Sustainable Governance of the Korean Freight Transportation Industry from an Environmental Perspective
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Data Envelopment Analysis (DEA)
(ii) If (x, y, b) ∈ T and b = 0, then y = 0
3.2. Environment Efficiency
3.3. Environmental Regulatory Cost
3.4. Data
4. Empirical Result
4.1. Environmental Efficiency
4.2. Regulatory Cost
5. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Assembly Budget Office. “PM Corresponding Project”, (Korean). Available online: https://www.nabo.go.kr/system/common/JSPservlet/download.jsp?fCode=33315609&fSHC=&fName=%EB%AF%B8%EC%84%B8%EB%A8%BC%EC%A7%80+%EB%8C%80%EC%9D%91+%EC%82%AC%EC%97%85+%EB%B6%84%EC%84%9D.pdf&fMime=application/pdf&fBid=19&flag=bluenet (accessed on 12 April 2021).
- National Institute of Environmental Research. Available online: https://airemiss.nier.go.kr/user/boardList.do?command=view&page=1&boardId=74&boardSeq=303&id=airemiss_040100000000 (accessed on 12 April 2021).
- Kuznet, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Zhang, N.; Xie, H. Toward green IT: Modeling sustainable production characteristics for Chinese electronic information industry, 1980–2012. Technol. Forecast. Soc. Chang. 2015, 96, 62–70. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. The review of economics and statistics derivation of shadow prices for undesirable outputs: A distance function approach. Rev. Econ. Stat. 1993, 75, 374–380. [Google Scholar] [CrossRef]
- Lee, M.; Zhang, N. Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries. Energy Econ. 2012, 34, 1492–1497. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. The evaluation of transportation energy efficiency: An application of three-stage virtual frontier DEA. Transp. Res. Part D Transp. Environ. 2014, 29, 1–11. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, N. Environmental efficiency of transportation sectors in China and Korea. Marit. Econ. Logist. 2017, 19, 68–93. [Google Scholar] [CrossRef]
- Nguyen, H.; Chang, Y. Measuring port efficiency using bootstrapped DEA: The case of Vietnamese ports. Marit. Policy Manag. 2016, 43, 644–659. [Google Scholar] [CrossRef]
- Zhang, N.; Chang, Y. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sustain. Energy Rev. 2015, 41, 584–593. [Google Scholar] [CrossRef]
- Liu, H. Green productivity growth and competition analysis of road transportation at the provincial level employing Global Malmquist-Luenberger Index approach. J. Clean. Prod. 2021, 279, 123677. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Wu, J. Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transp. Res. Part D Transp. Environ. 2016, 48, 460–472. [Google Scholar] [CrossRef]
- Wang, Z.; He, W. CO2 emissions efficiency and marginal abatement costs of the regional transportation sectors in China. Transp. Res. Part D Transp. Environ. 2017, 50, 83–97. [Google Scholar] [CrossRef]
- Bing, G.; Wang, P.; Yang, F.; Liang, L. Energy and Environmental Efficiency of China’s Transportation Sector: A Multidirectional Analysis Approach. Transp. Modeling Manag. 2014, 2014, 539596. [Google Scholar]
- Lin, W.B.; Chen, B.; Xie, L.N.; Pan, H.R. Estimating Energy Consumption of Transport Modes in China Using DEA. Sustainability 2015, 7, 4225–4239. [Google Scholar] [CrossRef] [Green Version]
- Omrani, H.; Shafaat, K.; Alizadeh, A. Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: A case of Iran. Ann. Oper. Res. 2019, 274, 471–499. [Google Scholar] [CrossRef]
- Egilmez, G.; Park, Y.S. Transportation related carbon, energy and water footprint analysis of US manufacturing: An eco-efficiency assessment. Transp. Res. Part D Transp. Environ. 2014, 32, 143–159. [Google Scholar] [CrossRef]
- Song, M.L.; Zhang, G.J.; Zeng, W.X.; Liu, J.H.; Fang, K.N. Railway transportation and environmental efficiency in China. Transp. Res. Part D Transp. Environ. 2016, 48, 488–498. [Google Scholar] [CrossRef]
- Zhou, G.H.; Chung, W.; Zhang, Y.X. Measuring energy efficiency performance of China’s transport sector: A data envelopment analysis approach. Expert Syst. Appl. 2014, 41, 709–722. [Google Scholar] [CrossRef]
- Boban, D.; Evelin, K. Evaluation of Energy-Environment Efficiency of European Transport Sectors: Non-Radial DEA and TOPSIS Approach. Energies 2019, 12, 2907. [Google Scholar]
- Wang, Z.; Feng, C. The impact and economic cost of environmental regulation on energy utilization in China. Appl. Econ. 2014, 27, 3362–3376. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Ali, E. The origins, development and future directions of data envelopment analysis approach in transportation systems. Socio-Econ. Plan. Sci. 2020, 69, 100672. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Yang, F.; Choi, Y.; Lee, H. Life-cycle data envelopment analysis to measure efficiency and cost-effectiveness of environmental regulation in China’s transport sector. Ecol. Indic. 2021, 126, 107717. [Google Scholar] [CrossRef]
- Fäe, R.; Grosskopf, S.; Pasurka, C. Effects on relative efficiency in electric power generation due to environmental controls. Resour. Energy 1986, 8, 167–184. [Google Scholar] [CrossRef]
- Korean Statistical Information Service (KOSIS). Available online: https://kosis.kr (accessed on 12 April 2021).
- National Air Pollutants Emission Service. Available online: http://airemiss.nier.go.kr (accessed on 12 April 2021).
Reference(s) | Research Sample | Method | Input | Output |
---|---|---|---|---|
Chang and Zhang [9] | Provincial transportation industry 30 provinces in China and 16 provinces in Korea | SBM-DEA | 1. energy 2. capital 3. labor | Desirable output—transportation industrial value-added Undesirable output—CO2 emissions. |
Zhang and Chang [11] | China’s regional transportation sectors | DDF-DEA | 1. energy 2. capital 3. labor | Desirable output—gross product,. Undesirable output—CO2 emissions. |
Liu et al. [12] | China’s road transportation industry | DDF-DEA | 1. highway mileage 2. operating vehicles 3. labor force 4. coal consumption | Desirableoutput—passenger & freight Turnover Undesirable output—1. CO2 emissions, 2. traffic accidents, 3. noise |
Chang et al. [13] | China’s regional transportation sectors | DDF-DEA | 1. energy 2. capital 3. labor | Desirable output—value-added. Undesirable output—CO2 emissions |
Wu et al. [14] | The transportation systems of 30 provincial-level in China | Parallel DEA | 1. labor 2. quay length 3. terminal area 4. energy consumption | Desirable output—cargo handled Undesirable output—CO2 emission |
Cui et al. [8] | China’s regional transportation sectors | DEA | 1. labor 2. capital stock 3. energy | 1. passenger turnover volume 2. freight turn volume |
Wang and He [15] | China’s regional transportation sectors | DDF-DEA | 1. energy 2. capital 3. labor | Desirable output—value-added. Undesirable output—CO2 emission |
Bi et al. [16] | China’s regional transportation sectors | DEA | 1. energy 2. capital 3. labor | Desirable output—value-added. Undesirable output—CO2 emission |
Chen et al. [17] | China’s rail, road, aviation and water transportation sectors | DEA | 1. energy 2. capital 3. labor | Desirable output—1. passenger value, 2. freight value Undesirable output—carbon dioxide |
Omrani et al. [18] | Iran’s regional transportation sectors | DEA | 1.energy 2.capital 3.labor | Desirable output—1.passenger kilometers (PKM), 2. tone kilometers (TKM) Undesirable output—greenhouse gas emission |
Park et al. [19] | U.S.’s regional transportation sectors | DEA | 1. energy 2. capital 3. labor | Desirable output—Value added Undesirable output—CO2 emission |
Song et al. [20] | China’s regional rail transportation sectors | DEA | 1. gasoline consumption 2. diesel consumption 3. highway mileage 4. labor | Desirable output—1. passenger capacity, 2. passenger turnover, 3. freight volume, 4. freight turnover. Undesirable output—1. NOx emission, 2. noise |
Zhou et al. [21] | China’s regional transportation sectors | DEA | 1. coal consumption 2. labor | Desirable output—1. passenger kilometers, 2. tons kilometers Undesirable output—CO2 emission |
Boban et al. [22] | The EU’s regional air and rail transportation sectors | DEA | 1. energy 2. capital 3. labor | Desirable output—value-added. Undesirable output—greenhouse gas emissions |
Variables (Units) | Mean | St Dev | Minimum | Maximum |
---|---|---|---|---|
Labor (Persons) | 23,346 | 27,452 | 2577 | 108,987 |
Capital (Mil. Korean won) | 500,499 | 582,417 | 84,323 | 2,494,476 |
Sales revenue (Mil. Korean won) | 1734,396 | 2,266,956 | 181,632 | 10,033,796 |
PM2.5 (Kilograms) | 425,559 | 380,007 | 71,533 | 1,863,883 |
NOx (Kilograms) | 13,834,587 | 13,099,134 | 1,963,891 | 62,851,835 |
Local Governments | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average |
---|---|---|---|---|---|---|---|
Seoul | 0.6359 | 1.0000 | 1.0000 | 1.0000 | 0.9448 | 1.0000 | 0.9301 |
Busan | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8255 | 0.9709 |
Daegu | 0.4439 | 0.5087 | 0.6260 | 0.5564 | 0.6403 | 0.1684 | 0.4906 |
Incheon | 0.2210 | 0.3454 | 0.3255 | 0.2485 | 0.3369 | 0.2784 | 0.2926 |
Gwangju | 0.2338 | 0.2451 | 0.3524 | 0.3601 | 0.3659 | 0.3130 | 0.3117 |
Daejeon | 0.1728 | 0.1833 | 0.1837 | 0.3192 | 0.2282 | 0.5717 | 0.2765 |
Ulsan | 0.1979 | 0.1557 | 0.1569 | 0.3557 | 0.2977 | 0.5793 | 0.2906 |
Gyeonggi | 0.1856 | 0.2501 | 0.2206 | 0.1662 | 0.4401 | 0.3541 | 0.2694 |
Gangwon | 0.1705 | 0.1939 | 0.2362 | 0.2226 | 0.1863 | 0.1960 | 0.2009 |
Chungbuk | 0.1652 | 0.1670 | 0.1964 | 0.16335 | 0.1667 | 0.2166 | 0.1792 |
Chungnam | 0.1527 | 0.1753 | 0.2381 | 0.2061 | 0.2214 | 0.1834 | 0.1962 |
Jeonbuk | 0.1917 | 0.2232 | 0.2393 | 0.3029 | 0.239 | 0.2695 | 0.2442 |
Jeonnam | 0.2314 | 0.2672 | 0.2663 | 0.3012 | 0.18565 | 0.1665 | 0.2364 |
Gyeongbuk | 0.1694 | 0.1884 | 0.2390 | 0.2046 | 0.17675 | 0.2120 | 0.1984 |
Gyeongnam | 0.1611 | 0.1490 | 0.1553 | 0.20125 | 0.18665 | 0.1932 | 0.1744 |
Jeju | 0.3976 | 0.4018 | 0.4198 | 0.3704 | 0.3287 | 0.2368 | 0.3592 |
Average | 0.2957 | 0.3409 | 0.3660 | 0.3737 | 0.3716 | 0.3603 | 0.3513 |
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|
Average Regulatory costs (Million Korean won) | 67,933.1 | 81,202.1 | 106,478.0 | 143,092.4 | 138,024.8 | 117,226.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Wang, H.; Yang, F.; Lee, H. Sustainable Governance of the Korean Freight Transportation Industry from an Environmental Perspective. Sustainability 2021, 13, 6429. https://doi.org/10.3390/su13116429
Choi Y, Wang H, Yang F, Lee H. Sustainable Governance of the Korean Freight Transportation Industry from an Environmental Perspective. Sustainability. 2021; 13(11):6429. https://doi.org/10.3390/su13116429
Chicago/Turabian StyleChoi, Yongrok, Haohao Wang, Fan Yang, and Hyoungsuk Lee. 2021. "Sustainable Governance of the Korean Freight Transportation Industry from an Environmental Perspective" Sustainability 13, no. 11: 6429. https://doi.org/10.3390/su13116429