Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model
Abstract
:1. Introduction
2. Model, Methodology, and Data
2.1. Calculation of Food Nitrogen Footprint
2.1.1. FCNF Calculation
2.1.2. FPNF Calculation
2.2. Environmental Kuznets Curve Hypothesis
2.3. The Extended STIRPAT Model
2.4. Exploratory Spatial Data Analysis
2.4.1. Global Spatial Autocorrelation Analysis
2.4.2. Local Spatial Autocorrelation
2.5. Spatial Panel Econometric Model
2.6. Test of Spatial Panel Model
2.7. Data Sources
3. Empirical Results
3.1. Spatial Distribution of Food Nitrogen Footprint in China
3.2. Selection of Spatial Panel Model
3.3. Empirical Results of Fixed Effect Spatial Durbin Model
3.3.1. Results of EKC Validation and Influencing Factors Analysis
3.3.2. Results of Spatial Effect Analysis
4. Discussion
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China (NBSC). Statistical Bulletin of the People’s Republic of China on National Economic and Social Development in 2020. 2021. Available online: http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html (accessed on 28 February 2021).
- Xie, J.L. The upgrading of residents’ food consumption and the transformation and development of China’s agriculture. Rural Econ. 2020, 6, 66–73. [Google Scholar]
- Yin, Y.X.; Jia, J.; Shen, Y. Changes and trends of food consumption of urban and rural residents in China. World Agric. 2020, 9, 38–46. [Google Scholar]
- Yu, Y.; Cui, S.H.; Zhao, S.N.; Meng, F.X.; Li, F. Changes of residents nitrogen consumption and its environmental loading from food in Xiamen. Acta Ecol. Sin. 2012, 32, 5953–5961. [Google Scholar] [CrossRef] [Green Version]
- Pierer, M.; Schröck, A.; Winiwarter, W. Analyzing consumer-related nitrogen flows: A case study on food and material use in Austria. Resour. Conserv. Recycl. 2015, 101, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.L.; Zhang, J.J.; Tong, B.X.; Ma, L.; Ma, W. Spatiotemporal variation of nitrogen indicators related to agricultural green development in China. Chin. J. Eco Agric. 2020, 28, 1141–1155. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; Vries, W.D. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhill, B.; Dolšak, N.; Prakash, A. Exploring the adaptation-mitigation relationship: Does information on the costs of adapting to climate change influence support for mitigation? Environ. Commun. 2018, 12, 911–927. [Google Scholar] [CrossRef]
- Anguelovski, I.; Shi, L.; Chu, E.; Gallagher, D.; Goh, K.; Lamb, Z.; Reeve, K.; Teicher, H. Equity impacts of urban land use planning for climate adaptation: Critical perspectives from the global north and south. J. Plan. Educ. Res. 2016, 36, 333–348. [Google Scholar] [CrossRef]
- Cramer, W.; Yohe, G.W.; Auffhammer, M.; Huggel, C.; Molau, U.; Da Silva Dias, M.A.F.; Solow, A.; Stone, D.; Tibig, L.; Leemans, R.; et al. Detection and attribution of observed impacts. In Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2015; pp. 979–1038. [Google Scholar] [CrossRef]
- Hayes, S. Adapting infrastructure to climate change: Who bears the risk and responsibility? In Asset Intelligence through Integration and Interoperability and Contemporary Vibration Engineering Technologies, Proceedings of the 12th World Congress on Engineering Asset Management and the 13th International Conference on Vibration Engineering and Technology of Machinery, Brisbane, Australia, 2–4 August 2017; Mathew, J., Lim, C.W., Ma, L., Sands, D., Cholette, M.E., Borghesani, P., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Pean, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/ (accessed on 12 March 2020).
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Schellnhuber, H.J. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNEP. Frontiers 2018/19 Emerging Issues of Environmental Concern; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Magnan, A.K.; Schipper, E.L.F.; Burkett, M.; Bharwani, S.; Ziervogel, G. Addressing the risk of maladaptation to climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 646–665. [Google Scholar] [CrossRef]
- ADB. Bangladesh: Coastal Climate-Resilient Infrastructure Project. Sovereign (Public) Project 45084-002. 2018. Available online: https://www.adb.org/projects/45084-002/main (accessed on 19 December 2019).
- International Organization for Migration. Climate Change and Displacement in Bangladesh—A Silent Crisis? 2009. Available online: https://www.iom.int/migrant-stories/climate-change-and-displacement-bangladesh-silent-crisis (accessed on 15 November 2009).
- Kates, R.W.; Colten, C.E.; Laska, S.; Leatherman, S.P. Reconstruction of New Orleans after Hurricane Katrina: A research perspective. Proc. Natl. Acad. Sci. USA 2006, 103, 14653–14660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleemer, Z.; van der Klaauw, W. Disaster (Over-) Insurance: The Long-Term Financial and Socioeconomic Consequences of Hurricane Katrina; Staff Report, No. 807; Federal Reserve Bank of New York: New York, NY, USA, 2017; Available online: https://www.newyorkfed.org/research/staff_reports/sr807 (accessed on 27 February 2017).
- Orr, F.M., Jr. Sequestration via injection of carbon dioxide into the deep earth. In The Carbon Dioxide Dilemma: Promising Technologies and Policies; National Academy of Engineering and National Research Council; The National Academies Press: Washington, DC, USA, 2003; Available online: https://www.nap.edu/read/10798/chapter/3#17 (accessed on 19 August 2003).
- Benson, S.M.; Orr, F.M. Carbon dioxide capture and storage. MRS Bull. 2008, 33, 303–305. [Google Scholar] [CrossRef] [Green Version]
- Huppert, H.E.; Neufeld, J.A. The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 2014, 46, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Weissman, S. Natural Gas as a Bridge Fuel-Measuring the Bridge; Center for Sustainable Energy: San Diego, CA, USA, 2016; Available online: http://energycenter.org/sites/default/files/docs/nav/policy/research-and-reports/Natural_Gas_Bridge_Fuel.pdf (accessed on 28 February 2021).
- Gu, B.; Leach, A.M.; Ma, L.; Galloway, J.N.; Chang, S.X.; Ge, Y.; Jie, C. Nitrogen footprint in China: Food, energy, and nonfood goods. Environ. Sci. Technol. 2013, 47, 9217–9224. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.H.; Su, S.P.; Yu, W.M.; Sun, X.X. Temporal and spatial pattern evolution and grouping prediction of non-point source pollution of chemical fertilizers in China. Chin. J. Eco Agric. 2020, 28, 1079–1092. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; Working Paper Series 3914; National Bureau of Economic Research Inc.: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; Ilo Working Papers. No. 292778; International Labour Office: Geneve, Switzerland, 1993; Volume 4. [Google Scholar]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Can, M.; Gözgör, G. The impact of economic complexity on carbon emissions: Evidence from France. Environ. Sci. Pollut. Res. 2017, 24, 1–7. [Google Scholar] [CrossRef]
- Amri, F. Carbon dioxide emissions, total factor productivity, ICT, trade, financial development, and energy consumption: Testing environmental Kuznets curve hypothesis for Tunisia. Environ. Sci. Pollut. Res. 2018, 25, 33691–33701. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Rosa, E.A.; York, R. Driving the human ecological footprint. Front. Ecol. Environ. 2007, 5, 13–18. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and IMPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Jabran, M.A. How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Nosheen, M.; Abbasi, M.A.; Iqbal, J. Analyzing extended STIRPAT model of urbanization and CO2 emissions in Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 45911–45924. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.C.; Dong, L.L.; Chen, D.X.; Gu, B.H.; Zeng, Y. China’s regional CO2 emissions reduction potential: A study of Chongqing City. Appl. Energy 2016, 162, 1345–1354. [Google Scholar] [CrossRef]
- Wang, Y.; Han, R.; Kubota, J. Is there an environmental Kuznets curve for SO2 emissions? A semi-parametric panel data analysis for China. Renew. Sustain. Energy Rev. 2016, 54, 1182–1188. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Marinova, D.; Zhao, D.; Hong, J. Impacts of urbanization and real economic development on CO2 emissions in non-high income countries: Empirical research based on the extended STIRPAT model. J. Clean. Prod. 2017, 166, 952–966. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, C.; Guan, Y.; Xue, C. Socioeconomic factors and regional differences of PM2.5 health risks in China. J. Environ. Manag. 2019, 251, 109564. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Cao, J.; Yang, L. China’s economic policy choices for governing smog pollution based on spatial spillover effects. Econ. Res. J. 2016, 9, 73–88. (In Chinese) [Google Scholar]
- Tian, W.; Costa, P.D. Inequalities in per capita CO2 emissions in European Union, 1990–2020 Paper presented at the European Energy Market (EEM). In Proceedings of the 2014 11th International Conference on the European Energy Market, Krakow, Poland, 28–30 May 2014; pp. 28–30. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, X.; Wu, Y. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- Ghazali, A.; Ali, G. Investigation of key contributors of CO2 emissions in extended STIRPAT model for newly industrialized countries: A dynamic common correlated estimator (DCCE) approach. Energy Rep. 2019, 5, 242–252. [Google Scholar] [CrossRef]
- Och, M. Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia. Int. J. Energy Econ. Policy 2017, 7, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Khan, M.Z.; Zaman, K.; Naz, L. Global estimates of energy consumption and greenhouse gas emissions. Renew. Sustain. Energy Rev. 2014, 29, 336–344. [Google Scholar] [CrossRef]
- Hassan, S.A.; Nosheen, M. Estimating the Railways Kuznets Curve for high income nations—A GMM approach for three pollution indicators. Energy Rep. 2019, 5, 170–186. [Google Scholar] [CrossRef]
- Luo, Y.P.; Chen, H.; Zhu, Q.A.; Peng, C.H.; Yang, G.; Yang, Y.Z.; Zhang, Y. Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade. PLoS ONE 2014, 9, e104013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brajer, V.; Mead, R.W.; Xiao, F. Searching for an environmental Kuznets curve in China’s air pollution. China Econ. Rev. 2011, 22, 383–397. [Google Scholar] [CrossRef]
- Hill, R.J.; Magnani, E. An exploration of the conceptual and empirical basis of the Environmental Kuznets Curve. Aust. Econ. Pap. 2002, 41, 239–254. [Google Scholar] [CrossRef]
- Cho, C.H.; Chu, Y.P.; Yan, H.Y. An environment Kuznets curve for GHG emissions: A panel cointegration analysis. Energy Sources Part B Econ. Plan. Policy 2014, 9, 120–129. [Google Scholar] [CrossRef]
- Giovanis, E. Environmental Kuznets curve: Evidence from the British household panel survey. Econ. Model. 2013, 30, 602–611. [Google Scholar] [CrossRef]
- Liddle, B. Urban transport pollution: Revisiting the environmental Kuznets curve. Int. J. Sustain. Transp. 2015, 9, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhang, L. Exploring the dynamic linkages between tourism growth and environmental pollution: New evidence from the Mediterranean countries. Curr. Issues Tour. 2019, 24, 49–65. [Google Scholar] [CrossRef]
- Roca, J.; Padilla, E.; Farré, M.; Galletto, V. Economic growth and atmospheric pollution in Spain: Discussing the environmental Kuznets curve hypothesis. Ecol. Econ. 2001, 39, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.D.; Masum, M.F.H.; Koike, M. Global observation of EKC hypothesis for CO2, SOx and NOx emission: A policy understanding for climate change mitigation in Bangladesh. Energy Policy 2010, 38, 4643–4651. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Bashir, A.; Husnainc, M.I. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef]
- Xu, S.C.; Li, Y.W.; Miao, Y.M.; Gao, C.; Zheng, X. Regional differences in nonlinear impacts of economic growth, export and FDI on air pollutants in China based on provincial panel data. J. Clean. Prod. 2019, 228, 455–466. [Google Scholar] [CrossRef]
- Fong, L.S.; Salvo, A.; Taylor, D. Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach. Sustain. Dev. 2020, 28, 1441–1456. [Google Scholar] [CrossRef]
- Wang, S.; Yang, F.L.; Wang, X.E.; Song, J.N. A Microeconomics Explanation of the Environmental Kuznets Curve (EKC) and an Empirical Investigation. Pol. J. Environ. Stud. 2017, 26, 1757–1764. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Fernandez, M.A. An Environmental Kuznets Curve for N2O emissions in Germany: An ARDL approach. Nat. Resour. Forum 2017, 41, 119–127. [Google Scholar] [CrossRef]
- Zhang, W.W.; Sharp, B.; Xu, S.C. Does economic growth and energy consumption drive environmental degradation in China’s 31 provinces? New evidence from a spatial econometric perspective. Appl. Econ. 2019, 51, 4658–4671. [Google Scholar] [CrossRef]
- Halkos, G.E.; Polemis, M.L. Does Financial Development Affect Environmental Degradation? Evidence from the OECD Countries. Bus. Strategy Environ. 2017, 26, 1162–1180. [Google Scholar] [CrossRef]
- Fujii, H.; Managi, S. Economic development and multiple air pollutant emissions from the industrial sector. Environ. Sci. Pollut. Res. 2016, 23, 2802–2812. [Google Scholar] [CrossRef]
- Sinha, A.; Bhatt, M.Y. Environmental Kuznets Curve for CO2 and NOx emissions: A Case Study of India. Eur. J. Sustain. Dev. 2017, 6, 267–276. [Google Scholar] [CrossRef]
- Rasli, A.M.; Qureshi, M.I.; Isah-Chikaji, A.; Zaman, K.; Ahmad, M. New toxics, race to the bottom and revised environmental Kuznets curve: The case of local and global pollutants. Renew. Sustain. Energy Rev. 2018, 81, 3120–3130. [Google Scholar] [CrossRef]
- Ge, X.Y.; Zhou, Z.M.; Zhou, Y.L.; Ye, X.Y. A spatial panel data analysis of economic growth, urbanization, and NOx emissions in China. Int. J. Environ. Res. Public Health 2018, 15, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets Curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Awad, A.; Qarsame, M.H. Climate changes in Africa: Does economic growth matter? A semi-parametric approach. Int. J. Energy Econ. Policy 2017, 7, 1–8. [Google Scholar]
- Li, B.; Liu, X.; Li, Z. Using the STIRPAT model to explore the factors driving regional CO2 emissions: A case of Tianjin, China. Nat. Hazards 2015, 76, 1667–1685. [Google Scholar] [CrossRef]
- Marin, G.; Mazzanti, M. The evolution of environmental and labor productivity dynamics. J. Evol. Econ. 2013, 23, 357–399. [Google Scholar] [CrossRef]
- Rafiq, S.; Salim, R.; Apergis, N. Agriculture, trade openness and emissions: An empirical analysis and policy options. Aust. J. Agric. Resour. Econ. 2016, 60, 348–365. [Google Scholar] [CrossRef] [Green Version]
- Uddin, G.A.; Alam, K.; Gow, G. Estimating the major contributors to environmental impacts in Australia. Int. J. Ecol. Econ. Stat. 2016, 37, 1–14. [Google Scholar]
- Wang, S.S.; Zhao, T.H.; Zheng, H.T.; Hu, J. The STIRPAT analysis on carbon emission in Chinese cities: An asymmetric Laplace distribution mixture model. Sustainability 2017, 9, 2237. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Zhao, T.; Xu, X.; Kang, J. Regional characteristics of impact factors for energy-related CO2 emissions in China, 1997–2010: Evidence from tests for threshold effects based on the STIRPAT model. Environ. Model. Assess. 2015, 20, 129–144. [Google Scholar] [CrossRef]
- Zhao, X.Y. Impacts of human activity on environment in the high-cold pasturing area: A case of Gannan pasturing area. Acta Ecol. Sin. 2010, 30, 141–149. [Google Scholar] [CrossRef]
- Zineb, S.B. International trade and CO2 emissions: A dynamic panel data analysis by the STIRPAT model. J. Econ. Sustain. Dev. 2016, 7, 94–104. [Google Scholar] [CrossRef]
- Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ. 2001, 83, 705–710. [Google Scholar] [CrossRef]
- Giacomini, R.; Granger, C.W.J. Aggregation of space-time processes. J. Econom. 2004, 118, 7–26. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef] [Green Version]
- Lesage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009; pp. 513–514. [Google Scholar] [CrossRef] [Green Version]
- Li, S.X.; Shi, J.R.; Wu, Q.S. Environmental Kuznets Curve: Empirical Relationship between Energy Consumption and Economic Growth in Upper-Middle-Income Regions of China. Int. J. Environ. Res. Public Health 2020, 17, 6971. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Comparing aggregating methods for constructing the composite environmental index: An objective measure. Ecol. Econ. 2006, 59, 305–311. [Google Scholar] [CrossRef]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Hussein, S.D.A.; Sawan, O.M. The utilization of agricultural waste as one of the environmental issues in Egypt (a case study). J. Appl. Sci. Res. 2010, 6, 1116–1124. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, J.N.; Xu, Z.C.; Zhang, Z.J. Calculation and Analysis of Food Nitrogen Footprint in Guangzhou. Guangdong Agric. Sci. 2012, 39, 137–140. [Google Scholar] [CrossRef]
- Xian, C.F.; Ouyang, Z.Y. Calculation and Dynamic Analysis of the food Nitrogen footprints of Urban and Rural Residents in Beijing. Acta Ecol. Sin. 2016, 36, 2413–2421. [Google Scholar] [CrossRef]
- Cai, J.H.; Yan, Q.S. Estimation and Dynamic Analysis on Food Nitrogen Footprint of Urban and Rural Residents in Lanzhou City. Hubei Agric. Sci. 2017, 56, 2451–2454. [Google Scholar]
- Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.I.; Cleveland, C.J. Energy and economic growth. Rensselaer Working Papers in Economics. 2004. Available online: https://www.researchgate.net/publication/24125107 (accessed on 16 April 2004).
- Adu, D.T.; Denkyirah, E.K. Economic growth and environmental pollution in West Africa: Testing the environmental Kuznets curve hypothesis. Kasetsart J. Soc. Sci. 2019, 40, 281–288. [Google Scholar] [CrossRef]
- Koilo, V. Evidence of the environmental Kuznets curve: Unleashing the opportunity of industry 4.0 in emerging economies. J. Risk Financ. Manag. 2019, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Altıntaş, H.; Kassouri, Y. Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2 emissions? Ecol. Indic. 2020, 113, 106187. [Google Scholar] [CrossRef]
- Lieb, C.M. The Environmental Kuznets Curve—A Survey of the Empirical Evidence and of Possible Causes; Discussion Paper Series no 391; Department of Economics—University of Heidelberg: Heidelberg, Germany, 2003. [Google Scholar]
- Elhorst, J.P. Spatial Panel Data Analysis. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Zhou, X., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Li, K.M.; Fang, L.T.; He, L.R. The impact of energy price on CO2 emissions in China: A spatial econometric analysis. Sci. Total Environ. 2020, 706, 135942. [Google Scholar] [CrossRef] [PubMed]
- Xin, C. Research on the Impact of Financial Industry Agglomeration on Urbanization Based on Spatial Panel Model; University of Mining and Technology: Xuzhou, China, 2018. [Google Scholar]
- Anselin, L.; Gallo, J.L.; Jayet, H. Spatial Panel Econometrics. In The Econometrics of Panel Data Advanced Studies in Theoretical and Applied Econometrics; Mátyás, L., Sevestre, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 46, pp. 625–660. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- MAC. Statistical Table of Administrative Divisions of the People’s Republic of China. 2019. Available online: http://xzqh.mca.gov.cn/statistics/2019.html (accessed on 20 January 2021).
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS; Fischer, M., Scholten, H.J., Unwin, D., Eds.; Taylor and Francis: London, UK, 1996; pp. 111–125. [Google Scholar]
- Elhorst, J.P. Matlab software for spatial panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, Y. Spatial effects of carbon emission intensity and regional development in China. Environ. Sci. Pollut. Res. 2021, 28, 1–13. [Google Scholar] [CrossRef]
- MOA. The Action Plan for Zero Growth in the Use of Fertilizers by 2020 [EB/OL]. 2015. Available online: http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827907.htm (accessed on 14 September 2015).
- SAMR; MOFCOM; MCT. Opinions on Promoting Food and Beverage Economy and Opposing Food and Beverage Waste by Standardization. 2021. Available online: http://gkml.samr.gov.cn/nsjg/bzjss/202103/t20210301_326389.html (accessed on 1 March 2021).
References | Country | Time Frame | Methodology | Variables Used | Conclusions |
---|---|---|---|---|---|
Hassan and Nosheen (2019) [50] | 37 high-income nations | 1990-2017 | Panel unit root test Panel cointegration Panel GMM quadratic regression | Environment variable: CO2, N2O, CH4 Explanatory variables: GDP, FDI, RPC a, RGT b, ED c, TOP d, PG e | CO2, CH4: U shape; N2O: inverted U shape |
Luo, Chen, Zhu, et al. (2014) [51] | China | 2003–2012 | quadratic regression | Environment variable: PM10, SO2, NO2, API Explanatory variables: GRP, POP f, IND g | NO2: Inverted U shape |
Brajer, Mead, Xiao (2011) [52] | China | 1990–2006 | random-effects GLS, quadratic and cubic regression | Environment variable: SO2, TSP, NO2 Explanatory variables: PC h, POP | Inverted U shape |
Hill and Magnani. (2002) [53] | A total of 156 countries | 1975–1995 | GLS, Cross-section analysis, quadratic and cubic regression | Environment variable: CO2, SO2, N2O Explanatory variables: GDP | Inverted U shape, N-shaped |
Cho, Chu, Yang (2014) [54] | A total of 22 OECD countries | 1971–2000 | Panel unit root, Panel cointegration tests, FMOLS, quadratic regression | Environment variable: CO2, CH4, N2O Explanatory variables: GDP, ENRG i | Inverted U shape |
Giovanis (2013) [55] | British | 1991–2009 | FE, Arellano-Bond GMM, logit, quadratic regression | Environment variable: O3, SO2 and NOx Explanatory variables: PC | Inverted U shape |
Liddle (2015) [56] | A total of 84 cities in both developed and developing countries | 1995 | OLS, quadratic regression | Environment variable: CO, NOx, VHC Explanatory variables: GDP, URB, FP j | Inverted U shape |
Gao and Zhang (2019) [57] | 18 Mediterranean countries | 1995–2010 | Panel unit root tests, Panel cointegration tests, FMOLS, Panel Granger causality tests quadratic regression | Environment variable: CO2, CO, NOx, SO2, PM2.5, PM10 Explanatory variables:GDP, ENE k, TOUR l | CO2, CO, NOx, SO2, PM2.5, PM10: inverted U shape in northern panel; CO, SO2, PM2.5, PM10: inverted U shape in Southern panel |
Roca, Padilla, Farré, et al. (2001) [58] | Spain | 1980–1996 | OLS | Environment variable: CO2, SO2, NOx, CH4, N2O, NMVOC Explanatory variables: GDP | SO2: inverted U shape CO2, NOx, CH4, N2O, NMVOC: EKC hypothesis not confirmed |
Miah, Masum, Koike (2010) [59] | Bangladesh | 2008.08-2009.08 | Reviewing the available literature | CO2, SOx, NOx | SOx, NOx: inverted U shape; CO2: EKC hypothesis not confirmed |
Haider, Bashir, Husnainc (2020) [60] | Top 15 countries ranked by N2O emissions, top 18 countries ranked by agricultural share of GDP | 1980–2012 | Panel unit root, Panel co-integration, Cross-section dependence test, PMG and MG estimators, Dynamic panel causality, quadratic regression | Environment variable: N2O, N2OA m Explanatory variables: GDP, ALU n, EXP o | Inverted U shape |
Xu, Li, Miao, et al.(2019) [61] | China | 2005–2015 | Expanded STIRPAT, quadratic and cubic regression | Environment variable: SO2, NOx, PM2.5 Explanatory variables: GDP, EX p, FDI, IND, R&D, URB, POP | Inverse N shape in eastern and western region; Inverted U shape in central region |
Och (2017) [48] | Mongolia | 1981–2012 | Cointegration analysis, Granger causality, VECM, quadratic regression | Environment variable: NOx Explanatory variables: PC, PCsq q, EX, URB, AG, IND, and SER r | U shape |
Fong, Salvo, Taylor (2020) [62] | Nine countries in Southeast Asia | 1993–2012 | Standard EKC, Spatial EKC, quadratic regression | Environment variable: NOx, SO2, PM2.5 Explanatory variables: GDP, UB, RE s, SV t, EI u, FDI | Inverted U shape |
Wang, Yang, Wang, et al. (2017a) [63] | U.S. | CO2: 1960–2010 N2O: 1980–2009 CH4: 1990–2009 | Stationarity test, Co-integration test, regression tests | Environment variable: CO2, N2O, CH4 Explanatory variables: GDP | CO2, N2O: Wave shape CH4: U shape |
Zambrano-Monserrate and Fernandez (2017) [64] | Germany | 1970–2012 | OLS, ARDL, VECM-Granger, quadratic regression | Environment variable: N2O Explanatory variables: GDP, ALU, EXP | Inverted U shape |
Zhang, Sharp, Xu (2019a) [65] | China | 2005–2015 | EDSA, SLM, SDM, quadratic regression | Environment variable: NOx, PM10, VOCs, PM2.5, SO2 Explanatory variables: GDP, ENE, IS v, FDI, TI w, FC x, R&D | NOx, PM10, VOCs, PM2.5: Inverted U shape SO2: EKC hypothesis not confirmed |
Halkos and Polemis (2017) [66] | The 34 countries of OECD | 1970–2014 | Cross-Section Dependence, Unit Root and Cointegration Testing, MLE, FGLS, DIF-GMM, SYS-GMM, cubic regression | Environment variable: CO2, NOx Explanatory variables: GDP, CREDIT, STOCK, BOND y | N shape |
Fujii and Managi (2016) [67] | A total of 38 countries | 1995–2009 | FE, GLS, quadratic and cubic regression | Environment variable: CO2, CH4, N2O, NOx, SOx, CO, NMVOC, NH3 Explanatory variables: GDP | CO2, CH4, N2O, NMVOC, NH3: Inverted U shape; NOx, SOx: inverse N shape |
Sinha and Bhatt (2017) [68] | India | CO2: 1960–2011 NOx: 1970–2012 | Augmented Dickey Fuller test, cubic regression | Environment variable: CO2, NOx Explanatory variables: GDP | N shape |
Rasli, Qureshi, Isah-Chikaji, et al. (2018) [69] | A total of 36 developed and developing countries | 1995–2013 | Panel robust least square MM-regression, quadratic regression | Environment variable: N2O, CO, CO2, SO2, NOx Explanatory variables: GDP, IND, TOP, ENRG, PCFPROD z | N2O, CO: Inverted U shape |
Ge, Zhou, Zhou, et al.(2018) [70] | China | 2010–2015 | STIRPAT, SDM, LM | Environment variable: NOx Explanatory variables: GDP, URB, POP, EI | Inverse N shape |
Selden and Song (1994) [71] | A total of 22 OECD and 8 developing countries | 1979–1987 | Quadratic, RE | Environment variable: TSP, SO2, NOx, CO Explanatory variables: GDP | Inverted U shape |
Panayotou (1993) [28] | A total of 68 developed and developing countries | 1988 | OLS, quadratic regression | Environment variable: SO2, NOx, SPM Explanatory variables: PC, POP | Inverted U shape |
Food Item | Virtual Nitrogen Factor | Nitrogen Content (g/kg) |
---|---|---|
Cereal | 1.4 | 14.4 |
Vegetable | 10.6 | 1.76 |
Fruit | 10.6 | 1.6 |
Livestock meat | 4.7 | 29.22 |
Poultry meat | 3.4 | 29.9 |
Aquatic product | 3 | 28.77 |
Egg | 3.4 | 20.48 |
Dairy | 5.7 | 5.28 |
Variable Type | Variable Explanation | Unit |
---|---|---|
Explained variable | ||
Per capita Food Nitrogen Footprint (FNFP) | Kg/person | |
Explanatory variable | ||
Per capita GDP (GDPP) | Ratio of GDP to total population | CNY 10,000 RMB/person |
Population Density (PDEN) | Ratio of resident population to land area | Person/km2 |
Technology (TECH) | Ratio of patent applications to total population | Pieces/10,000 people |
Openness (OPEN) | Ratio of total import and export to GDP | - |
Urbanization (URB) | Ratio of urban population to total population | % |
Industrial Structure (POPI) | The ratio of the output value of the primary industry to the regional GDP | % |
Nitrogen Use Efficiency (NUE) | Ratio of total grain yield to nitrogen fertilizer application | Kg/kg |
Engel Coefficient of Urban Households (ECU) | Proportion of total food expenditure of urban households in total consumption expenditure | % |
Variable | Obs. | Mean | S.D. | Min. | Max. |
---|---|---|---|---|---|
lnNFP | 570 | 2.64 | 0.15 | 2.23 | 2.99 |
lnGDPP | 570 | 3.17 | 0.85 | 1.02 | 4.94 |
lnPDEN | 570 | 5.42 | 1.26 | 1.98 | 8.24 |
lnTECH | 570 | 1.29 | 1.49 | −2.81 | 4.59 |
lnOPEN | 570 | 2.89 | 0.98 | 0.56 | 5.16 |
lnURB | 570 | 3.88 | 0.3 | 3.14 | 4.5 |
lnPOPI | 570 | 2.27 | 0.85 | −1.2 | 3.64 |
lnNUE | 570 | 3.09 | 0.43 | 2.02 | 4.5 |
lnECU | 570 | 3.55 | 0.15 | 2.99 | 3.9 |
Variable | Pooled OLS | Spatial Fixed Effects | Time Fixed Effects | Two-Way Fixed Effects |
---|---|---|---|---|
Intercept | 2.2343 *** (7.71) | |||
lnGDPP | −0.3457 *** (8.94) | −0.3208 *** (−3.79) | −0.2219 *** (−3.07) | −0.1723 (−1.39) |
(lnGDPP)2 | 0.0520 *** (8.16) | 0.0456 *** (3.07) | 0.0335 *** (3.39) | 0.0267 ** (2.11) |
lnPDEN | 0.0269 * (1.53) | 0.1030 (0.36) | 0.0306 * (1.58) | 0.1506 (0.53) |
lnTECH | 0.0236 ** (2.32) | 0.0255 * (1.32) | −0.0019 (−0.12) | 0.001 (0.06) |
lnOPEN | −0.0078 (0.70) | −0.0134 (−0.45) | 0.0085 (0.36) | 0.0053 (0.23) |
lnURB | 0.1982 *** (3.35) | 0.2089 ** (2.04) | 0.0511 (0.52) | 0.0354 (0.32) |
lnPOPI | 0.0428 ** (2.33) | 0.0343 (0.79) | −0.0193 (−0.52) | −0.0117 (−0.23) |
lnNUE | 0.0060 (0.35) | 0.0076 (0.16) | 0.0279 (0.70) | 0.0315 (0.71) |
lnECU | −0.0268 (0.62) | −0.0407 (−0.41) | 0.5582 *** (4.22) | 0.5476 *** (4.57) |
R2 | 0.2140 | 0.8037 | 0.4011 | 0.2329 |
sigma2 | 0.0142 | 0.0137 | 0.0066 | 0.0061 |
Durbin-Watson | 0.2914 | 0.8849 | 0.5835 | 0.6051 |
loglikfe | 408.4540 | 417.9207 | 625.6958 | 647.2188 |
LM test no spatial error | 452.1147 *** | 463.8650 *** | 174.8818 *** | 172.5474 *** |
Robust LM test no spatial error | 427.8300 *** | 9.3641 *** | 6.0178 ** | 6.8252 *** |
LM test no spatial lag | 24.9782 *** | 520.8783 *** | 173.0645 *** | 170.5969 *** |
Robust LM test no spatial lag | 0.6935 | 57.2805 *** | 4.2005 ** | 4.8747 ** |
Variable | SDM | SLM | SEM |
---|---|---|---|
lnGDPP | −0.1828 *** (−3.37) | −0.2991 *** (−7.31) | −0.3503 *** (−7.86) |
(lnGDPP)2 | 0.0386 *** (4.66) | 0.0427 *** (6.27) | 0.0516 *** (7.13) |
lnPDEN | 0.2859 *** (3.29) | 0.1321 * (1.69) | 0.1501 * (1.81) |
lnTECH | 0.0264 *** (2.6) | 0.0241 ** (2.38) | 0.0312 *** (3.00) |
lnOPEN | 0.003 (0.28) | −0.0085 (−0.76) | −0.0054 (−0.47) |
lnURB | 0.1862 *** (3.06) | 0.1996 *** (3.24) | 0.2246 *** (3.62) |
lnPOPI | 0.014 (0.69) | 0.0334 (1.54) | 0.0278 (1.31) |
lnNUE | 0.0439 ** (2.24) | 0.0061 (0.35) | 0.0328 * (1.74) |
lnECU | 0.3389 *** (6.53) | 0.0286 (0.61) | 0.1605 ** (2.19) |
W*lnGDPP | 0.0693 (0.94) | ||
W*(lnGEPP)2 | −0.0245 ** (−2.06) | ||
W*lnPDEN | −0.3979 ** (−2.34) | ||
W*lnTECH | −0.0136 (−0.78) | ||
W*lnOPEN | −0.0588 *** (−3.34) | ||
W*lnURB | −0.1748 * (−1.53) | ||
W*lnPOPI | −0.0382 (−1.00) | ||
W*lnNUE | −0.1331 *** (−3.91) | ||
W*lnECU | −0.7414 *** (−10.73) | ||
ρ | 0.1216 ** (2.13) | 0.1810 *** (3.10) | |
λ | 0.3259 *** (4.01) | ||
R2 | 0.4878 | 0.3101 | 0.2812 |
Log-likelihood | 826.4837 | 745.0231 | 747.4552 |
sigma2 | 0.0032 (16.86) | 0.0043 *** (16.83) | 0.0042 *** (16.50) |
Wald_spatial_lag | 62.99 *** | ||
LR_spatial_lag (Assumption: SLM nested in SDM) | 162.92 *** | ||
Wald_spatial_error | 61.53 *** | ||
LR_spatial_error (Assumption: SEM nested in SDM) | 158.06 *** |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
lnGDPP | −0.1796 *** (−3.29) | 0.0496 (0.63) | −0.1300 * (−1.88) |
(lnGDPP)2 | 0.0376 *** (4.52) | −0.0211 * (−1.64) | 0.0166 (1.39) |
lnPDEN | 0.2865 *** (3.49) | −0.3911 ** (−2.16) | −0.1046 (−0.61) |
lnTECH | 0.0263 *** (2.62) | −0.0120(−0.67) | 0.0143 (0.77) |
lnOPEN | 0.0015 (0.14) | −0.0622 *** (−3.32) | −0.0607 *** (−2.99) |
lnURB | 0.1860 *** (3.12) | −0.1648 (−1.43) | 0.0212 (0.17) |
lnPOPI | 0.0134 (0.62) | −0.0393 (−1.00) | −0.0259 (−0.55) |
lnNUE | 0.0397 **(2.16) | −0.1327 *** (−3.56) | −0.093 ** (−2.38) |
lnECU | 0.3265 *** (6.70) | −0.7581 *** (−10.6) | −0.4316 *** (−6.92) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Nie, G.-h. Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model. Sustainability 2021, 13, 6147. https://doi.org/10.3390/su13116147
Liu C, Nie G-h. Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model. Sustainability. 2021; 13(11):6147. https://doi.org/10.3390/su13116147
Chicago/Turabian StyleLiu, Chun, and Gui-hua Nie. 2021. "Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model" Sustainability 13, no. 11: 6147. https://doi.org/10.3390/su13116147
APA StyleLiu, C., & Nie, G.-h. (2021). Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model. Sustainability, 13(11), 6147. https://doi.org/10.3390/su13116147