Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Measurements and Analyses
3. Results and Discussion
3.1. Effects of CaCl2 on Growth of Three Plant Species
3.2. Effects of CaCl2 on Physiological Responses of Three Plant Species
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Law, E.P.; Diemont, S.A.; Toland, T.R. A sustainability comparison of green infrastructure interventions using emergy evaluation. J. Clean Prod. 2017, 145, 374–385. [Google Scholar] [CrossRef]
- Kim, D.; Song, S.K. The multifunctional benefits of green infrastructure in community development: An analytical review based on 447 cases. Sustainability 2019, 11, 3917. [Google Scholar] [CrossRef] [Green Version]
- Kato, S. Green infrastructure for Asian cities: The spatial concepts and planning strategies. In Journal of the 2011 International Symposium on City Planning; Korea Planners Association: Seoul, Korea, 2011; pp. 161–170. [Google Scholar]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef]
- Mell, I.C. Aligning fragmented planning structures through a green infrastructure approach to urban development in the UK and USA. Urban For. Urban Green. 2014, 13, 612–620. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Available online: https://www.weather.go.kr (accessed on 27 April 2021).
- Mullins, A.R.; Bain, D.J.; Pfeil-McCullough, E.; Hopkins, K.G.; Lavin, S.; Copeland, E. Seasonal drivers of chemical and hydrological patterns in roadside infiltration-based green infrastructure. Sci. Total Environ. 2020, 714, 136503. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban green infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban. Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Kim, M.K.; Sim, W.K. Suggestion for multi-layer planting model in Seoul area based on a cluster analysis and interspecific association. J. Korean Inst. Landsc. Archit. 2010, 38, 106–127. [Google Scholar]
- Prihatmanti, R.; Taib, N. Multi-layer planting as a strategy of greening the transitional space in high-rise buildings: A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Philadelphia, PA, USA, 2018; Volume 126. [Google Scholar] [CrossRef]
- Benton-Short, L.; Keeley, M.; Rowland, J. Green infrastructure, green space, and sustainable urbanism: geography’s important role. Urban. Geogr. 2019, 40, 330–351. [Google Scholar] [CrossRef]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savoure, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Himabindu, Y.; Chakradhar, T.; Reddy, M.C.; Kanygin, A.; Redding, K.E.; Chandrasekhar, T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ. Exp. Bot. 2016, 124, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Gałuszka, A.; Migaszewski, Z.M.; Podlaski, R.; Dołęgowska, S.; Michalik, A. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environ. Monit. Assess. 2011, 176, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, M.C. Adaption of plants to salinity. Adv. Agron. 1998, 60, 75–120. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.H.; Park, J.Y.; Hui, X.; Lee, E.Y.; Hyun, K.H.; Jung, J.S.; Choi, E.Y.; Yoon, Y.H. Growth and physiological response of three evergreen shrubs to de-icing salt (CaCl2) at different concentrations in winter-Focusing on Euonymus japonica, Rhodoendron indicum, and Buxus koreana. J. Korean Inst. Landsc. Archit. 2016, 44, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.H.; Je, S.M.; Kim, S.H.; Kim, Y.K. Effect of calcium chloride (CaCl2) on the characteristics of photosynthetic apparatus, stomatal conductance, and fluorescence image of the leaves of Cornus kousa. Korean J. Agric. For. Meteorol. 2009, 11, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Swoczyna, T.; Latocha, P. Monitoring seasonal damage of photosynthetic apparatus in mature street trees exposed to road-side salinity caused by heavy traffic. Photosynthetica 2020, 58, 388–399. [Google Scholar] [CrossRef]
- Choi, H.S.; Hong, J.S.; Geronimo, F.K.F.; Kim, L.H. Implications of CaCl2 application to plants in LID facilities. Water Sci. Technol. 2018, 78, 1045–1053. [Google Scholar] [CrossRef]
- Nixon, W.A. Economics of Using Calcium Chloride vs. Sodium Chloride for Deicing/Anti-Icing; Final Report TR488; University of Iowa: Iowa City, IA, USA, 2008. [Google Scholar]
- Trajkova, F.; Papadantonakis, N.; Savvas, D. Comparative effects of NaCl and CaCl2 salinity on cucumber grown in a closed hydroponic system. HortScience 2006, 41, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Hooks, T.; Niu, G. Relative salt tolerance of four herbaceous perennial ornamentals. Horticulturae 2019, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Je, S.M.; Kim, S.H. Growth and physiological responses of Pinus strobus to CaCl2. J. Korean Inst. Landsc. Archit. 2017, 45, 1–8. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence: A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Cirillo, C.; De Micco, V.; Arena, C.; Carillo, P.; Pannico, A.; De Pascale, S.; Rouphael, Y. Biochemical, physiological and anatomical mechanisms of adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 salinization. Front. Plant. Sci. 2019, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Jaleel, C.A.; Sankar, B.; Sridharan, R.; Panneerselvam, R. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 2008, 32, 79–83. [Google Scholar]
- Cheng, H.C.; Woo, S.Y.; Lee, S.H.; Kwak, M.J.; Kim, K.N. Biochemical responses of Sedum kamtschaticum and Hosta longipes to ozone stress. Korean J. Hort. Sci. Technol. 2013, 31, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.C.; Woo, S.Y.; Lee, S.H.; Baek, S.G. Photosynthesis, antioxidant enzyme and anatomical difference of Sedum kamtschaticum and Hosta longipes to ozone. Korean J. Hort. Sci. Technol. 2010, 8, 394–402. [Google Scholar]
- White, P.J.; Broadley, M.R. Chloride in soils and its uptake and movement within the plant: A review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Heo, H.R.; Shin, J.S.; Kim, M.Y.; Shin, J.Y. A study of effects on environment from road deicings. Korean J. Sanit. 2001, 16, 31–37. [Google Scholar]
- Nam, Y.I.; Woo, Y.H. Influence of Chilling stress on photosynthetic and physiological responses of cucumber (Cucumis sativus L.) Seedlings. J. Bio. Environ. Control 2001, 10, l59–l164. [Google Scholar]
- Park, Y.M. Characteristic of matter allocation of Calystegia soldanella under water stress. J. Environ. Sci. Int. 2013, 22, 187–193. [Google Scholar] [CrossRef] [Green Version]
Control | 9 Mm | 18 mM | 54 mM | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H. longipes | 30 DAT | 17.85 | a z | 18.35 | a | 18.37 | a | 17.08 | a | ns |
60 DAT | 17.93 | a | 18.48 | a | 18.37 | a | 3.00 | b | *** | |
90 DAT | 18.12 | a | 4.53 | b | 1.45 | c | - | - | *** | |
I. ensata | 30 DAT | 38.20 | a | 39.42 | a | 35.50 | a | 36.48 | a | ns |
60 DAT | 38.97 | a | 40.58 | a | 36.23 | a | 38.55 | a | ns | |
90 DAT | 39.33 | a | 39.22 | a | 36.37 | ab | 32.72 | b | * | |
I. pseudacorus | 30 DAT | 33.42 | a | 36.30 | a | 34.82 | a | 33.30 | a | ns |
60 DAT | 35.17 | a | 37.40 | a | 35.48 | a | 33.33 | a | ns | |
90 DAT | 36.92 | a | 35.20 | ab | 27.90 | b | 16.37 | c | *** |
Control | 9 mM | 18 mM | 54 mM | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H. longipes | 30 DAT | 6.356 | a z | 5.898 | ab | 5.008 | b | 1.502 | c | *** |
60 DAT | 5.243 | a | 3.266 | b | 1.704 | c | - | - | *** | |
90 DAT | 5.704 | a | 0.342 | b | - | - | - | - | *** | |
I. ensata | 30 DAT | 4.192 | a | 3.578 | b | 3.160 | bc | 2.724 | c | *** |
60 DAT | 4.116 | a | 2.442 | b | 1.288 | c | 0.478 | d | *** | |
90 DAT | 4.902 | a | 2.280 | b | 0.768 | c | 0.264 | c | *** | |
I. pseudacorus | 30 DAT | 5.494 | a | 4.486 | b | 3.964 | bc | 3.094 | c | *** |
60 DAT | 5.696 | a | 2.752 | b | 1.896 | b | 0.510 | c | *** | |
90 DAT | 5.460 | a | 2.402 | b | 0.434 | c | 0.174 | c | *** |
Control | 9 mM | 18 mM | 54 mM | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H. longipes | 30 DAT | 0.724 | a z | 0.702 | ab | 0.634 | bc | 0.593 | c | * |
60 DAT | 0.621 | a | 0.526 | a | 0.322 | b | - | - | *** | |
90 DAT | 0.746 | a | - | - | - | - | - | - | ||
I. ensata | 30 DAT | 0.777 | a | 0.640 | b | 0.636 | b | 0.608 | b | *** |
60 DAT | 0.703 | a | 0.588 | b | 0.492 | c | 0.432 | d | *** | |
90 DAT | 0.710 | a | 0.663 | a | 0.473 | b | 0.303 | c | *** | |
I. pseudacorus | 30 DAT | 0.752 | a | 0.724 | a | 0.670 | b | 0.615 | c | *** |
60 DAT | 0.726 | a | 0.663 | a | 0.571 | b | 0.448 | c | *** | |
90 DAT | 0.726 | a | 0.640 | ab | 0.553 | b | 0.320 | c | *** |
Control | 9 mM | 18 mM | 54 mM | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H. longipes | 30 DAT | 47.48 | a z | 36.98 | b | 32.10 | bc | 28.85 | c | *** |
60 DAT | 36.07 | a | 28.62 | a | 16.52 | b | - | - | *** | |
90 DAT | 38.00 | a | 15.88 | b | 4.72 | c | - | - | *** | |
I. ensata | 30 DAT | 38.97 | a | 32.42 | b | 31.89 | b | 29.56 | b | *** |
60 DAT | 32.56 | a | 23.80 | b | 21.78 | bc | 17.53 | c | *** | |
90 DAT | 40.08 | a | 33.50 | b | 31.44 | b | 24.96 | c | *** | |
I. pseudacorus | 30 DAT | 46.67 | a | 34.48 | b | 32.91 | b | 27.76 | b | *** |
60 DAT | 38.28 | a | 32.81 | ab | 27.58 | bc | 20.42 | c | *** | |
90 DAT | 46.08 | a | 35.64 | b | 29.63 | c | 26.58 | c | *** |
Control | 9 mM | 18 mM | 54 mM | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H. longipes | 60 DAT | −1.682 | a z | −2.374 | b | −2.998 | c | - | - | *** |
90 DAT | −1.614 | a | −2.700 | b | −3.274 | c | - | - | *** | |
I. ensata | 60 DAT | −1.584 | a | −2.358 | bc | −2.088 | b | −2.670 | c | *** |
90 DAT | −1.428 | a | −2.456 | b | −2.774 | bc | −3.040 | c | *** | |
I. pseudacorus | 60 DAT | −1.604 | a | −1.936 | b | −2.332 | c | −2.676 | d | *** |
90 DAT | −1.520 | a | −2.330 | b | −2.674 | c | −3.436 | d | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, K.-J.; Choi, J.; Kim, S.-Y.; Jeong, N.-R.; Park, B.-J. Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride. Sustainability 2021, 13, 5429. https://doi.org/10.3390/su13105429
Kwon K-J, Choi J, Kim S-Y, Jeong N-R, Park B-J. Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride. Sustainability. 2021; 13(10):5429. https://doi.org/10.3390/su13105429
Chicago/Turabian StyleKwon, Kei-Jung, Jaehyuck Choi, Sang-Yong Kim, Na-Ra Jeong, and Bong-Ju Park. 2021. "Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride" Sustainability 13, no. 10: 5429. https://doi.org/10.3390/su13105429
APA StyleKwon, K.-J., Choi, J., Kim, S.-Y., Jeong, N.-R., & Park, B.-J. (2021). Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride. Sustainability, 13(10), 5429. https://doi.org/10.3390/su13105429