Physical Activity and Its Related Factors during the First COVID-19 Lockdown in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Questionnaire
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Inferential Statistics
3.2.1. Transport Related PA (TRPA)
3.2.2. Leisure Time Activity and Muscle Strengthening Activities
3.2.3. Effects of Short-Time Work or Remote Work on PA
3.2.4. Compliance with WHO PA Recommendations
3.2.5. PA Decreases and Increases from Normal to Lockdown Depending on Prior WHO PA Compliance
3.2.6. Binary Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plümper, T.; Neumayer, E. Lockdown policies and the dynamics of the first wave of the Sars-CoV-2 pandemic in Europe. J. Eur. Public Policy 2020, 1, 1–21. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19)—Events as They Happen. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed on 26 March 2021).
- Scortichini, M.; dos Santos, R.S.; Donato, F.D.; De Sario, M.; Michelozzi, P.; Davoli, M.; Masselot, P.; Sera, F.; Gasparrini, A. Excess mortality during the COVID-19 outbreak in Italy: A two-stage interrupted time-series analysis. Int. J. Epidemiol. 2021, 49, 1909–1917. [Google Scholar] [CrossRef]
- Nussbaumer-Streit, B.; Mayr, V.; Dobrescu, A.I.; Chapman, A.; Persad, E.; Klerings, I.; Wagner, G.; Siebert, U.; Christof, C.; Zachariah, C.; et al. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020, 4, CD013574. [Google Scholar] [CrossRef]
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021. [Google Scholar] [CrossRef]
- Bundesregierung. Weitere Leitlinien Gegen Coronavirus. Available online: https://www.bundesregierung.de/breg-de/themen/coronavirus/leitlinien-bund-laender-1731000 (accessed on 6 July 2020).
- Stang, A.; Standl, F.; Kowall, B.; Brune, B.; Böttcher, J.; Brinkmann, M.; Dittmer, U.; Jöckel, K.-H. Excess mortality due to COVID-19 in Germany. J. Infect. 2020, 81, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef]
- Chew, H.S.J.; Lopez, V. Global impact of COVID-19 on weight and weight-related behaviors in the adult population: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 1876. [Google Scholar] [CrossRef]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, Y. The clinical characteristics and risk factors of severe COVID-19. Gerontology 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zbinden-Foncea, H.; Francaux, M.; Deldicque, L.; Hawley, J.A. Does high cardiorespiratory fitness confer some protection against proinflammatory responses after infection by SARS-CoV-2? Obesity 2020, 28, 1378–1381. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, K.; Broom, D.; Bekhet, A.H.; de Caro, J.X.; Laventure, B.; Grafton, K. Barriers and motivators of physical activity participation in middle-aged and older-adults—A systematic review. J. Aging Phys. Act. 2019, 27, 929–944. [Google Scholar] [CrossRef] [Green Version]
- der Europäischen Union. European Health Interview Survey (EHIS Wave 2)—Methodological Manual, 2013 ed.; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-79-29424-2.
- Baumeister, S.E.; Ricci, C.; Kohler, S.; Fischer, B.; Töpfer, C.; Finger, J.D.; Leitzmann, M.F. Physical activity surveillance in the European Union: Reliability and validity of the European Health Interview Survey-Physical Activity Questionnaire (EHIS-PAQ). Int. J. Behav. Nutr. Phys. Act. 2016, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- International Standard Classification of Education (ISCED)—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/International_Standard_Classification_of_Education_(ISCED) (accessed on 26 March 2021).
- Finger, J.D.; Tafforeau, J.; Gisle, L.; Oja, L.; Ziese, T.; Thelen, J.; Mensink, G.B.M.; Lange, C. Development of the European health interview survey—Physical activity questionnaire (EHIS-PAQ) to monitor physical activity in the European Union. Arch. Public Health 2015, 73, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Recommendations on Physical Activity for Health; WHO: Genève, Switzerland, 2010; ISBN 9789241599979. [Google Scholar]
- Hupin, D.; Roche, F.; Gremeaux, V.; Chatard, J.-C.; Oriol, M.; Gaspoz, J.-M.; Barthélémy, J.-C.; Edouard, P. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥60 years: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Finger, J.D.; Mensink, G.B.; Lange, C. Health-enhancing physical activity during leisure time among adults in Germany. J. Health Monit. 2017, 2, 35–42. [Google Scholar]
- Moholdt, T.; Lavie, C.J.; Nauman, J. Interaction of physical activity and body mass index on mortality in coronary heart disease: Data from the nord-trøndelag health study. Am. J. Med. 2017, 130, 949–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, S.; Lee, I.-M.; Buring, J.E.; Ridker, P.M. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA 2006, 295, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Mutz, M.; Gerke, M. Sport and exercise in times of self-quarantine: How Germans changed their behaviour at the beginning of the Covid-19 pandemic. Int. Rev. Sociol. Sport 2020, 101269022093433. [Google Scholar] [CrossRef]
- Schlichtiger, J.; Steffen, J.; Huber, B.C.; Brunner, S. Physical activity during COVID-19 lockdown in older adults. J. Sports Med. Phys. Fit. 2021, 61, 164–166. [Google Scholar] [CrossRef]
- Busse, H.; Buck, C.; Stock, C.; Zeeb, H.; Pischke, C.R.; Fialho, P.M.M.; Wendt, C.; Helmer, S.M. Engagement in health risk behaviours before and during the COVID-19 pandemic in German university students: Results of a cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 1410. [Google Scholar] [CrossRef] [PubMed]
- Maertl, T.; De Bock, F.; Huebl, L.; Oberhauser, C.; Coenen, M.; Jung-Sievers, C.; COSMO Study Team. Physical activity during COVID-19 in german adults: Analyses in the COVID-19 snapshot monitoring study (COSMO). Int. J. Environ. Res. Public Health 2021, 18, 507. [Google Scholar] [CrossRef]
- Huy, C.; Schneider, S. Instrument für die erfassung der physischen aktivität bei personen im mittleren und höheren erwachsenenalter: Entwicklung, prüfung und anwendung des “German-PAQ-50+”. Z Gerontol. Geriatr. 2008, 41, 208–216. [Google Scholar] [CrossRef]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Winett, R.A. Uncomplicated resistance training and health-related outcomes: Evidence for a public health mandate. Curr. Sports Med. Rep. 2010, 9, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the national strength and conditioning association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Recommendations on Physical Activity for Health. Available online: https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf (accessed on 17 March 2021).
- Stojanović, M.D.M.; Mikić, M.J.; Milošević, Z.; Vuković, J.; Jezdimirović, T.; Vučetić, V. Effects of chair-based, low-load elastic band resistance training on functional fitness and metabolic biomarkers in older women. J. Sports Sci. Med. 2021, 20, 133–141. [Google Scholar] [CrossRef]
- Füzéki, E.; Banzer, W. Physical activity recommendations for health and beyond in currently inactive populations. Int. J. Environ. Res. Public Health 2018, 15, 42. [Google Scholar] [CrossRef] [Green Version]
- Füzéki, E.; Schröder, J.; Carraro, N.; Merlo, L.; Reer, R.; Groneberg, D.A.; Banzer, W. Physical activity during the first COVID-19-related lockdown in Italy. Ijerph 2021, 18, 2511. [Google Scholar] [CrossRef]
- Chan, C.B.; Ryan, D.A. Assessing the effects of weather conditions on physical activity participation using objective measures. Int. J. Environ. Res. Public Health 2009, 6, 2639–2654. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.J.; Aoyagi, Y. Seasonal variations in physical activity and implications for human health. Eur. J. Appl. Physiol. 2009, 107, 251–271. [Google Scholar] [CrossRef] [PubMed]
- Deutscher Wetterdienst. Deutschlandwetter im Frühling. 2020. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2020/20200529_deutschlandwetter_fruehjahr2020.pdf?__blob=publicationFile&v=7 (accessed on 17 March 2021).
- Gerli, A.G.; Centanni, S.; Miozzo, M.R.; Virchow, J.C.; Sotgiu, G.; Canonica, G.W.; Soriano, J.B. COVID-19 mortality rates in the European Union, Switzerland, and the UK: Effect of timeliness, lockdown rigidity, and population density. Minerva Med. 2020, 111, 308–314. [Google Scholar] [CrossRef]
- Nolan, P.B.; Keeling, S.M.; Robitaille, C.A.; Buchanan, C.A.; Dalleck, L.C. The effect of detraining after a period of training on cardiometabolic health in previously sedentary individuals. Int. J. Environ. Res. Public Health 2018, 15, 2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitão, L.; Pereira, A.; Mazini, M.; Venturini, G.; Campos, Y.; Vieira, J.; Novaes, J.; Vianna, J.; da Silva, S.; Louro, H. Effects of three months of detraining on the health profile of older women after a multicomponent exercise program. Int. J. Environ. Res. Public Health 2019, 16, 3881. [Google Scholar] [CrossRef] [Green Version]
- Bowden Davies, K.A.; Pickles, S.; Sprung, V.S.; Kemp, G.J.; Alam, U.; Moore, D.R.; Tahrani, A.A.; Cuthbertson, D.J. Reduced physical activity in young and older adults: Metabolic and musculoskeletal implications. Ther. Adv. Endocrinol. Metab. 2019, 10. [Google Scholar] [CrossRef]
- Stubbs, R.J.; Hughes, D.A.; Johnstone, A.M.; Horgan, G.W.; King, N.; Blundell, J.E. A decrease in physical activity affects appetite, energy, and nutrient balance in lean men feeding ad libitum. Am. J. Clin. Nutr. 2004, 79, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. The importance of energy balance. Eur. Endocrinol. 2013, 9, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Hamer, M.; Kivimäki, M.; Gale, C.R.; Batty, G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020, 87, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Brawner, C.A.; Ehrman, J.K.; Bole, S.; Kerrigan, D.J.; Parikh, S.S.; Lewis, B.K.; Gindi, R.M.; Keteyian, C.; Abdul-Nour, K.; Keteyian, S.J. Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo Clin. Proc. 2021, 96, 32–39. [Google Scholar] [CrossRef]
- Cheval, B.; Sieber, S.; Maltagliati, S.P.; Millet, G.; Formánek, T.; Chalabaev, A.; Cullati, S.; Boisgontier, M.P. Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age or older. MedRxiv 2021. [Google Scholar] [CrossRef]
- Burtscher, J.; Millet, G.P.; Burtscher, M. Low cardiorespiratory and mitochondrial fitness as risk factors in viral infections: Implications for COVID-19. Br. J. Sports Med. 2020. [Google Scholar] [CrossRef]
Characteristics | n | Mean ± SD | |
---|---|---|---|
Age (y) | females | 703 | 42.9 ± 14.0 |
males | 276 | 46.7 ± 16.0 | |
Weight (kg) | females | 703 | 68.2 ± 15.0 |
males | 276 | 84.6 ± 19.2 | |
Height (m) | females | 703 | 1.68 ± 0.06 |
males | 276 | 1.80 ± 0.07 | |
BMI (kg/m2) | females | 703 | 24.1 ± 5.2 |
males | 276 | 25.9 ± 5.4 |
Activity | Condition | Mean | SD | Mean Diff | t-Value | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|---|---|
Walking (min/week) | normal | 218.4 | 232.0 | 23.1 | 4.024 | <0.001 | 11.8 | 34.3 |
lockdown | 195.4 | 242.6 | ||||||
Walking (METmin/week) | normal | 720.8 | 765.5 | 76.1 | 4.024 | <0.001 | 39.0 | 113.2 |
lockdown | 644.7 | 800.7 | ||||||
Cycling (min/week) | normal | 78.1 | 137.5 | 14.3 | 3.644 | <0.001 | 6.6 | 22.0 |
lockdown | 63.8 | 134.9 | ||||||
Cycling (METmin/week) | normal | 468.5 | 824.9 | 85.9 | 3.644 | <0.001 | 39.7 | 132.2 |
lockdown | 382.6 | 809.3 | ||||||
TRPA (METmin/week) | normal | 1189.4 | 1184.8 | 162.0 | 4.896 | <0.001 | 97.1 | 227.0 |
lockdown | 1027.3 | 1226.6 |
Mean | SD | Mean Diff | t-Value | p-Value | 95% CI Lower | 95% CI Upper | ||
---|---|---|---|---|---|---|---|---|
LTPA (min/week) | normal | 225.7 | 218.1 | 36.0 | 6.932 | <0.001 | 25.8 | 46.2 |
lockdown | 189.7 | 224.5 | ||||||
DMSA | normal | 1.6 | 1.7 | 0.1 | 2.325 | 0.020 | 0.0 | 0.2 |
lockdown | 1.5 | 1.9 |
Total (n = 979) | Active (n = 373) | Inactive (n = 606) | |||||
---|---|---|---|---|---|---|---|
counts | (%) | counts | (%) | counts | (%) | ||
walking (METmin/week) | decreasers | 373 | 38.1 | 146 | 39.1 | 227 | 37.5 |
increasers | 173 | 17.7 | 70 | 18.8 | 103 | 17.0 | |
maintainers | 433 | 44.2 | 157 | 42.1 | 276 | 45.5 | |
cycling (METmin/week) | decreasers | 229 | 23.4 | 110 | 29.5 | 119 | 19.6 |
increasers | 149 | 15.2 | 57 | 15.3 | 92 | 15.2 | |
maintainers | 601 | 61.4 | 206 | 55.2 | 395 | 65.2 | |
TRPA (METmin/week) | decreasers | 423 | 43.2 | 168 | 45.0 | 255 | 42.1 |
increasers | 225 | 23.0 | 90 | 24.1 | 135 | 22.3 | |
maintainers | 331 | 33.8 | 115 | 30.8 | 216 | 35.6 | |
LTPA (min/week) | decreasers | 356 | 36.4 | 164 | 44.0 | 192 | 31.7 |
increasers | 223 | 22.8 | 90 | 24.1 | 133 | 21.9 | |
maintainers | 400 | 40.9 | 119 | 31.9 | 281 | 46.4 | |
DMSA | decreasers | 233 | 23.8 | 139 | 37.3 | 94 | 15.5 |
increasers | 174 | 17.8 | 74 | 19.8 | 100 | 16.5 | |
maintainers | 572 | 58.4 | 160 | 42.9 | 412 | 68.0 |
OR | 95% CI EXP(B) | Sig. | ||
---|---|---|---|---|
Lower | Upper | |||
Lockdown | 0.583 | 0.424 | 0.802 | 0.001 |
Sex | 1.304 | 0.907 | 1.874 | 0.152 |
Age | 0.994 | 0.982 | 1.005 | 0.266 |
BMI | 0.944 | 0.909 | 0.981 | 0.003 |
Education | 1.111 | 1.021 | 1.208 | 0.015 |
Remote working | 0.935 | 0.674 | 1.295 | 0.684 |
WRPA | 1.262 | 0.932 | 1.710 | 0.133 |
TRPA | 1.000 | 1.000 | 1.000 | 0.008 |
LTPA | 1.004 | 1.003 | 1.004 | 0.000 |
DMSA | 5.206 | 4.433 | 6.114 | 0.000 |
constant | 0.029 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Füzéki, E.; Schröder, J.; Groneberg, D.A.; Banzer, W. Physical Activity and Its Related Factors during the First COVID-19 Lockdown in Germany. Sustainability 2021, 13, 5711. https://doi.org/10.3390/su13105711
Füzéki E, Schröder J, Groneberg DA, Banzer W. Physical Activity and Its Related Factors during the First COVID-19 Lockdown in Germany. Sustainability. 2021; 13(10):5711. https://doi.org/10.3390/su13105711
Chicago/Turabian StyleFüzéki, Eszter, Jan Schröder, David A. Groneberg, and Winfried Banzer. 2021. "Physical Activity and Its Related Factors during the First COVID-19 Lockdown in Germany" Sustainability 13, no. 10: 5711. https://doi.org/10.3390/su13105711
APA StyleFüzéki, E., Schröder, J., Groneberg, D. A., & Banzer, W. (2021). Physical Activity and Its Related Factors during the First COVID-19 Lockdown in Germany. Sustainability, 13(10), 5711. https://doi.org/10.3390/su13105711