Effect of a New Feed Daphnia magna (Straus, 1820), as a Fish Meal Substitute on Growth, Feed Utilization, Histological Status, and Economic Revenue of Grey Mullet, Mugil cephalus (Linnaeus 1758)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Culture Technique
2.2. Preparation of Daphnia Meal (DMM)
2.3. Experimental Design
2.4. Parameters Calculations
2.4.1. Growth Indices
2.4.2. Whole-Body Proximate Composition
2.4.3. Histological Observations of Fish Intestine
2.4.4. Economic Evaluation
2.5. Statistical Analyses
3. Results
3.1. Growth Performance and Feed Utilization
3.2. Whole-Body Proximate Composition
3.3. Histological Status
3.4. Economic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abo-Taleb, H.; Ashour, M.; El-Shafei, A.; Alataway, A.; Maaty, M.M. Biodiversity of Calanoida Copepoda in Different Habitats of the North-Western Red Sea (Hurghada Shelf). Water 2020, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Abu El-Regal, M.A.; El-Wazeer, A.; Abou Elnaga, Z.S.; Amr, A.A. Composition and spatio-temporal distribution of zooplankton community in the Egyptian Red Sea coast at Hurghada. Egypt. J. Aquat. Biol. Fish. 2018, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abo-Taleb, H.; Zeina, A.F.; Ashour, M.; Mabrouk, M.M.; Sallam, A.E.; El-Feky, M.M. Isolation and cultivation of the freshwater amphipod Gammarus pulex (Linnaeus, 1758), with an evaluation of its chemical and nutritional content. Egypt. J. Aquat. Biol. Fish. 2020, 24, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Magouz, F.I.; Essa, M.A.; Matter, M.; Mansour, A.T.; Gaber, A.; Ashour, M.; Essa, M.A.; Matter, M.; Mansour, A.T.; Alkafafy, M.; et al. Population Dynamics, Fecundity and Fatty Acid Composition of Oithona nana (Cyclopoida, Copepoda), Fed on Different Diets. Animals 2021, 11, 1188. [Google Scholar] [CrossRef]
- Zaki, M.A.; Ashour, M.; Heneash, A.M.M.; Mabrouk, M.M.; Alprol, A.E.; Khairy, H.M.; Nour, A.M.; Mansour, A.T.; Hassanien, H.A.; Gaber, A. Potential Applications of Native Cyanobacterium Isolate (Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer (Brachionus plicatilis) Production. Sustainability 2021, 13, 1769. [Google Scholar] [CrossRef]
- Ashour, M.; Elshobary, M.E.; El-Shenody, R.; Kamil, A.W.; Abomohra, A.E.F. Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 2019, 120, 439–447. [Google Scholar] [CrossRef]
- El-feky, M.M.; Abo-Taleb, H. Effect of feeding with different types of nutrients on intensive culture of the water flea, Daphnia magna Straus, 1820. Egypt. J. Aquat. Biol. Fish. 2020, 24, 655–666. [Google Scholar] [CrossRef] [Green Version]
- El-Shenody, R.A.; Ashour, M.; Ghobara, M.M.E. Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Braz. J. Food Technol. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Elshobary, M.E.; El-Shenody, R.A.; Ashour, M.; Zabed, H.M.; Qi, X. Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum. Food Biosci. 2020, 35, 100567. [Google Scholar] [CrossRef]
- Herawati, V.E.; Hutabarat, J.; Karnaradjasa, O. The effect of nutrient content and production of Daphnia magna mass cultured using various wastes processed with different fermentation time. Aquac. Aquar. Conserv. Legis. 2018, 11, 1289–1299. [Google Scholar]
- Merawati, V.E.; Agus, M. Analisis pertumbuhan dan kelulushidupan larva lele (Clarias gariepenus) yang diberi pakan daphnia sp. hasil kultur massal menggunakan pupuk organik difermentasi. Pena J. Ilmu Pengetah. Dan Teknol. 2015, 26. [Google Scholar] [CrossRef]
- Herawati, V.E.; Nugroho, R.A.; Hutabarat, J. Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012004. [Google Scholar] [CrossRef] [Green Version]
- Sharawy, Z.Z.; Ashour, M.; Abbas, E.; Ashry, O.; Helal, M.; Nazmi, H.; Kelany, M.; Kamel, A.; Hassaan, M.; Rossi, W.; et al. Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 2020, 51, 2216–2228. [Google Scholar] [CrossRef]
- Craig, S.R. Organic agricultural feed. Aqua Feeds Formul. Beyond 2004, 1, 11–13. [Google Scholar]
- Luthada-Raswiswi, R.; Mukaratirwa, S.; O’Brien, G. Animal Protein Sources as a Substitute for Fishmeal in Aquaculture Diets: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.E.; Azab, A.M.; Abo-Taleb, H.A.; El-Feky, M.M. Effect of replacing fish meal in the fish diet by zooplankton meal on growth performance of Dicentrarchus labrax (Linnaeus, 1758). Egypt. J. Aquat. Biol. Fish. 2020, 24, 267–280. [Google Scholar] [CrossRef]
- Fall, S.K.L.; Fall, J.; Loum, A.; Sagne, M.; Jatta, S.; Ndong, D.; Diouf, M.; Sheen, S.S. Effects of Partial Substitution of Fishmeal by Crustacean (Callianassa) Meal on the Growth Performance, Feed Efficiency and Survival Rate of Nile Tilapia (Oreochromis niloticus). J. Biol. Life Sci. 2020, 11, 207–217. [Google Scholar] [CrossRef]
- Sharahi, R.; Falahatkar., A.B.; Efatpanah, I. Effect of fish meal replacement with Gammarus meal on growth and body composition of juvenile Siberian sturgeon, Acipenser baerii (Brandt, 1869). J. Aquat. Ecol. 2016, 6, 102–113. [Google Scholar]
- Herawati, V.E.; Hutabarat, J.; Radjasa, O.K. Growth and survival rate of tilapia (Oreochromis niloticus) larvae fed by Daphnia magna cultured with organic fertilizer resulted from probiotic bacteria fermentation. HAYATI J. Biosci. 2015, 22, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Wu, X.; Zeng, X.; Yang, G.; Zhang, J.; Zhu, G.; Bai, D. Effects of Daphnia magna meal replacing fish meal on growth, biochemical indexes of Pelteobagrus fulvidraco and water quality indexes. Feed Ind. 2019, 2, 212–221. [Google Scholar]
- Bogut, I.; Adamek, Z.; Puškadija, Z.; Galović, D. Nutritional value of planktonic cladoceran Daphnia magna for common carp (Cyprinus carpio) fry feeding. Croat. J. Fish. Ribar. 2010, 68, 1–10. [Google Scholar]
- Damle, D.K.; Chari, M.S. Performance Evaluation of Different Animal Wastes on Culture of Daphnia sp. J. Fish. Aquat. Sci. 2011, 6, 57. [Google Scholar] [CrossRef]
- Soltani, M. Effects of bioencapsulated Daphnia magna with Saccharomyces cerevisiae on the growth and feeding performance of Persian sturgeon (Acipenser persicus) larvae. Iran. J. Vet. Med. 2012, 6, 13–18. [Google Scholar]
- Faramarzi, M.; Jafaryan, H.; Roozbehfar, R.; Jafari, M.; Rashidi, Y.; Biria, M. Influences of probiotic bacilli via bioencapsulated Daphnia magna on resistance of Persian sturgeon larvae against challenge tests. Glob. Vet. 2012, 8, 421–425. [Google Scholar]
- Luzzana, U.; Valfrè, F.; Mangiarotti, M.; Domeneghini, C.; Radaelli, G.; Moretti, V.M.; Scolari, M. Evaluation of different protein sources in fingerling grey mullet Mugil cephalus practical diets. Aquac. Int. 2005, 13, 291–303. [Google Scholar] [CrossRef]
- Welcomme, R. Review of the State of the World Fishery Resources: Inland Fisheries; FAO Fish. Aquac. Circ. Circular No. 942, Rev. 2; FAO: Rome, Italy, 2011; 97p. [Google Scholar]
- Moriarty, D.J.W. Quantitative studies on bacteria and algae in the food of the mullet Mugil cephalus L. and the prawn Metapenaeus bennettae (Racek & Dall). J. Exp. Mar. Biol. Ecol. 1976, 22, 131–143. [Google Scholar]
- Lupatsch, I.; Katz, T.; Angel, D.L. Assessment of the removal efficiency of fish farm effluents by grey mullets: A nutritional approach. Aquac. Res. 2003, 34, 1367–1377. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Abdel-hamid, M.E.; Abdelghany, A.E.; El-Marakby, H.I. The assessment of water quality and primary productivity in earthen fishponds stocked with stripped mullet (Mugil cephalus) and subjected to different feeding regimes. Turk. J. Fish. Aquat. Sci. 2005, 5, 1–10. [Google Scholar]
- Jobling, M. Effect of feeding frequency on food intake and growth of Arctic charr, Salvelinus alpinus L. J. Fish Biol. 1983, 23, 177–185. [Google Scholar] [CrossRef]
- Feldsine, P.; Abeyta, C.; Andrews, W.H. AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int. 2002, 85, 1187–1200. [Google Scholar] [CrossRef] [Green Version]
- Al-Motabagani, M.A. Histological and histochemical studies on the effects of methotrexate on the liver of adult male albino rat. Int. J. Morphol. 2006, 24, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Hamidian, G.; Zirak, K.; Sheikhzadeh, N.; Khani Oushani, A.; Shabanzadeh, S.; Divband, B. Intestinal histology and stereology in rainbow trout (Oncorhynchus mykiss) administrated with nanochitosan/zeolite and chitosan/zeolite composites. Aquac. Res. 2018, 49, 1803–1815. [Google Scholar] [CrossRef]
- Goda, A.M.; Omar, E.A.; Srour, T.M.; Kotiet, A.M.; El-Haroun, E.; Davies, S.J. Effect of diets supplemented with feed additives on growth, feed utilization, survival, body composition and intestinal bacterial load of early weaning European seabass, Dicentrarchus labrax post-larvae. Aquac. Int. 2018, 26, 169–183. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Chiu, S.-T.; Shiu, Y.-L.; Wu, T.-M.; Lin, Y.-S.; Liu, C.-H. Improvement in non-specific immunity and disease resistance of barramundi, Lates calcarifer (Bloch), by diets containing Daphnia similis meal. Fish Shellfish Immunol. 2015, 44, 172–179. [Google Scholar] [CrossRef]
- Massimo Perrone, F.; Della Croce, N.; Dell’anno, A. Biochemical composition and trophic strategies of the amphipod Eurythenes gryllus at hadal depths (Atacama Trench, South Pacific). Chem. Ecol. 2003, 19, 441–449. [Google Scholar] [CrossRef]
- Opstad, I.; Suontama, J.; Langmyhr, E.; Olsen, R.E. Growth, survival, and development of Atlantic cod (Gadus morhua L.) weaned onto diets containing various sources of marine protein. ICES J. Mar. Sci. 2006, 63, 320–325. [Google Scholar] [CrossRef]
- Baeza-Rojano, E.; Hachero-Cruzado, I.; Guerra-García, J.M. Nutritional analysis of freshwater and marine amphipods from the Strait of Gibraltar and potential aquaculture applications. J. Sea Res. 2014, 85, 29–36. [Google Scholar] [CrossRef]
- Lolas, A.; Karapanagiotidis, I.T.; Neofitou, N.; Panagiotaki, P. Use of caprellid amphipods as alternative protein and lipid source in farmed fish nutrition. In Proceedings of the 3rd International Congress on Applied Ichthyology and Aquatic Environment, Volos, Greece, 8–11 November 2018. [Google Scholar]
- Guerra-García, J.M.; Hachero-Cruzado, I.; González-Romero, P.; Jiménez-Prada, P.; Cassell, C.; Ros, M. Towards integrated multi-trophic aquaculture: Lessons from caprellids (Crustacea: Amphipoda). PLoS ONE 2016, 11, e0154776. [Google Scholar]
- Van Nguyen, N.; Hoang, L.; Van Khanh, T.; Duy Hai, P.; Hung, L.T. Utilization of fermented soybean meal for fishmeal substitution in diets of Pacific white shrimp (Litopenaeus vannamei). Aquac. Nutr. 2018, 24, 1092–1100. [Google Scholar] [CrossRef]
- Doughty, K.H.; Garner, S.R.; Bernards, M.A.; Heath, J.W.; Neff, B.D. Effects of dietary fishmeal substitution with corn gluten meal and poultry meal on growth rate and flesh characteristics of Chinook salmon (Oncorhynchus tshawytscha). Int. Aquat. Res. 2019, 11, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Mastoraki, M.; Ferrándiz, P.M.; Vardali, S.C.; Kontodimas, D.C.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture 2020, 528, 735511. [Google Scholar] [CrossRef]
- LLanes, J.; Parisi, G. Substitution of a high percentage of fishmeal for silages of fishery by-products in extruded diets for Clarias gariepinus. Cuba. J. Agric. Sci. 2021, 55, 1–9. [Google Scholar]
- German, C.-C.I.; del Carmen, M.-D.M.; Daniel, B.-C. Laboratory production of Daphnia magna (Straus 1820) fed with microalgae and active dry yeast. J. Entomol. Zool. Stud. 2016, 4, 548–553. [Google Scholar]
- Cauchie, H.-M.; Jaspar-Versali, M.-F.; Hoffmann, L.; Thomé, J.-P. Analysis of the seasonal variation in biochemical composition of Daphnia magna Straus (Crustacea: Branchiopoda: Anomopoda) from an aerated wastewater stabilisation pond. Ann. Limnol. Int. J. Limnol. 1999, 35, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Suantika, G.; Muhammad, H.; Azizah, F.F.N.; Rachminiwati, N.; Situmorang, M.L.; Astuti, D.I.; Aditiawati, P. The use of Cyanobacteria Arthrospira platensis and Cladoceran Daphnia magna as complementary protein and lipid sources in transitional diet for Common Carp (Cyprinus carpio L.) Nursery. Nat. Resour. 2016, 7, 423. [Google Scholar]
- Abdel-Tawwab, M.; Abdulrahman, N.M.; Baiz, A.I.; Nader, P.J.; Al-Refaiee, I.H.A. The using of Chlorella pyrenoidosa and Daphnia magna as feed supplements for common carp, Cyprinus carpio: Growth performance, somatic indices, and hemato-biochemical biomarkers. J. Appl. Aquac. 2020, 1–15. [Google Scholar] [CrossRef]
- De la Noüe, J.; Choubert, G. Apparent digestibility of invertebrate biomasses by rainbow trout. Aquaculture 1985, 50, 103–112. [Google Scholar] [CrossRef]
- Kaya, M.; Cakmak, Y.S.; Baran, T.; Asan-Ozusaglam, M.; Mentes, A.; Tozak, K.O. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioprocess Eng. 2014, 19, 58–69. [Google Scholar] [CrossRef]
- Khalil, H.S.; Fayed, W.M.; Mansour, A.T.; Srour, T.M.; Omar, E.A.; Darwish, S.I.; Nour, A.M. Dietary supplementation of Spirulina, Arthrospira platensis, with plant protein sources and their effects on growth, feed utilization and histological changes in Nile tilapia, Oreochromis niloticus. J. Aquac. Res. Dev. 2018, 9, 2. [Google Scholar] [CrossRef]
- Goda, A.A.; Srour, T.M.; Omar, E.; Mansour, A.T.; Baromh, M.Z.; Mohamed, S.A.; El-Haroun, E.; Davies, S.J. Appraisal of a high protein distiller’s dried grain (DDG) in diets for European sea bass, Dicentrarchus labrax fingerlings on growth performance, haematological status and related gut histology. Aquac. Nutr. 2019, 25, 808–816. [Google Scholar] [CrossRef]
- Adamek-Urbańska, D.; Kasprzak, R.; Tyszkiewicz, M.; Fisher, K.; Dąbrowski, K. Negative effects of artificial diets on growth and the digestive tract of 1-month-old Redhead cichlid (Vieja melanura, Günther, 1862). Aquac. Res. 2021. [Google Scholar] [CrossRef]
- Lazo, J.P.; Holt, G.J.; Arnold, C.R. Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquac. Nutr. 2000, 6, 183–192. [Google Scholar] [CrossRef]
- Gisbert, E.; Mozanzadeh, M.T.; Kotzamanis, Y.; Estévez, A. Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture 2016, 462, 92–100. [Google Scholar] [CrossRef]
- Allam, B.W.; Khalil, H.S.; Mansour, A.T.; Srour, T.M.; Omar, E.A.; Nour, A.M. Impact of substitution of fish meal by high protein distillers dried grains on growth performance, plasma protein and economic benefit of striped catfish (Pangasianodon hypophthalmus). Aquaculture 2020, 517, 734792. [Google Scholar] [CrossRef]
- Moutinho, S.; Martínez-Llorens, S.; Tomás-Vidal, A.; Jover-Cerdá, M.; Oliva-Teles, A.; Peres, H. Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture 2017, 468, 271–277. [Google Scholar] [CrossRef]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Millamena, O.M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture 2002, 204, 75–84. [Google Scholar] [CrossRef]
- Psofakis, P.; Karapanagiotidis, I.T.; Malandrakis, E.E.; Golomazou, E.; Exadactylos, A.; Mente, E. Effect of fishmeal replacement by hydrolyzed feather meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and growth-related gene expression of gilthead seabream (Sparus aurata). Aquaculture 2020, 521, 735006. [Google Scholar] [CrossRef]
- Abdelghany, A.E. Partial and complete replacement of fish meal with gambusia meal in diets for red tilapia ‘Oreochromis niloticus × O. mossambicus’. Aquac. Nutr. 2003, 9, 145–154. [Google Scholar] [CrossRef]
- Donadelli, R.A.; Aguilar, F.A.A.; Sonoda, D.Y.; Cyrino, J.E.P. Poultry by-product meal as dietary protein source for dourado, Salminus brasiliensis: An economic appraisal. Sci. Agric. 2019, 76, 190–197. [Google Scholar] [CrossRef]
Ingredients | DM (%) | CP (%) | EE (%) | CF (%) | Ash (%) | NFE (%) | GE (K cal kg−1) | DE (Kcal kg−1) |
---|---|---|---|---|---|---|---|---|
Fish meal (FM) | 92 | 60 | 12.5 | 0.6 | 15.4 | 11.5 | 5055 | 3791 |
Daphnia meal (DMM) * | 92 | 47.7 | 10.2 | 2.1 | 17.8 | 22.2 | 4360 | 3472 |
Soybean meal | 90 | 45 | 1.1 | 7.3 | 6.3 | 40.3 | 4550 | 3413 |
Yellow corn | 88 | 10 | 3.6 | 2.3 | 1.3 | 82.8 | 4309 | 3232 |
Rice bran | 89 | 14 | 6.4 | 9.9 | 5.3 | 64.4 | 4368 | 3276 |
Diets * | D0 | D25 | D50 | D75 | D100 |
---|---|---|---|---|---|
Formulation (% DM) | |||||
Fish meal (FM) | 18 | 13.5 | 9 | 4.5 | 0 |
Cost | 720 | 540 | 360 | 180 | 0 |
Daphnia meal (DMM) | 0 | 6.5 | 13 | 19.5 | 26 |
Cost | 0 | 130 | 260 | 390 | 520 |
Soybean meal | 45.5 | 45 | 44 | 44 | 43.5 |
Cost | 318.5 | 315 | 308 | 308 | 304.5 |
Yellow corn | 16.5 | 16 | 15 | 14 | 13.5 |
Cost | 60.2 | 58.4 | 54.7 | 51.1 | 49.2 |
Rice bran | 16 | 15 | 15 | 14 | 13 |
Cost | 57.6 | 54 | 54 | 50.4 | 46.8 |
Vitamin and mineral premix * | 1 | 1 | 1 | 1 | 1 |
Cost | 50 | 50 | 50 | 50 | 50 |
Fish Oil | 3 | 3 | 3 | 3 | 3 |
Cost | 60 | 60 | 60 | 60 | 60 |
Total (% DM) | 100 | 100 | 100 | 100 | 100 |
Total Cost (Egyptian L.E. 100 kg diet−1) | 1266.3 | 1207.4 | 1146.7 | 1089.5 | 1030.5 |
Proximate composition (%) | |||||
Dry matter (%) | 92 | 92.1 | 92.3 | 92 | 92 |
Crude protein (%) | 35.1 | 35.1 | 35 | 35.1 | 35.1 |
Ether extract (%) | 13.5 | 13.1 | 13.9 | 14.2 | 14.9 |
Fiber (%) | 4.2 | 4.3 | 4.4 | 4.8 | 5.2 |
Ash (%) | 11.6 | 12.3 | 10.1 | 10.9 | 11.7 |
NFE (%) | 35.6 | 35.2 | 36.6 | 35 | 33.1 |
GE (Kcal kg−1) | 4859 | 4801 | 4931 | 4917 | 4923 |
DE (Kcal kg−1) | 3638 | 3601 | 3698 | 3688 | 3692 |
Diets | D0 | D25 | D50 | D75 | D100 |
---|---|---|---|---|---|
Growth performance indices | |||||
Initial weight (g fish−1) | 0.096 ± 0.001 | 0.096 ± 0.001 | 0.098 ± 0.00 | 0.098 ± 0.00 | 0.097 ± 0.001 |
Final weight (g fish−1) | 1.40 ± 0.03 d | 1.55 ± 0.03 c | 1.69 ± 0.03 b | 1.94 ± 0.01 a | 1.87 ± 0.01 a |
Weight gain (g fish−1) | 1.30 ± 0.03 d | 1.45 ± 0.03 c | 1.59 ± 0.03 b | 1.83 ± 0.01 a | 1.77 ± 0.01 a |
Initial length (cm fish−1) | 1.33 ± 0.03 c | 1.37 ± 0.03 b | 1.40 ± 0.00 a | 1.30 ± 0.00 c | 1.40 ± 0.00 a |
Final length (cm fish−1) | 3.87 ± 0.03 d | 4.07 ± 0.03 c | 4.23 ± 0.03 bc | 4.57 ± 0.03 a | 4.40 ± 0.06 ab |
Length gain (cm fish−1) | 2.53 ± 0.07 d | 2.70 ± 0.00 cd | 2.83 ± 0.03 bc | 3.27 ± 0.03 a | 3.00 ± 0.06 b |
Condition factor | 2.43 ± 0.11 | 2.30 ± 0.10 | 2.22 ± 0.08 | 2.03 ± 0.03 | 2.20 ± 0.08 |
Feed utilization indices | |||||
Feed intake (g) | 1.76 ± 0.012 c | 1.82 ± 0.014 c | 1.95 ± 0.023 b | 2.08 ± 0.021 a | 2.08 ± 0.023 a |
Feed conversion ratio (feed: gain) | 1.35 ± 0.030 a | 1.26 ± 0.030 ab | 1.23 ± 0.010 bc | 1.13 ± 0.010c | 1.18 ± 0.010 bc |
Protein intake (g) | 0.84 ± 0.006 c | 0.87 ± 0.006 c | 0.93 ± 0.011 b | 0.99 ± 0.009 a | 0.99 ± 0.011 a |
Protein efficiency ratio (g) | 0.74 ± 0.18 c | 0.80 ± 0.19 bc | 0.82 ± 0.007 b | 0.88 ± 0.006 a | 0.85 ± 0.007 ab |
Protein productive value (g) | 21.47 ± 0.78 d | 23.47 ± 0.87 c | 24.30 ± 0.09 bc | 27.73 ± 0.33 a | 26.19 ± 0.62 ab |
Diets | D0 | D25 | D50 | D75 | D100 |
---|---|---|---|---|---|
Dry matter (%) | 21.70 ± 0.31 b | 21.80 ± 0.19 b | 21.91 ± 0.33 b | 22.35 ± 0.22 a | 22.07 ± 0.24 a |
Crude protein (%) | 64.00 ± 0.15 c | 64.50 ± 0.47 bc | 64.83 ± 0.24 bc | 68.00 ± 0.36 a | 65.93 ± 0.28 b |
Ether extract (%) | 15.67 ± 0.88 | 15.67 ± 0.27 | 15.57 ± 0.33 | 15.70 ± 0.31 | 15.40 ± 0.15 |
Ash (%) | 20.33 ± 0.88 a | 19.83 ± 0.2 a | 19.60 ± 0.21 a | 16.30 ± 0.15 c | 18.67 ± 0.13 b |
Gross energy (Kcal kg−1) | 5096 ± 40.0 d | 5124 ± 3.00 cd | 5134 ± 10.00 c | 5325 ± 13.00 a | 5180 ± 2.00 b |
Diets | D0 | D25 | D50 | D75 | D100 |
---|---|---|---|---|---|
Villus length (μm) | 415.80 ±0.90 d | 419.5 ± 2.60 d | 429.2 ± 1.40 c | 459.70 ± 3.20 b | 446.0 ± 3.00 a |
Villus width (μm) | 91.10 ± 1.20 e | 101.0 ± 0.90 d | 106.2 ± 1.10 c | 120.5 ± 1.10 b | 111.0 ± 1.40 a |
Crypts depth (μm) | 45.30 ± 0.40 d | 47.80 ± 0.50 d | 56.80 ± 0.90 c | 73.80 ± 0.80 b | 65.2 ± 0.70 a |
Muscle thickness (μm) | 20.50 ± 0.20 | 21.20 ± 0.60 | 20.30 ± 0.80 | 20.80 ± 0.30 | 21.00 ± 0.40 |
Goblet cells number (cells/high power field) | 3.50 ± 0.50 b | 3.50 ± 0.50 b | 5.00 ± 1.0 b | 11.00 ± 1.0 a | 13.00 ± 1.0 a |
Diets | Fish Price (US$ 1000 Fish−1) | Feed Cost (US$ 1000 Fish−1) | Incidence Cost (US$) | Change in Incidence Cost (%) | Profit Index (US$) | Change in Profit Index (%) | Economic Conversion Rate (U$) | Change in Economic Conversion Rate (%) |
---|---|---|---|---|---|---|---|---|
D0 | 102.11 | 1.422 | 103.53 | 100.00 | 71.791 | 100 | 1.92 | 100.00 |
D25 | 102.11 | 1.402 | 103.51 | 99.98 | 72.811 | 101.42 | 1.77 | 92.02 |
D50 | 102.11 | 1.427 | 103.53 | 100.02 | 71.554 | 98.27 | 1.76 | 91.43 |
D75 | 102.11 | 1.446 | 103.55 | 100.02 | 70.604 | 98.67 | 1.63 | 85.12 |
D100 | 102.11 | 1.368 | 103.47 | 99.92 | 74.646 | 105.73 | 1.64 | 84.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo-Taleb, H.A.; Ashour, M.; Elokaby, M.A.; Mabrouk, M.M.; El-feky, M.M.M.; Abdelzaher, O.F.; Gaber, A.; Alsanie, W.F.; Mansour, A.T. Effect of a New Feed Daphnia magna (Straus, 1820), as a Fish Meal Substitute on Growth, Feed Utilization, Histological Status, and Economic Revenue of Grey Mullet, Mugil cephalus (Linnaeus 1758). Sustainability 2021, 13, 7093. https://doi.org/10.3390/su13137093
Abo-Taleb HA, Ashour M, Elokaby MA, Mabrouk MM, El-feky MMM, Abdelzaher OF, Gaber A, Alsanie WF, Mansour AT. Effect of a New Feed Daphnia magna (Straus, 1820), as a Fish Meal Substitute on Growth, Feed Utilization, Histological Status, and Economic Revenue of Grey Mullet, Mugil cephalus (Linnaeus 1758). Sustainability. 2021; 13(13):7093. https://doi.org/10.3390/su13137093
Chicago/Turabian StyleAbo-Taleb, Hamdy A., Mohamed Ashour, Mohamed A. Elokaby, Mohamed M. Mabrouk, Mohamed M. M. El-feky, Othman F. Abdelzaher, Ahmed Gaber, Walaa F. Alsanie, and Abdallah Tageldein Mansour. 2021. "Effect of a New Feed Daphnia magna (Straus, 1820), as a Fish Meal Substitute on Growth, Feed Utilization, Histological Status, and Economic Revenue of Grey Mullet, Mugil cephalus (Linnaeus 1758)" Sustainability 13, no. 13: 7093. https://doi.org/10.3390/su13137093
APA StyleAbo-Taleb, H. A., Ashour, M., Elokaby, M. A., Mabrouk, M. M., El-feky, M. M. M., Abdelzaher, O. F., Gaber, A., Alsanie, W. F., & Mansour, A. T. (2021). Effect of a New Feed Daphnia magna (Straus, 1820), as a Fish Meal Substitute on Growth, Feed Utilization, Histological Status, and Economic Revenue of Grey Mullet, Mugil cephalus (Linnaeus 1758). Sustainability, 13(13), 7093. https://doi.org/10.3390/su13137093