Thermal Condition and Air Quality Investigation in Commercial Airliner Cabins
Abstract
:1. Introduction
2. Experiment and Methods
3. Results and Discussion
3.1. Temperature, Relative Humidity, and Cabin Pressure
3.2. Carbon Dioxide and Carbon Monoxide
3.3. Particle Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giaconia, C.; Orioli, A.; Di Gangi, A. Air quality and relative humidity in commercial aircrafts: An experimental investigation on short-haul domestic flights. Build. Environ. 2013, 67, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Bull, K. Cabin air filtration: Helping to protect occupants from infectious diseases. Travel Med. Infect. Dis. 2008, 6, 142–144. [Google Scholar] [CrossRef]
- Guan, J.; Jia, Y.; Wei, Z.; Tian, X. Temporal variations of ultrafine particle concentrations in aircraft cabin: A field study. Build. Environ. 2019, 153, 118–127. [Google Scholar] [CrossRef]
- Li, Z.; Guan, J.; Xudong, Y.; Lin, C.-H. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin. Atmos. Environ. 2014, 89, 119–128. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Li, F.; Cao, X.; Li, J.; Zhu, X.; Chen, Q. Ventilation similarity of an aircraft cabin mockup with a real MD-82 commercial airliner. Build. Environ. 2017, 111, 80–90. [Google Scholar] [CrossRef]
- Zitter, J.N.; Mazonson, P.D.; Miller, D.P.; Hulley, S.B.; Balmes, J.R. Aircraft cabin air recirculation and symptoms of the common cold. JAMA 2002, 288, 483–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, J.; Cao, X.; Li, F.; Li, J. Ultrafine particles in the cabin of a waiting commercial airliner at Tianjin International Airport, China. Indoor Built Environ. 2017, 27, 1247–1258. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, Y.; Liu, W.; Lin, C.-H.; Wei, D.; Baughcum, S.; Norris, S.; Shen, X.; Long, Z.; Chen, Q. Experimental study of particle deposition in the environmental control systems of commercial airliners. Build. Environ. 2016, 96, 62–71. [Google Scholar] [CrossRef]
- Cao, Q.; Xu, Q.; Liu, W.; Lin, C.-H.; Wei, D.; Baughcum, S.; Norris, S.; Chen, Q. In-flight monitoring of particle deposition in the environmental control systems of commercial airliners in China. Atmos. Environ. 2017, 154, 118–128. [Google Scholar] [CrossRef]
- Walton, C.; Crump, D.; Harrison, P. Aircraft Cabin Air Sampling Study; Part 1 of the Final Report; Institute of Environment and Health, Cranfield University: Cranfield, UK, 2011. [Google Scholar]
- Walton, C.; Crump, D.; Harrison, P. Aircraft Cabin Air Sampling Study; Part 2 of the Final Report, Institute of Environment and Health, Cranfield University. April 2011. Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/5306 (accessed on 8 May 2021).
- Lang, M.; Society, C.P.; Committee, C.P. Air travel and children’s health issues. Paediatr. Child Health 2007, 12, 45–50. [Google Scholar]
- Chaturvedi, A.K. Aerospace toxicology overview: Aerial application and cabin air quality. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin, Germany, 2012; pp. 15–40. [Google Scholar]
- Seabridge, A.; Morgan, S. Air Travel and Health: A Systems Perspective; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kim, J.-N.; Lee, B.-M. Risk management of free radicals involved in air travel syndromes by antioxidants. J. Toxicol. Environ. Health Part B 2018, 21, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Qin, Y.; Liu, D.; Liu, M. Thermal comfort assessment in civil aircraft cabins. Chin. J. Aeronaut. 2014, 27, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Wu, T.; Ouyang, Q.; Zhu, Y. Passenger thermal comfort and behavior: A field investigation in commercial aircraft cabins. Indoor Air 2017, 27, 94–103. [Google Scholar] [CrossRef]
- Jia, S.; Lai, D.; Kang, J.; Li, J.; Liu, J. Evaluation of relative weights for temperature, CO2, and noise in the aircraft cabin environment. Build. Environ. 2018, 131, 108–116. [Google Scholar] [CrossRef]
- Tang, C.-S.; Wu, T.-Y.; Chuang, K.-J.; Chang, T.-Y.; Chuang, H.-C.; Lung, S.-C.C.; Chang, L.-T. Impacts of In-Cabin Exposure to Size-Fractionated Particulate Matters and Carbon Monoxide on Changes in Heart Rate Variability for Healthy Public Transit Commuters. Atmosphere 2019, 10, 409. [Google Scholar] [CrossRef] [Green Version]
- Schuchardt, S.; Bitsch, A.; Koch, W.; Rosenberger, W. CAQ: Preliminary Cabin Air Quality Measurement Campaign; Final Report EASA_REP_RESEA_2014_4; EASA: Fraunhofer ITEM, Germany, 2017.
- Travel Sky Technology Co., Ltd. Umetrip. Available online: http://www.umetrip.com/mskyweb/main/index.html?hrefParam=index (accessed on 8 May 2021).
- Park, S.; Hellwig, R.T.; Grün, G.; Holm, A. Local and overall thermal comfort in an aircraft cabin and their interrelations. Build. Environ. 2011, 46, 1056–1064. [Google Scholar] [CrossRef]
- Fu, C.C.; Li, L.; Lee, A. A practical study on reducing CO2 density in educational buildings in North-East China. J. Constr. Res. 2019, 65, 65881289. [Google Scholar] [CrossRef]
- ASHRAE. Standard 55–2020. In Thermal Environmental Conditions for Human Occupancy (ANSI Approved); ASHRAE: Atlanta, GA, USA, 2021. [Google Scholar]
- Martinez, I. Aircraft Environmental Control. Available online: http://webserver.dmt.upm.es/~isidoro/tc3/Aircraft%20ECS.pdf (accessed on 8 May 2021).
- Li, C.; Ma, Y.; Li, Y.; Wang, F. EIS monitoring study of atmospheric corrosion under variable relative humidity. Corros. Sci. 2010, 52, 3677–3686. [Google Scholar] [CrossRef]
- Nagda, N.L.; Hodgson, M. Low relative humidity and aircraft cabin air quality. Indoor Air 2001, 11, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, E.; Aronowicz, J.D.; Butovich, I.A.; McCulley, J.P. Increased Evaporative Rates in Laboratory Testing Conditions Simulating Airplane Cabin Relative Humidity: An Important Factor for Dry Eye Syndrome. Eye Contact Lens Sci. Clin. Pract. 2007, 33, 174–176. [Google Scholar] [CrossRef]
- Korves, T.; Piceno, Y.; Tom, L.; DeSantis, T.; Jones, B.; Andersen, G.; Hwang, G. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis. Indoor Air 2013, 23, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, J.; Ren, J.; Liu, L.; Chen, R.; Li, Y. Bacterial community in commercial airliner cabins in China. Int. J. Environ. Health Res. 2020, 30, 284–295. [Google Scholar] [CrossRef]
- Withers, M.R.; Christopher, G.W. Aeromedical evacuation of biological warfare casualties: A treatise on infectious diseases on aircraft. Mil. Med. 2000, 165 (Suppl. 3), 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hocking Martin, B. Trends in Cabin Air Quality of Commercial Aircraft: Industry and Passenger Perspectives. In Reviews on Environmental Health; University of Victoria: Victoria, BC, Canada, 2002; Volume 17, p. 1. [Google Scholar]
- Bagshaw, M.; Illig, P. 47—The Aircraft Cabin Environment. In Travel Medicine, 4th ed.; Keystone, J.S., Kozarsky, P.E., Connor, B.A., Nothdurft, H.D., Mendelson, M., Leder, K., Eds.; Elsevier: London, UK, 2019; pp. 429–436. [Google Scholar]
- Dygert, R.K.; Dang, T.Q. Mitigation of cross-contamination in an aircraft cabin via localized exhaust. Build. Environ. 2010, 45, 2015–2026. [Google Scholar] [CrossRef]
- Cao, X.; Zevitas, C.D.; Spengler, J.D.; Coull, B.; McNeely, E.; Jones, B.; Loo, S.M.; MacNaughton, P.; Allen, J.G. The on-board carbon dioxide concentrations and ventilation performance in passenger cabins of US domestic flights. Indoor Built Environ. 2019, 28, 761–771. [Google Scholar] [CrossRef]
- Henderson, R. Carbon dioxide measures up as a real hazard. Occup. Health Saf. 2006, 75, 64, 68. [Google Scholar]
- Rosenberger, W. Effect of charcoal equipped HEPA filters on cabin air quality in aircraft. A case study including smell event related in-flight measurements. Build. Environ. 2018, 143, 358–365. [Google Scholar] [CrossRef]
- Schnelle Jr, K.B.; Dunn, R.F.; Ternes, M.E. Air Pollution Control Technology Handbook; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Schultz, J.A.; Hartmann, M.; Heinemann, S.; Janke, J.; Jürgens, C.; Oertel, D.; Rücker, G.; Thonfeld, F.; Rienow, A. DIEGO: A Multispectral Thermal Mission for Earth Observation on the International Space Station. Eur. J. Remote Sens. 2019, 53, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Marcus, L. Assessment of Risks of SARS-CoV-2 Transmission During Air Travel and Non-Pharmaceutical Interventions to Reduce Risk, Phase One Report: Gate-to-Gate Travel Onboard Aircraft. In Faculty and Scientists at the Harvard TH Chan School of Public Health; Harvard University: Cambridge, MA, USA, 2020. [Google Scholar]
- Liu, C.; Yin, P.; Chen, R.; Meng, X.; Wang, L.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J. Ambient carbon monoxide and cardiovascular mortality: A nationwide time-series analysis in 272 cities in China. Lancet Planet. Health 2018, 2, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Dechow, M.; Nurcombe, C.A.H. Aircraft Environmental Control Systems. In Air Quality in Airplane Cabins and Similar Enclosed Spaces; Hocking, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 3–24. [Google Scholar]
- Zhou, Y.; Deng, Y.; Wu, P.; Cao, S.-J. The effects of ventilation and floor heating systems on the dispersion and deposition of fine particles in an enclosed environment. Build. Environ. 2017, 125, 192–205. [Google Scholar] [CrossRef]
ID | Flight | Date | Aircraft Type | Aircraft Age (Year) | Flight Duration (min) | Passengers Onboard | Total Seats | Sampling Location | Parameters Collected |
---|---|---|---|---|---|---|---|---|---|
E1 | NKG→CAN | 18 April 2019 | Airbus 319 | 13.2 | 135 | 128 | 128 | 19F | PM |
E2 | CAN→NKG | 20 April 2019 | Airbus 321 | 0.7 | 135 | 195 | 195 | 31B | PM |
E3 | NKG→HAK | 27 April 2019 | Airbus 320 | 5.9 | 175 | 174 | 174 | 24E | PM, CO2, CO, P, T, RH |
E4 | HAK→NKG | 28 April 2019 | Airbus 320 | 3.6 | 170 | 158 | 158 | 20E | PM, CO2, CO, P, T, RH |
Instrument | Parameters Collected | Unit | Interval | Range | Accuracy |
---|---|---|---|---|---|
PMS Model 3003 | PM1/PM2.5/PM10 | μg m−3 | 1 s | 0~1000 μg m−3 | ±10% @ 100~500 μg m−3 ±10 μg m−3 @ 0~100 μg m−3 |
Q-Trak indoor air quality monitor 7575 | CO2 | ppm | 1 s | 0~5000 ppm | ±50 ppm |
CO | ppm | 1 s | 0~500 ppm | ±3 ppm | |
P | hPa | 1 s | 689.5~1241.1 hPa | ±2% of Reading | |
RH | % | 1 s | 5~95% RH | ±3% RH | |
T | °C | 1 s | 0~60 °C | ±0.5 °C |
ID | Sample Size (N) | T (°C) | RH (%) | P (hPa) |
---|---|---|---|---|
Mean ± SD (min, max) | Mean ± SD (min, max) | Mean ± SD (min, max) | ||
E3 | 196 | 27.5 ± 0.4 (26.2, 28.1) | 29.7 ± 15.3 (14.0, 66.4) | 910 ± 91 (796, 1021) |
E4 | 179 | 27.2 ± 1.2 (21.0, 28.1) | 33.6 ± 17.5 (13.8, 67.0) | 938 ± 64 (839, 1019) |
ID | Sample Size (N) | CO (ppm) | CO2 (ppm) |
---|---|---|---|
Mean ± SD (min, max) | Mean ± SD (min, max) | ||
E3 | 196 | 0.12 ± 0.26 (0.00, 1.18) | 1557 ± 117 (1304, 2135) |
E4 | 179 | 0.01 ± 0.02 (0.00, 0.12) | 1323 ± 104 (1069, 1861) |
ID | Sample Size (N) | PM1 (μg m−3) | PM2.5 (μg m−3) | PM10 (μg m−3) |
---|---|---|---|---|
Mean ± SD (min, max) | Mean ± SD (min, max) | Mean ± SD (min, max) | ||
E1 | 213 | 1.42 ± 1.81 (0.00, 9.31) | 2.66 ± 2.90 (0.00, 12.37) | 3.19 ± 3.34 (0.00, 15.36) |
E2 | 161 | 0.21 ± 0.62 (0.00, 3.20) | 0.44 ± 0.97 (0.00, 4.83) | 0.62 ± 1.18 (0.00, 5.71) |
E3 | 196 | 0.19 ± 0.53 (0.00, 2.89) | 0.38 ± 0.92 (0.00, 4.89) | 0.48 ± 1.08 (0.00, 5.29) |
E4 | 179 | 0.04 ± 0.16 (0.00, 1.17) | 0.15 ± 0.37 (0.00, 1.83) | 0.26 ± 0.51 (0.00, 2.43) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, N.; Zhang, Y.; Zhang, M.; Li, H. Thermal Condition and Air Quality Investigation in Commercial Airliner Cabins. Sustainability 2021, 13, 7047. https://doi.org/10.3390/su13137047
Yu N, Zhang Y, Zhang M, Li H. Thermal Condition and Air Quality Investigation in Commercial Airliner Cabins. Sustainability. 2021; 13(13):7047. https://doi.org/10.3390/su13137047
Chicago/Turabian StyleYu, Nu, Yao Zhang, Mengya Zhang, and Haifeng Li. 2021. "Thermal Condition and Air Quality Investigation in Commercial Airliner Cabins" Sustainability 13, no. 13: 7047. https://doi.org/10.3390/su13137047
APA StyleYu, N., Zhang, Y., Zhang, M., & Li, H. (2021). Thermal Condition and Air Quality Investigation in Commercial Airliner Cabins. Sustainability, 13(13), 7047. https://doi.org/10.3390/su13137047