Carbon and Nitrogen Sourcing in High Elevation Landscapes of Mustang in Central Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climate
2.2. Soil Sampling Point Determination
2.3. Soil Sampling and Laboratory Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Joshi, B.K.; Acharya, A.K.; Gauchan, D.; Chaudhary, P. The State of Nepal’s Biodiversity for Food and Agriculture; Ministry of Agriculture and Livestock Development: Kathmandu, Nepal, 2017; Volume 1, p. 78.
- Dhital, M.R. Geology of the Nepal Himalaya: Regional Perspective of the Classic Collided Orogen; Springer International Publishing: Berlin, Germany, 2015. [Google Scholar]
- Valdiya, K.S. Evolution of the Himalaya. Tectonophysics 1984, 105, 229–248. [Google Scholar] [CrossRef]
- Fort, M.; Freytet, P.; Colchen, M. Structural and sedimentological evolution of the Thakkhola Mustang graben (Nepal Himalayas). Z. Geomorphol. 1982, 42, 75–98. [Google Scholar]
- Fort, M. Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: Focus on the upper Kali Gandaki (Mustang District, Nepal). Environ. Earth Sci. 2015, 73, 801–814. [Google Scholar] [CrossRef]
- Government of Nepal. Mustang District Profile; District Statistical Office, Government of Nepal: Mustang District, Nepal, 2010; p. 87.
- Norton, K.P.; Molnar, P.; Schlunegger, F. The role of climate-driven chemical weathering on soil production. Geomorphology 2014, 204, 510–517. [Google Scholar] [CrossRef]
- KC, K.; Poudel, K.; Paudel, N.; Pokharel, R.; Koirala, S. Resource Mapping Report; District Development Committee: Mustang, Nepal, 2014.
- Gauchan, D.; Yokoyama, S. Farming Systems Research in Nepal: Current Status and Future Agenda; National Research Institute of Agricultural Economics; Ministry of Agriculture, Forestry, and Fisheries: Tokyo, Japan, 1999.
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.M.; Naqvi, S.S.M.; Ansari, R. Impact of soil pH on nutrient uptake by crop plants. Handb. Plant Crop Stress 1999, 2, 51–60. [Google Scholar]
- Truong, T.H.H.; Marschner, P. Plant growth and nutrient uptake in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. J. Soil Sci. Plant Nutr. 2019, 19, 512–523. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Gill, R.; Burke, I.C.; Milchunas, D.G.; Lauenroth, W.K. Relationship between root biomass and soil organic matter pools in the short grass steppe of eastern Colorado. Ecosystems 1999, 2, 226–236. [Google Scholar]
- Poage, M.A.; Feng, X.H. A theoretical analysis of steady state delta 13C profiles of soil organic matter. Glob. Biogeochem. Cycles 2004, 18, GB2016. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, L.; Wang, X.; Aiken, G. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006–2008. J. Geophys. Res. Biogeosci. 2015, 120, 2273–2288. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Song, Z.; Wang, Y.; Wang, W.; Fu, X.; Singh, B.P.; Kuzyakov, Y.; Wang, H. Soil organic matter turnover depending on land use change: Coupling C/N ratios, δ13C, and lignin biomarkers. Land Degrad. Dev. 2021, 32, 1591–1605. [Google Scholar] [CrossRef]
- Boutton, T.W. Stable isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In Carbon Isotope Techniques; Coleman, D.C., Fry, B., Eds.; Academic Press: New York, NY, USA, 1991; pp. 173–185. [Google Scholar]
- Ramaswamy, V.; Gaye, B.; Shirodkar, P.V.; Rao, P.S.; Chivas, A.R.; Wheeler, D.; Thwin, S. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Mar. Chem. 2008, 111, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Middelburg, J.J.; Herman, P.M.J. Organic matter processing in tidal estuaries. Mar. Chem. 2007, 106, 127–147. [Google Scholar] [CrossRef]
- Gerschlauer, F.; Saiz, G.; Schellenberger Costa, D.; Kleyer, M.; Dannenmann, M.; Kiese, R. Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania. Biogeosciences 2019, 16, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.I.; Pousai, P. Variations of δ13C in the surface soil organic carbon pool. Glob. Biogeochem. Cycles 1997, 11, 313–322. [Google Scholar] [CrossRef]
- Ortiz, C.; Vázquez, E.; Rubio, A.; Benito, M.; Schindlbacher, A.; Jandl, R.; Butterbach-Bahl, K.; Díaz-Pinés, E. Soil organic matter dynamics after afforestation of mountain grasslands in both a Mediterranean and a temperate climate. Biogeochemistry 2016, 131, 267–280. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2019, 26, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, B. Stable Isotope Ecology; Springer: New York, NY, USA, 2006; Volume 521. [Google Scholar]
- Shrestha, H.L.; Bhandari, T.S.; Karky, B.S.; Kotru, R. Linking soil properties to climate change mitigation and food security in Nepal. Environments 2017, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Acharya, K.P.; Nirmal, B.K.; Poudel, B.; Bastola, S.; Mahato, M.K.; Yadav, G.P.; Kaphle, K. Study on yak husbandry in Mustang district of Nepal. J. Hill Agric. 2014, 5, 100–105. [Google Scholar] [CrossRef]
- Craig, S. Pasture management, indigenous veterinary care and the role of the horse in Mustang, Nepal. In Rangelands and Pastoral Development in the Hindu Kush–Himalayas; ICIMOD: Kathmandu, Nepal, 1996; pp. 147–170. [Google Scholar]
- Balla, M.K.; Tiwari, K.R.; Kafle, G.; Gautam, S.; Thapa, S.; Basnet, B. Farmers dependency on forests for nutrients transfer to farmlands in mid-hills and high mountain regions in Nepal (case studies in Hemja, Kaski, Lete and Kunjo, Mustang district). Int. J. Biodivers. Conserv. 2014, 6, 222–229. [Google Scholar]
- NTNC. Sustainable Development Plan of Mustang; National Trust for Nature Conservation (NTNC), Government of Nepal/United Nations Environment Programme: Kathmandu, Nepal, 2008.
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Holz, M.; Augustin, J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis. Geoderma 2021, 397, 115045. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Chen, L.; Liu, G.; Wei, W. Nutrient transport associated with water erosion: Progress and prospect. Prog. Phys. Geogr. 2007, 31, 607–620. [Google Scholar]
- Andersen, D.C.; Nelson, S.M. Flood pattern and weather determine Populus leaf litter breakdown and nitrogen dynamics on a cold desert floodplain. J. Arid Environ. 2006, 64, 626–650. [Google Scholar] [CrossRef]
- Rees, R.; Chang, S.C.; Wang, C.P.; Matzner, E. Release of nutrients and dissolved organic carbon during decomposition of Chamaecyparis obtusa var. formosana leaves in a mountain forest in Taiwan. J. Plant Nutr. Soil Sci. 2006, 169, 792–798. [Google Scholar] [CrossRef]
- Cogle, A.L.; Rao, K.P.C.; Yule, D.F.; Smith, G.D.; George, P.J.; Srinivasan, S.T.; Jangawad, L. Soil management for Alfisols in the semiarid tropics: Erosion, enrichment ratios and runoff. Soil Use Manag. 2002, 18, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.N. Selective erosion of plant nutrients in runoff. Soil Sci. Soc. Am. J. 1985, 49, 1527–1534. [Google Scholar] [CrossRef]
- Zheng, F.; He, X.; Gao, X.; Zhang, C.; Tang, K. Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China. Agric. Ecosyst. Environ. 2005, 108, 85–97. [Google Scholar] [CrossRef]
- Nasir, A.; Lukman, M.; Tuwo, A.; Hatta, M.; Tambaru, R. The use of C/N ratio in assessing the influence of land-based material in Coastal Water of South Sulawesi and Spermonde Archipelago, Indonesia. Front. Mar. Sci. 2016, 3, 266. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Kohandel, A.; Baghbani, S.; Tavili, A.; Chahouki, M.A.Z. Comparison of chemical characteristics of shoot, root and litter in three range species of Salsola rigida, Artemisia sieberi and Stipa barbata. Casp. J. Environ. Sci. 2011, 9, 37–46. [Google Scholar]
- Wan, X.; Huang, Z.; He, Z.; Yu, Z.; Wang, M.; Davis, M.R.; Yang, Y. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 2015, 387, 103–116. [Google Scholar] [CrossRef]
- Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2017; Volume 15, pp. 662–710. [Google Scholar]
- Staddon, P.L. Carbon isotopes in functional soil ecology. Trends Ecol. Evol. 2004, 19, 148–154. [Google Scholar] [CrossRef]
- Garzione, C.N.; Dettman, D.L.; Quade, J.; DeCelles, P.G.; Butler, R.F. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology 2000, 28, 339–342. [Google Scholar] [CrossRef]
- Cerling, T.E.; Wang, Y.; Quade, J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 1993, 361, 344–345. [Google Scholar] [CrossRef]
- Galy, A.; France-Lanord, C.; Derry, L.A. The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochim. Cosmochim. Acta 1999, 63, 1905–1925. [Google Scholar] [CrossRef]
- France-Lanord, C.; Sheppard, S.M.F.; Fort, P.L. Hydrogen and oxygen isotope variations in the high himalaya peraluminous Manaslu leucogranite: Evidence for heterogeneous sedimentary source. Geochim. Cosmochim. Acta 1988, 52, 513–526. [Google Scholar] [CrossRef]
- Szpak, P.; White, C.D.; Longstaffe, F.J.; Millaire, J.F.; Vasquez Sanchez, V.F. Carbon and nitrogen isotopic survey of northern peruvian plants: Baselines for paleodietary and paleoecological studies. PLoS ONE 2013, 8, e53763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craine, J.M.; Elmore, A.J.; Aidar, M.P.; Bustamante, M.; Dawson, T.E.; Hobbie, E.A.; Kahmen, A.; Mack, M.C.; McLauchlan, K.K.; Michelsen, A.; et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 2009, 183, 980–992. [Google Scholar] [CrossRef]
- Handley, L.L.; Austin, A.T.; Stewart, G.R.; Robinson, D.; Scrimgeour, C.M.; Raven, J.A.; Heaton, T.H.E.; Schmidt, S. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Funct. Plant Biol. 1999, 26, 185–199. [Google Scholar] [CrossRef]
- Zhou, L.; Song, M.H.; Wang, S.Q.; Fan, J.W.; Liu, J.Y.; Zhong, H.P.; Yu, G.R.; Gao, L.P.; Hu, Z.M.; Chen, B.; et al. Patterns of Soil 15N and Total N and Their Relationships with Environmental Factors on the Qinghai-Tibetan Plateau. Pedosphere 2014, 24, 232–242. [Google Scholar] [CrossRef]
- Ruiz-Navarro, A.; Barbera, G.G.; Albaladejo, J.; Querejeta, J.I. Plant delta (15) N reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystem. New Phytol. 2016, 212, 1030–1043. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.S.; Kelly, S.D. Fertilizer nitrogen isotope signatures. Isot. Environ. Health Stud. 2007, 43, 237–247. [Google Scholar] [CrossRef]
- Regmi, P.P.; KC, G.B.; Bhattarai, H.P. Impact Assessment of National Integrated Pest Management (NIMP) Program in Nepal—Final Report; submitted to the FAO representative in Nepal, FAO country office, UN House, Pulchowk Lalitpur; Nepal Development Research Institute: Pulchwok Lalitpur, Nepal, 2014; p. 57. [Google Scholar]
- Fogg, G.E.; Rolston, D.E.; Decker, D.L.; Louie, D.T.; Grismer, M.E. Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Groundwater 1998, 36, 418–426. [Google Scholar] [CrossRef]
- Huon, S.; Grousset, F.E.; Burdloff, D.; Bardoux, G.; Mariotti, A. Sources of one-sized organic matter in North Atlantic Heinrich Layers: δ13C and δ15N tracers. Geochim. Cosmochim. Acta 2002, 66, 223–239. [Google Scholar] [CrossRef]
Sampling Points | Latitude | Longitude | Elevation, masl | Location | Micro-Relief | Site Characteristics | Nearby Dominant Vegetation |
---|---|---|---|---|---|---|---|
1 | 28.71225 | 83.64908 | 2628 | Tukuche | Midslope | Orchard | Juniper, Pine |
2 | 28.83692 | 83.78242 | 2837 | Kagbeni | Valley | Cropped land | Juniper |
3 | 28.80392 | 83.77322 | 2852 | Between Kagbeni and Lupra | Valley | Cropped land | Juniper |
4 | 28.80389 | 83.77322 | 2852 | Between Kagbeni and Lupra | Valley | Cropped land | Juniper |
5 | 28.92494 | 83.82758 | 2963 | Tsungsang | Valley | Cropped land | Juniper shrub, grasses |
6 | 28.80244 | 83.79028 | 2997 | Lupra | Midslope | Orchard | Juniper shrub, grasses |
7 | 28.80211 | 83.78958 | 3017 | Lupra | Midslope | Apple orchard | Juniper shrub, grasses |
8 | 28.88406 | 83.80836 | 3092 | Thangbe | Valley | Cropped land | Juniper shrub |
9 | 28.96161 | 83.80847 | 3447 | East of Samar | Valley | Cropped land | Pine, Juniper |
10 | 28.81758 | 83.84944 | 3524 | Jharkot | Ridge | Orchard | - |
11 | 28.94964 | 83.80181 | 3560 | South of Samar | Midslope | Orchard | Pine, Juniper |
12 | 29.06139 | 83.87169 | 3579 | Ghami | Valley | Cropped land | Planted Populas |
13 | 28.96169 | 83.80142 | 3606 | Samar | Ridge | Orchard | Pine, Juniper |
14 | 28.99114 | 83.83819 | 3778 | Syanboche | Valley | Cropped land | - |
15 | 29.18361 | 83.95714 | 3823 | Lomanthang | Valley | Cropped land | Planted Populas |
16 | 29.18272 | 83.95711 | 3825 | Lomanthang | Valley | Cropped land | Planted Populas |
17 | 29.25469 | 83.96025 | 4027 | South of Chonup, North of Lomanthang | Valley | Cropped land | Grasses |
18 | 29.30347 | 83.96836 | 4612 | North of Chonup | Ridge | Orchard | Juniper |
19 | 29.30347 | 83.96836 | 4612 | North of Chonup | Ridge | Orchard | Juniper and grasses |
20 | 29.30347 | 83.96836 | 4612 | North of Chonup | Ridge | Orchard | Grasses |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojha, R.B.; Manandhar, S.; Neupane, A.; Panday, D.; Tiwari, A. Carbon and Nitrogen Sourcing in High Elevation Landscapes of Mustang in Central Nepal. Sustainability 2021, 13, 6171. https://doi.org/10.3390/su13116171
Ojha RB, Manandhar S, Neupane A, Panday D, Tiwari A. Carbon and Nitrogen Sourcing in High Elevation Landscapes of Mustang in Central Nepal. Sustainability. 2021; 13(11):6171. https://doi.org/10.3390/su13116171
Chicago/Turabian StyleOjha, Roshan Babu, Sujata Manandhar, Avishesh Neupane, Dinesh Panday, and Achyut Tiwari. 2021. "Carbon and Nitrogen Sourcing in High Elevation Landscapes of Mustang in Central Nepal" Sustainability 13, no. 11: 6171. https://doi.org/10.3390/su13116171
APA StyleOjha, R. B., Manandhar, S., Neupane, A., Panday, D., & Tiwari, A. (2021). Carbon and Nitrogen Sourcing in High Elevation Landscapes of Mustang in Central Nepal. Sustainability, 13(11), 6171. https://doi.org/10.3390/su13116171