A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector
Abstract
:1. Introduction
2. Materials and Methods
- -
- Given the highest number of continuous variables, a principal component analysis (PCA) was performed. PCA is a descriptive method that aims to summarize a data matrix in order to express its structure with a reduced number of dimensions. Thus, PCA is a method for identifying a particular transformation of the observed variables (a linear combination) and trying to explain a large part of the variance of the observed variables with a few components. In order to interpret the factorial weights more easily, it is possible to perform rotations of the factorial axes that maintain scale invariance by simplifying the structure of the weight system. The most commonly used solutions respect the orthogonality of the factors; in the present case, the Varimax rotation [53] was used, which is a useful method when there are several factors and a clear separation between the extracted factors is desired. Based on the rule of having an eigenvalue greater than 1 and on the interpretability of the data, the top 5 factors that explained 60% of the variance were chosen (Table 2).
- -
- Subsequently, a cluster analysis was carried out with the aim of creating homogeneous groups of dairy farms based on the 5 previously extracted factors. Cluster analysis allows the generation of groups in which the points of the same group are more similar to each other than the points of the other clusters. Thus, the technique allows the formation of groups in which the internal inertia is minimal (within inertia), while the inertia between groups is maximal. The clustering technique used was the agglomerative hierarchical technique [54]. According to Ward’s criterion, 10 successive iterations were performed.
3. Results
Empirical Analysis
- -
- CLUSTER 1: Low-Input, Low-Output Farms that Are Attentive to the Environmental Dimension (49.1% of the Sample)
- -
- CLUSTER 2: High-Input, High-Output Farms that Are Attentive to the Economic Dimension (34.3% of the Sample)
- -
- CLUSTER 3: Low-Input, Different-Output Farms that Are Attentive to Social Sustainability (16.6% of the Sample)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat 2019. Available online: https://ec.europa.eu/eurostat/product?code=APRO_MK_POBTA&mode=view (accessed on 22 June 2021).
- Eurostat 2019. Production of Milk on Farms. Available online: https://ec.europa.eu/eurostat/product?code=APRO_MK_FARM&mode=view (accessed on 22 June 2021).
- Battini, F.; Agostini, A.; Tabaglio, V.; Amaducci, S. Environmental impacts of different dairy farming systems in the Po Valley. J. Clean. Prod. 2016, 112, 91–102. [Google Scholar] [CrossRef]
- Istat 2019. Available online: http://dati.istat.it (accessed on 28 May 2021).
- Caroli, M.; Brunetta, F.; Valentino, A. 2019 L’Industria Alimentare in Italia. Sfide, Traiettorie Strategiche e Politiche di Sviluppo. Available online: www.federalimentare.it (accessed on 28 May 2021).
- Banca Dati Nazionale dell’Anagrafe Zootecnica (BDN)—Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”. Available online: https://www.vetinfo.it (accessed on 28 May 2021).
- Bunkus, R.; Theesfeld, I. Land Grabbing in Europe? Socio-Cultural Externalities of Large-Scale Land Acquisitions in East Germany. Land 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Maynard, H.; Nault, J. Big Farms, Small Farms. Strategies in Sustainable Agriculture to Fit All Sizes. 2005. Available online: https://foodsecurecanada.org/sites/foodsecurecanada.org/files/AIC_discussion_paper_Final_ENG1.pdf (accessed on 22 June 2021).
- Adinolfi, F.; Russo, C.; Sabbatini, M. L’evoluzione della Struttura Delle Aziende Agricole Negli Anni ’90: Un’analisi Alla Luce dei Dati Censuari. Econ. Dirit. Agroaliment. 2006, 11, 55–74. [Google Scholar]
- Flaten, O.; Koesling, M.; Hansen, S.; Veidal, A. Links between profitability, nitrogen surplus, greenhouse gas emissions, and energy intensity on organic and conventional dairy farms. Agroecol. Sustain. Food Syst. 2019, 43, 957–983. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bava, L.; Zucali, M.; D’Imporzano, G.; Adani, F.; Tamburini, A.; Sandrucci, A. Improvements to dairy farms for environmental sustainability in Grana Padano and Parmigiano Reggiano production systems. Ital. J. Anim. Sci. 2019, 18, 1035–1048. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An interdisciplinary exploration of the concept and application in a global context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Sariatli, F. Linear Economy Versus Circular Economy: A Comparative and Analyzer Study for Optimization of Economy for Sustainability. Visegr. J. Bioecon. Sustain. Dev. 2017, 6, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Kılkış, Ş.; Kılkış, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Clean. Prod. 2017, 167, 1084–1098. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Takács, I.; Harsányi, E. Contemporary changes of greenhouse gases emission from the agricultural sector in the EU-27. Geol. Ecol. Landsc. 2020, 4, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Yunan, X.; Weixin, L.; Yujie, Y.; Hui, W. Evolutionary game for the stakeholders in livestock pollution control based on circular economy. J. Clean. Prod. 2021, 282, 125403. [Google Scholar] [CrossRef]
- Segerkvist, K.A.; Hansson, H.; Sonesson, U.; Gunnarsson, S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A Systematic Mapping of Current Literature. Sustainability 2020, 12, 5502. [Google Scholar] [CrossRef]
- Gaudino, S.; Reidsma, P.; Kanellopoulos, A.; Sacco, D.; Van Ittersum, M.K. Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy. Agriculture 2018, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A.; Cristobal, M.S.; Milestad, R.; Martin, G. Identification of resilience factors of organic dairy cattle farms. Agric. Syst. 2020, 183, 102875. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.; Stilmant, D. Role of input self-sufficiency in the economic and environmental sustainability of specialised dairy farms. Animal 2014, 9, 544–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, S.M.; Holden, N.M.; White, E.P.; Oldfield, T.L. The ‘circular economy’ applied to the agriculture (livestock production) sector—Discussion paper. In Proceedings of the Workshop on the Sustainability of the EU’s Livestock Production Systems, European Commission, DG Agriculture and Rural Development, Brussels, Belgium, 14–15 September 2016. [Google Scholar]
- Ellen McArthur Foundation. 2020. Available online: https://www.ellenmacarthurfoundation.org/explore/the-circular-economy-in-detail (accessed on 22 June 2021).
- Verduna, T.; Blanc, S.; Merlino, V.M.; Cornale, P.; Battaglini, L.M. Sustainability of four dairy farming scenarios in an Alpine environment: The case study of Toma di Lanzo cheese. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Ghisellini, P.; Protano, G.; Viglia, S.; Gaworski, M.; Setti, M.; Ulgiati, S. Integrated Agricultural and Dairy Production within a Circular Economy Framework. A Comparison of Italian and Polish Farming Systems. J. Environ. Account. Manag. 2014, 2, 367–384. [Google Scholar] [CrossRef]
- Van Zanten, H.H.; Van Ittersum, M.K.; De Boer, I.J. The role of farm animals in a circular food system. Glob. Food Secur. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- Bánkuti, F.I.; Prizon, R.C.; Damasceno, J.C.; De Brito, M.M.; Pozza, M.S.S.; Lima, P.G.L. Farmers’ actions toward sustainability: A typology of dairy farms according to sustainability indicators. Animal 2020, 14, s417–s423. [Google Scholar] [CrossRef]
- Gelasakis, A.; Valergakis, G.; Arsenos, G.; Banos, G. Description and typology of intensive Chios dairy sheep farms in Greece. J. Dairy Sci. 2012, 95, 3070–3079. [Google Scholar] [CrossRef] [PubMed]
- Usai, M.G.; Casu, S.; Molle, G.; Decandia, M.; Ligios, S.; Carta, A. Using cluster analysis to characterize the goat farming system in Sardinia. Livest. Sci. 2006, 104, 63–76. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Rose, G.; Giannakou, R.; Valergakis, G.E.; Theodoridis, A.; Fortomaris, P.; Arsenos, G. Typology and characteristics of dairy goat production systems in Greece. Livest. Sci. 2017, 197, 22–29. [Google Scholar] [CrossRef]
- Castel, J.M.; Mena, Y.; Delgado-Pertıñez, M.; Camúñez, J.; Basulto, J.; Caravaca, F.; Guzmán-Guerrero, J.L.; Alcalde, M.J. Characterization of semi-extensive goat production systems in southern Spain. Small Rumin. Res. 2003, 47, 133–143. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; García, A.; Gómez-Castro, A.; Perea, J.; Rodríguez-Estévez, V.; Angón, E.; Barba, C. Organic dairy sheep farms in south-central Spain: Typologies according to livestock management and economic variables. Small Rumin. Res. 2012, 104, 28–36. [Google Scholar] [CrossRef]
- Ruiz, F.A.; Vázquez, M.; Camuñez, J.A.; Castel, J.M.; Mena, Y. Characterization and challenges of livestock farming in Mediterranean protected mountain areas (Sierra Nevada, Spain). Span. J. Agric. Res. 2020, 18, e0601. [Google Scholar] [CrossRef]
- Stylianou, A.; Sdrali, D.; Apostolopoulos, C.D. Capturing the diversity of Mediterranean farming systems prior to their sustainability assessment: The case of Cyprus. Land Use Policy 2020, 96, 104722. [Google Scholar] [CrossRef]
- Scarpato, D.; Civero, G.; Rusciano, V.; Risitano, M. Sustainable strategies and corporate social responsibility in the Italian fisheries companies. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 2983–2990. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 2013, 33, 311–327. [Google Scholar] [CrossRef]
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; De Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Mubareka, S.; Maes, J.; LaValle, C.; De Roo, A. Estimation of water requirements by livestock in Europe. Ecosyst. Serv. 2013, 4, 139–145. [Google Scholar] [CrossRef]
- Legesse, G.; Ominski, K.H.; Beauchemin, K.A.; Pfister, S.; Martel, M.; McGeough, E.J.; Hoekstra, A.Y.; Kroebel, R.; Cordeiro, M.R.C.; McAllister, T.A. BOARD-INVITED REVIEW: Quantifying water use in ruminant production. J. Anim. Sci. 2017, 95, 2001–2018. [Google Scholar] [CrossRef] [PubMed]
- Guth, M.; Smędzik-Ambroży, K.; Czyżewski, B.; Stępień, S. The Economic Sustainability of Farms under Common Agricultural Policy in the European Union Countries. Agriculture 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, C.; Devisme, S.; Ryan, M.; Conneely, R.; Gillespie, P.; Vrolijk, H. Farm economic sustainability in the European Union: A pilot study. Stud. Agric. Econ. 2016, 118, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Gaviglio, A.; Bertocchi, M.; Marescotti, M.E.; DeMartini, E.; Pirani, A. The social pillar of sustainability: A quantitative approach at the farm level. Agric. Food Econ. 2016, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Barnaud, C.; Couix, N. The multifunctionality of mountain farming: Social constructions and local negotiations behind an apparent consensus. J. Rural Stud. 2020, 73, 34–45. [Google Scholar] [CrossRef]
- Fantin, V.; Buttol, P.; Pergreffi, R.; Masoni, P. Life cycle assessment of Italian high quality milk production. A comparison with an EPD study. J. Clean. Prod. 2012, 28, 150–159. [Google Scholar] [CrossRef]
- Gaudino, S.; Goia, I.; Grignani, C.; Monaco, S.; Sacco, D. Assessing agro-environmental performance of dairy farms in northwest Italy based on aggregated results from indicators. J. Environ. Manag. 2014, 140, 120–134. [Google Scholar] [CrossRef]
- Madry, W.; Mena, Y.; Roszkowska-Mądra, B.; Gozdowski, D.; Hryniewski, R.; Castel, J.M. An overview of farming system typology methodologies and its use in the study of pasture-based farming system: A review. Span. J. Agric. Res. 2013, 11, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Romesburg, C.; Marshall, K. User’s Manual for CLUSTER/CLUSTID Computer Programs for Hierarchical Cluster Analysis; Lifetime Learning Publications: Belmont, CA, USA, 1984. [Google Scholar]
- Eboli, M.G. Aziende e famiglie in due differenti contesti del Lazio meridionale: Latina e Frosinone. In Agricoltura Familiare in Transizione; De Bendictis, M., Ed.; Studi e Ricerche, Inea: Rome, Italy, 1995. [Google Scholar]
- Perito, M.A.; De Rosa, M.; Bartoli, L.; Chiodo, E.; Martino, G. Heterogeneous Organizational Arrangements in Agrifood Chains: A Governance Value Analysis Perspective on the Sheep and Goat Meat Sector of Italy. Agriculture 2017, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, E.; Sabbatini, M.; Turri, E. Le Statistiche Agrarie verso il 2000—Contributi di Ricerca all’Analisi Strutturale e Socioeconomica delle Aziende; ISTAT Collana Argomenti: Rome, Italy, 1999. [Google Scholar]
- Feil, A.A.; Schreiber, D.; Haetinger, C.; Haberkamp, Â.M.; Kist, J.I.; Rempel, C.; Maehler, A.E.; Gomes, M.C.; Da Silva, G.R. Sustainability in the dairy industry: A systematic literature review. Environ. Sci. Pollut. Res. 2020, 27, 33527–33542. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Contreras, P.; Murtagh, F. Herarchical Clustering. In Handbook of Cluster Analysis; Henning, C., Meila, M., Murtagh, F., Rocci, R., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Micha, E.; Heanue, K.; Hyland, J.J.; Hennessy, T.; Dillon, E.J.; Buckley, C. Sustainability levels in Irish dairy farming: A farm typology according to sustainable performance indicators. Stud. Agric. Econ. 2017, 119, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Vitali, G.; Cardillo, C.; Albertazzi, S.; Della Chiara, M.; Baldoni, G.; Signorotti, C.; Trisorio, A.; Canavari, M. Classification of Italian Farms in the FADN Database Combining Climate and Structural Information. Cartogr. Int. J. Geogr. Inf. Geovis. 2012, 47, 228–236. [Google Scholar] [CrossRef]
- Ghasemi, M.; Badsar, M.; Falahati, L.; Karamidehkordi, E. The mediation effect of rural women empowerment between social factors and environment conservation (combination of empowerment and ecofeminist theories). Environ. Dev. Sustain. 2021, 1–23. [Google Scholar] [CrossRef]
- Trauger, A. Because they can do the work: Women farmers insustainable agriculture in Pennsylvania, USA. Gend. Place Cult. 2004, 11, 289–307. [Google Scholar] [CrossRef]
- Fairlie, R.W.; Robb, A. Gender differences in business performance: Evidence from the characteristics of business owners survey. Small Bus. Econ. 2009, 33, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Galluzzo, N. An analysis of the efficiency in a sample of small Italian farms part of the FADN dataset. Agric. Econ. 2016, 62, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, F.; Capitanio, F.; De Rosa, M.; Vecchio, Y. Gender differences in farm entrepreneurship: Comparing farming performance of women and men in Italy. New Medit 2020, 19, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.; Schader, C.; Scialabba, N.E.-H.; Brüggemann, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef] [Green Version]
- Gullino, P.; Battisti, L.; Larcher, F. Linking Multifunctionality and Sustainability for Valuing Peri-Urban Farming: A Case Study in the Turin Metropolitan Area (Italy). Sustainability 2018, 10, 1625. [Google Scholar] [CrossRef] [Green Version]
- Kelly, E.; Latruffe, L.; Desjeux, Y.; Ryan, M.; Uthes, S.; Diazabakana, A.; Dillon, E.; Finn, J. Sustainability indicators for improved assessment of the effects of agricultural policy across the EU: Is FADN the answer? Ecol. Indic. 2018, 89, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Porrini, D.; Fusco, G.; Miglietta, P.P. Post-Adversities Recovery and Profitability: The Case of Italian Farmers. Int. J. Environ. Res. Public Health 2019, 16, 3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassi, I.; Iseppi, L.; Nassivera, F.; Peccol, E.; Cisilino, F. Alpine agriculture today: Evidence from the italian alps: Acces la success. Calitatea 2020, 21, 122–127. [Google Scholar]
- Baležentis, T.; Galnaitytė, A.; Kriščiukaitienė, I.; Namiotko, V.; Novickytė, L.; Streimikiene, D.; Melnikiene, R. Decomposing Dynamics in the Farm Profitability: An Application of Index Decomposition Analysis to Lithuanian FADN Sample. Sustainability 2019, 11, 2861. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, Y.; Pauselli, G.; Adinolfi, F. Exploring Attitudes toward Animal Welfare through the Lens of Subjectivity—An Application of Q-Methodology. Animals 2020, 10, 1364. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Com/2019/640 Final. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 23 June 2021).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Com/2020/381 Final. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 23 June 2021).
Sustainability | |||
---|---|---|---|
Environmental dimension | Input management | Resources | Water/ha: volume of water distributed per hectare |
Energy cost/ha: costs incurred for the purchase of fuel, electricity and heating per hectare | |||
Nutrients | Nitrogen/ha: quantity of nitrogen distributed per hectare | ||
Phosphorus/ha: quantity of phosphorus distributed per hectare | |||
Potassium/ha: quantity of potassium distributed per hectare | |||
Others | Pesticides/ha: quantity distributed per hectare | ||
Fertilizer cost/ha: costs for fertilizers per hectare | |||
Social dimension | Level of education | No title | |
Primary school | |||
Secondary school | |||
Diploma | |||
Professional diploma | |||
Bachelor’s degree | |||
Master’s degree | |||
Labor costs | Wage costs/ha: expenses incurred for wages, social charges, and rent payable per hectare | ||
Contracting cost/ha: cost of agro-mechanical and technological services offered by external suppliers/ha | |||
Human labor cost/ha: cost of human labor per hectare | |||
Machine labor cost/ha: cost of machine labor per hectare | |||
Family labor: relationship between family UL and total UL | |||
Economic dimension | Managerial expenses | Input costs, described in the previous section as “Resources, Nutrients, and others” | |
Labor costs, described in the previous section as “Labor costs” | |||
Insurance costs/ha: insurance costs per hectare | |||
Certification costs/ha: costs for purchasing certifications per hectare | |||
Marketing costs/ha: marketing costs per hectare | |||
Forage costs/ha: expenses for the purchase of non-farm forage per hectare | |||
Feed costs/ha: expenses for the purchase of feed per hectare | |||
Veterinary costs/ha: costs of veterinary services and pharmaceutical costs per hectare | |||
Outputs | Total revenues/ha: total farm revenue | ||
Gross saleable livestock production/ha (Livestock GSP): revenues strictly related to the livestock activity | |||
Employee efficiency: relationship between added value and work unit | |||
Structural Dimension | |||
Farmer | Gender | ||
Level of education | No title, Primary school, Secondary school, Diploma, Professional diploma, Bachelor’s degree, Master’s Degree | ||
Age: age of the owner | |||
Farm characteristics | Farm diversification: presence or absence of other activities | ||
Organic production: presence or absence of organic production | |||
Dairy heads: number of heads in lactation | |||
Total number of heads | |||
UAA: in hectares | |||
Irrigated UAA: in hectares | |||
Family labor: relationship between family UL and total UL |
Component | Total | % of Variance | Cumulative % |
---|---|---|---|
1 | 4.941 | 23.528 | 23.528 |
2 | 2.667 | 12.698 | 36.226 |
3 | 1.804 | 8.592 | 44.818 |
4 | 1.803 | 8.585 | 53.404 |
5 | 1.58 | 7.524 | 60.928 |
Variable | Count | % | |
---|---|---|---|
Gender | Female | 210 | 17.34 |
Male | 1001 | 82.66 | |
Young | No | 1050 | 86.71 |
Yes | 161 | 13.29 | |
Educational Level | No school | 35 | 2.89 |
Primary school | 118 | 9.75 | |
Secondary school | 482 | 39.80 | |
High school diploma | 264 | 21.80 | |
Professional diploma | 279 | 23.04 | |
Bachelor’s degree | 9 | 0.74 | |
Master’s degree | 24 | 1.98 | |
Organic production | No | 1069 | 88.27 |
Yes | 142 | 11.73 | |
Diversification | No | 1029 | 84.97 |
Yes | 182 | 15.03 | |
Type of management | Other type | 1 | 0.08 |
With employees | 13 | 1.08 | |
Subcontracting only | 1 | 0.08 | |
Direct with extra-family prevalence | 91 | 7.51 | |
Direct with predominantly family members | 534 | 44.10 | |
Direct with family members only | 571 | 47.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masi, M.; Vecchio, Y.; Pauselli, G.; Di Pasquale, J.; Adinolfi, F. A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector. Sustainability 2021, 13, 7097. https://doi.org/10.3390/su13137097
Masi M, Vecchio Y, Pauselli G, Di Pasquale J, Adinolfi F. A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector. Sustainability. 2021; 13(13):7097. https://doi.org/10.3390/su13137097
Chicago/Turabian StyleMasi, Margherita, Yari Vecchio, Gregorio Pauselli, Jorgelina Di Pasquale, and Felice Adinolfi. 2021. "A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector" Sustainability 13, no. 13: 7097. https://doi.org/10.3390/su13137097
APA StyleMasi, M., Vecchio, Y., Pauselli, G., Di Pasquale, J., & Adinolfi, F. (2021). A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector. Sustainability, 13(13), 7097. https://doi.org/10.3390/su13137097