywords. |
(iii) Select and access the literature | At this stage, papers are collected, and duplicate documents are eliminated. | After discarding the duplicates, we found the total number of papers for each case: Kalundborg, 55; Ulsan, 24; and Kwinana, 17. |
(iv) Assess the quality of the literature included in the review | Each paper’s abstract, title, keywords are evaluated according to quality criteria. | We analyzed the papers’ abstracts to verify their relevance, alignment, and quality and kept 96 papers. |
(v) Analyze, synthesize, and disclose findings | After the final selection, the entire paper is analyzed. Statistical methods can be used to report the results. | Finally, we read, analyzed, and synthesized all the papers in detail according to the categories in the IAD framework. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, E.; Caldeira-Pires, A.; Barreto, C. Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework. Sustainability 2021, 13, 7123. https://doi.org/10.3390/su13137123
Faria E, Caldeira-Pires A, Barreto C. Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework. Sustainability. 2021; 13(13):7123. https://doi.org/10.3390/su13137123
Chicago/Turabian StyleFaria, Emilia, Armando Caldeira-Pires, and Cristiane Barreto. 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework" Sustainability 13, no. 13: 7123. https://doi.org/10.3390/su13137123
APA StyleFaria, E., Caldeira-Pires, A., & Barreto, C. (2021). Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework. Sustainability, 13(13), 7123. https://doi.org/10.3390/su13137123