Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor
Abstract
:1. Introduction
2. Field Requirement Analysis and Methodology for Sensor Development
2.1. Long-Term Requirements for LEWIS
2.2. LEWIS 4 Hardware Components
2.3. Power Supply Hardware
2.4. LEWIS 4 Software
2.5. Energy Consumption
2.6. Field Data Pre-Processing
2.7. Testing and Validation
3. Field Deployment of LEWIS 4 Sensors in the Sandia Peak Aerial Tramway
3.1. Tramway Structure Description
3.2. Instrumentation
3.3. Sensor Deployment and Retrieval
4. Monitoring and Data Analysis
Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, J.A.; Mechitov, K.; Sim, S.H.; Nagayama, T.; Jang, S.; Kim, R.; Spencer, B.F., Jr.; Agha, G.; Fujino, Y. Flexible smart sensor framework for autonomous structural health monitoring. Smart Struct. Syst. 2010, 6, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Frangopol, D.M. Life-cycle performance, management, and optimisation of structural systems under uncertainty: Accomplishments and challenges 1. Struct. Infrastruct. Eng. 2011, 7, 389–413. [Google Scholar] [CrossRef]
- Frangopol, D.M.; Liu, M. Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost*. Struct. Infrastruct. Eng. 2007, 3, 29–41. [Google Scholar] [CrossRef]
- Navabian, N.; Beskhyroun, S.; Matulich, J. Development of wireless smart sensor network for vibration-based structural health monitoring of civil structures. Struct. Infrastruct. Eng. 2020, 1–18. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Frangopol, D.M.; Strauss, A.; Kim, S. Bridge reliability assessment based on monitoring. J. Bridge Eng. 2008, 13, 258–270. [Google Scholar] [CrossRef]
- Chang, P.C.; Flatau, A.; Liu, S. Health monitoring of civil infrastructure. Struct. Health Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Castillo-Mingorance, J.M.; Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures. Sustainability 2020, 12, 9428. [Google Scholar] [CrossRef]
- Mousavi, M.; Gandomi, A.H. Prediction error of Johansen cointegration residuals for structural health monitoring. Mech. Syst. Signal Process. 2021, 160, 107847. [Google Scholar] [CrossRef]
- Shi, H.; Worden, K.; Cross, E.J. A regime-switching cointegration approach for removing environmental and operational variations in structural health monitoring. Mech. Syst. Signal Process. 2018, 103, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Moreu, F.; Spencer, B.F., Jr.; Foutch, D.A.; Scola, S. Consequence-based management of railroad bridge networks. Struct. Infrastruct. Eng. 2017, 13, 273–286. [Google Scholar] [CrossRef]
- Moreu, F.; Jo, H.; Li, J.; Kim, R.E.; Cho, S.; Kimmle, A.; Scola, S.; Le, H.; Spencer, B., Jr.; LaFave, J.M. Dynamic assessment of timber railroad bridges using displacements. J. Bridge Eng. 2015, 20, 04014114. [Google Scholar] [CrossRef]
- Kim, S.; Pakzad, S.; Culler, D.; Demmel, J.; Fenves, G.; Glaser, S.; Turon, M. Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks, Cambridge, MA, USA, 25–27 April 2007; ACM: New York, NY, USA, 2007; pp. 254–263. [Google Scholar]
- Mousavi, M.; Holloway, D.; Olivier, J.; Alavi, A.H.; Gandomi, A.H. A Shannon entropy approach for structural damage identification based on self-powered sensor data. Eng. Struct. 2019, 200, 109619. [Google Scholar] [CrossRef]
- Gohar, A.; Nencioni, G. The Role of 5G Technologies in a Smart City: The Case for Intelligent Transportation System. Sustainability 2021, 13, 5188. [Google Scholar] [CrossRef]
- Rodríguez-Robles, J.; Martin, Á.; Martin, S.; Ruipérez-Valiente, J.A.; Castro, M. Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge. Sustainability 2020, 12, 5913. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Fu, T.; Paek, J.; Kothari, N.; Rangwala, S.; Caffrey, J.; Govindan, R.; Johnson, E.; Masri, S. Monitoring civil structures with a wireless sensor network. IEEE Internet Comput. 2006, 10, 26–34. [Google Scholar] [CrossRef]
- Ozdagli, A.; Gomez, J.; Moreu, F. Real-time reference-free displacement of railroad bridges during train-crossing events. J. Bridge Eng. 2017, 22, 04017073. [Google Scholar] [CrossRef]
- Moreu, F.; Kim, R.E.; Spencer, B., Jr. Railroad bridge monitoring using wireless smart sensors. Struct. Control Health Monit. 2017, 24, e1863. [Google Scholar] [CrossRef]
- Spencer, B., Jr.; Ruiz-Sandoval, M.E.; Kurata, N. Smart sensing technology: Opportunities and challenges. Struct. Control Health Monit. 2004, 11, 349–368. [Google Scholar] [CrossRef]
- Moreu, F.; Lippitt, C. Development, Training, Education, and Implementation of Low-Cost Sensing Technologies for Bridge Structural Health Monitoring (SHM). 2018. Available online: https://digitalcommons.lsu.edu/transet_data/15/ (accessed on 22 May 2019).
- Gomez, J.A.; Ozdagli, A.I.; Moreu, F. Application of low-cost sensors for estimation of reference-free displacements under dynamic loading for railroad bridges safety. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, UK, 28–30 September 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016; p. V001T05A021. [Google Scholar]
- Agüero, M.; Ozdagli, A.; Moreu, F. Low-cost, Battery-Powered, Efficient Wireless Intelligent Sensor (LEWIS2): Outdoors and Remote Sensing Applications. In Proceedings of the MATEC Web of Conferences, EDP Sciences, Les Ulis, France, 27–30 October 2019; Volume 271, p. 01007. [Google Scholar]
- Farhangdoust, S.; Mederos, C.; Farkiani, B.; Mehrabi, A.; Taheri, H.; Younesian, D. A Creative Vibration Energy Harvesting System to Support a Self-Powered Internet of Thing (IoT) Network in Smart Bridge Monitoring. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84492, p. V02BT02A041. [Google Scholar]
- Miller, T.I.; Spencer, B.F., Jr.; Li, J.; Jo, H. Solar Energy Harvesting and Software Enhancements for Autonomous Wireless Smart Sensor Networks; Technical Report; Newmark Structural Engineering Laboratory, University of Illinois at Urbana: Urbana, IL, USA, 2010. [Google Scholar]
- Alshalalfah, B.; Shalaby, A.; Dale, S.; Othman, F.M. Improvements and innovations in aerial ropeway transportation technologies: Observations from recent implementations. J. Transp. Eng. 2013, 139, 814–821. [Google Scholar] [CrossRef]
- Brand, P.; Davila, J. Aerial cable-car systems for public transport in low-income urban areas: Lessons from Medellin, Colombia. In Proceedings of the World Planning Schools Congress: Planning’s Future—Futures Planning: Planning in an Era of Global (un)Certainty and Transformation, Perth, Australia, 4 July 2011. [Google Scholar]
- Neumann, E.S. The past, present, and future of urban cable propelled people movers. J. Adv. Transp. 1999, 33, 51–82. [Google Scholar] [CrossRef]
- Allady, A. Resilient and Sustainable Infrastructure Begins with Foundations. In IFCEE 2021; ASCE: Reston, VA, USA, 2010; pp. 405–420. [Google Scholar]
- Aguero, M.; Ozdagli, A.; Moreu, F. Measuring Reference-Free Total Displacements of Piles and Columns Using Low-Cost, Battery-Powered, Efficient Wireless Intelligent Sensors (LEWIS2). Sensors 2019, 19, 1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharjan, D.; Wyckoff, E.; Agüero, M.; Martinez, S.; Zhou, L.; Moreu, F. Monitoring induced floor vibrations: Dance performance and bridge engineering. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, Denver, CO, USA, 4–7 March 2019; Volume 10970, p. 109701E. [Google Scholar]
- Maharjan, D.; Agüero, M.; Lippitt, C.; Moreu, F. Infrastructure Stakeholders’ Perspective in Development and Implementation of New Structural Health Monitoring (SHM) Technologies for Maintenance and Management of Transportation Infrastructure. In Proceedings of the MATEC Web of Conferences, EDP Sciences, Les Ulis, France, 27–30 October 2019; Volume 271, p. 01010. [Google Scholar]
- Beddows, P.A.; Mallon, E.K. Cave pearl data logger: A flexible Arduino-based logging platform for long-Term monitoring in harsh environments. Sensors 2018, 18, 530. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.; Hurley, W. A new methodology to optimise solar energy extraction under cloudy conditions. Renew. Energy 2010, 35, 780–787. [Google Scholar] [CrossRef]
- Park, G.; Rosing, T.; Todd, M.D.; Farrar, C.R.; Hodgkiss, W. Energy harvesting for structural health monitoring sensor networks. J. Infrastruct. Syst. 2008, 14, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Casciati, F.; Rossi, R. A power harvester for wireless sensing applications. Struct. Control Health Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 2007, 14, 649–659. [Google Scholar] [CrossRef]
- Designing Applications with Liion Batteries. 2019. Available online: https://www.richtek.com/battery-management/en/designing-liion.html (accessed on 6 May 2019).
- Shepherd, C.M. Design of primary and secondary cells: II. An equation describing battery discharge. J. Electrochem. Soc. 1965, 112, 657. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 171–179. [Google Scholar]
- Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [Google Scholar] [CrossRef]
- Banzi, M.; Shiloh, M. Getting Started with Arduino: The Open Source Electronics Prototyping Platform; Maker Media, Inc.: Sebastopol, CA, USA, 2014; p. 131. [Google Scholar]
- Greiman, B. Arduino FAT16/FAT32 Library. 2019. Available online: https://github.com/greiman/SdFat (accessed on 10 April 2019).
- Landsiedel, O.; Wehrle, K.; Gotz, S. Accurate prediction of power consumption in sensor networks. In Proceedings of the Second IEEE Workshop on Embedded Networked Sensors, 2005, EmNetS-II, Sydney, Australia, 31 May 2005; IEEE: New York, NY, USA, 2005; pp. 37–44. [Google Scholar]
- Ali Irmak Ozdagli, P. Code: Bin2Csv; Code Developer: London, UK, 2019. [Google Scholar]
SENSOR | LEWIS 1 | LEWIS 2 | LEWIS 3 | LEWIS 4 |
---|---|---|---|---|
Wireless | No | Yes | Yes | Yes |
Power Source | Wire | Battery | Battery-Solar panel | Battery-Solar panel |
Ideal deployment situations | • Training and education • Easy access placements • Minutes duration deployment • No angular displacement | • High accuracy requirement • Easy access placements • Minutes duration deployment • Angular displacement | • High accuracy requirement • Easy access placements • Hours duration deployment • Angular displacement | • High accuracy requirement • Difficult access placements • Days duration deployment • Angular displacement |
Acceleration sensor | MPU 6050 | MPU 9250 | MPU 9250 | MPU 9250 |
Acceleration range (g) | ±2 | ±16 | ±16 | ±16 |
Frequency (Hz) | 100 | 500 | 500 | 250 |
Construction Price ($) | 65 | 100 | 250 | 250 |
Cell Type | Ni-Cd | Ni-MH | SLA | Li-Ion | Polymer-Li |
---|---|---|---|---|---|
Energy density (Wh/kg) | 50 | 75 | 30 | 100 | 175 |
Life cycle (charges-discharges) | 1500 | 500 | 200–300 | 300–700 | 600 |
Self-discharge (charge % at time) | 60% 4 months | 15 % 1 month | 60% 24 months | 40% 5 months | 8% 1 month |
Nominal voltage (V) | 1.25 | 1.25 | 2 | 3.6 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardona Huerta, R.; Moreu, F.; Lozano Galant, J.A. Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor. Sustainability 2021, 13, 6340. https://doi.org/10.3390/su13116340
Cardona Huerta R, Moreu F, Lozano Galant JA. Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor. Sustainability. 2021; 13(11):6340. https://doi.org/10.3390/su13116340
Chicago/Turabian StyleCardona Huerta, Rafael, Fernando Moreu, and Jose Antonio Lozano Galant. 2021. "Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor" Sustainability 13, no. 11: 6340. https://doi.org/10.3390/su13116340