Assessing Habitat Vulnerability and Loss of Naturalness: Applying the GLOBIO3 Model in the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the GLOBIO Model
2.2. Detailed Characteristics of MSA Indicators of the CZ-GLOBIO Model
2.2.1. MSA of Land Use Change (MSALU)
2.2.2. MSA of Infrastructure Development (MSAI)
2.2.3. MSA of Fragmentation (MSAF)
2.2.4. MSA of Atmospheric Nitrogen Deposition (MSAN)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salafsky, N.; Salzer, D.; Stattersfield, A.J.; Hilton-Taylor, C.; Neugarten, R.; Butchart, S.H.M.; Collen, B.; Cox, N.; Master, L.L.; O’Connor, S.; et al. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conserv. Biol. 2008, 22, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.M.; Leadley, P.W.; Proenca, V. Scenarios for Global Biodiversity in the 21st Century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, M.; Alkemade, R. How Sectors Can Contribute to Sustainable Use and Conservation of Biodiversity. Secretariat of the Convention on Biological Diversity; Technical Series 79; PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2014; 230p.
- Fischer, M.; Rounsevell, M.; Torre-Marin Rando, A.; Mader, A.D.; Church, A.; Elbakidze, M.; Elias, V.; Hahn, T.; Harrison, P.A.; Hauck, J.; et al. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018; 48p. [Google Scholar]
- Scholes, R.J.; Biggs, R. A biodiversity intactness index. Nature 2005, 434, 45–49. [Google Scholar] [CrossRef] [PubMed]
- MEA. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Synthesis; Island Press: Washington, DC, USA, 2005; 155p.
- CICES. Available online: https://cices.eu/cices-structure/ (accessed on 16 March 2020).
- TEEB. Available online: http://www.teebweb.org/resources/ecosystem-services/ (accessed on 16 March 2020).
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018; 44p. [Google Scholar]
- Leadley, P.W.; Krug, C.B.; Alkemade, R.; Pereira, H.M.; Sumaila, U.R.; Walpole, M.; Marques, A.; Newbold, T.; Teh, L.S.L.; van Kolck, J.; et al. Progress towards the Aichi Biodiversity Targets: An Assessment of Biodiversity Trends, Policy Scenarios and Key Actions; Technical Series 78; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2014; 502p.
- Alkemade, R.; van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; ten Brink, B. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef] [Green Version]
- Brink, B. Biodiversity Indicators for the OECD Environmental Outlook and Strategy: A feasibility Study; RIVN Report; National Institute of Public Health and the Environment: Bilthoven, The Netherlands, 2000; 52p. [Google Scholar]
- Majer, J.D.; Beeston, G. The biodiversity Integrity Index: An illustration usingants in Western Australia. Conserv. Biol. 1996, 10, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, J.K.; O’Neill, R.V.; Noss, R.; Slosser, N.C. Considerations for the development of a terrestrial index of ecological integrity. Ecol. Indic. 2001, 1, 21–35. [Google Scholar] [CrossRef]
- Loh, J.; Green, R.E.; Ricketts, T.; Lamoreux, J.; Jenkins, M.; Kapos, V.; Randers, J. The living planet index: Using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society of London B. Biol. Sci. 2005, 360, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schipper, A.; Bakkenes, M.; Meijer, J.; Alkemade, R.; Huijbregts, M. The GLOBIO Model. A Technical Description of Version 3.5; PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2016; 36p.
- Schipper, A.; Hilbers, J.P.; Meijer, J.; Antao, L.H.; Benítez-López, A.; de Jonge, M.M.J.; Leemans, L.H.; Scheper, E.; Alkemade, R.; Doelman, J.C.; et al. Projecting terrestrial biodiversity intactness with GLOBIO4. Glob. Chang. Biol. 2020, 26, 760–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rooij, W. Manual for Biodiversity Modelling on a National Scale. Using GLOBIO3 and CLUE Methodology to Calculate Current and Future Status of Biodiversity; Case study area: Zambia; PBL Netherlands Environmental Assessment Agency: Bilthoven, The Netherlands, 2008; 25p.
- Glomsrød, S.; Duhaime, G.; Aslaksen, I. The Economy of the North 2015; Statistics Norway: Oslo–Kongsvinger, Norway, 2017; 172p.
- Trisurat, Y.; Alkemade, R.; Verburg, P.H. Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand. Environ. Manag. 2010, 45, 626–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, S.T.; McLean, D. Current and Future Status of Biodiversity in Central America. Technical Report, Strategic Biodiversity Monitoring and Evaluation Program (PROMEBIO); Central America Commission for Environment and Development: Mexico City, Mexican, 2011; 208p. [Google Scholar]
- Son, V.T. Biodiversity assessment and modeling: Review and potential application in Vietnam. In Proceedings of the GeoInformatics for Spatial-Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS), Hanoi, Vietnam, 4–6 December 2008. [Google Scholar]
- Mücher, C.A.; van der Meer, P.J. Widening the Analytical Scope of GLOBIO3—Modeling Global Biodiversity; Project Biodiversity International of the Netherlands Environmental Assessment Agency (MNP); PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2006.
- Kaňková, H. Assessment of human pressure on forest ecosystems in the Czech Republic. In Proceedings of the Bionature 2015, The Sixth International Conference on Bioenvironment, Biodiversity and Renewable Energie, IARA, Rome, Italy, 24–29 May 2015; pp. 34–35. [Google Scholar]
- Vačkář, D.; Hamáčková, V.Z.; Kaňková, H.; Stupková, K. Human transformation of ecosystems: Comparing protected and unprotected areas with natural baselines. Ecol. Indic. 2016, 66, 321–328. [Google Scholar] [CrossRef]
- Vačkářů, D.; Grammatikopoulou, I. Toward development of ecosystem asset accounts at the national level. Ecosyst. Health Sustain. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Kaňková, H. Assesment of Land Use Influence on Landscape Naturalness. Master’s Thesis, Charles University, Prague, Czech Republic, 2013. [Google Scholar]
- Stržínek, F. Multiscale Application of the Model GLOBIO. Master’s Thesis, Palacky University in Olomouc, Olomouc, Czech Republic, 2018. [Google Scholar]
- Trisurat, Y.; Shrestha, R.P.; Alkemade, R. Land Use, Climate Change and Biodiversity Modeling: Perspectives and Applications, 1st ed.; IGI Global: Hershey, PA, USA, 2011; 512p. [Google Scholar]
- UNEP. GLOBIO. Global Methodology for Mapping Human Impacts on the Biosphere; Report UNEP/DEWA/TR 25; United Nations Environment Programme: Nairobi, Kenya, 2001; 48p. [Google Scholar]
- Verboom, J.; Snep, R.P.H.; Stouten, J.; Pouwels, R.; Pe’er, G.; Goedhart, P.W.; van Adrichem, M.H.C.; Alkemade, J.R.M.; Jones-Walters, L.M. Using Minimum Area Requirements (MAR) for Assemblages of Mammal and Bird Species in Global Biodiversity Assessments; Research Reports; Alterra: Wageningen, The Netherlands, 2014; 22p. [Google Scholar]
- Woodroffe, R.; Ginsberg, J.R. Edge effects and the extinction of populations inside protected areas. Science 1998, 280, 2126–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.R.; Pearlstine, L.G.; Kitchens, W.M. Modeling viable mammal populations in gap analyses. Biol. Conserv. 2001, 99, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Bouwman, A.F.; Van Vuuren, D.P.; Derwent, R.G.; Posch, M. A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut. 2002, 141, 349–382. [Google Scholar] [CrossRef]
- Verboom, J.; Alkemade, R.; Klijn, J.; Metzger, M.J.; Reijnen, R. Combining biodiversity modeling with political and economic development scenarios for 25 EU countries. Ecol. Econ. 2007, 22, 267–276. [Google Scholar] [CrossRef]
- Bobbink, R. Plant Species Richness and the Exceedance of Empirical Nitrogen Critical Loads: An Inventory; Manuskript; Utrecht University: Utrecht, The Netherlands, 2004; 20p. [Google Scholar]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; de Vries, W. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobbink, R.; Hettelingh, J.P. Review and revision of empirical critical loads and dose-response relationships. In Proceedings of the an Expert Workshop (EUNIS), Noordwijkerhout, The Netherlands, 23–25 June 2010; B-WARE Research Centre: Noordwijkerhout, The Netherlands, 2011. [Google Scholar]
- Midolo, G.; Alkemade, R.; Schipper, A.M.; Benítez-López, A.; Perring, M.P.; De Vries, W. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Glob. Ecol. Biogeogr. 2018, 28, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Bakkenes, M.; Alkemade, J.R.M.; Ihle, F.; Leemans, R.; Latour, J.B. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Chang. Biol. 2002, 8, 390–407. [Google Scholar] [CrossRef]
- Bakkenes, M.; Eickhout, B.; Alkemade, R. Impacts of different climate stabilisation scenarios on plant species in Europe. Glob. Environ. Chang. 2006, 16, 19–28. [Google Scholar] [CrossRef]
- Leemans, R.; Eickhout, B. Another reason for concern: Regional and global impacts on ecosystems for different levels of climate change. Glob. Environ. Chang. Hum. Policy Dimens. 2004, 14, 219–228. [Google Scholar] [CrossRef]
- Cudlín, P.; Pechanec, V.; Štěrbová, L.; Cudlín, O.; Purkyt, J. Integrated approach to the mitigation of biodiversity lost in Central Europe. In Ecological Integrity and Land Use: Sovereignty, Governance, Displacements and Land Grabs; Westra, L., Bosselmann, K., Zabrano, V., Eds.; Nova Science Publishers: New York, NY, USA, 2019; pp. 75–86. [Google Scholar]
- Chytrý, M.; Kučera, T.; Kočí, M.; Grulich, V.; Lustyk, P. Catalog of Habitats of the Czech Republic, 2nd ed.; Nature Conservation Agency of the Czech Republic: Prague, Czech Republic, 2010; p. 447. [Google Scholar]
- The Occurrence of Natural Habitat in the Czech Republic. NCA CR, Habitat Mapping Layer (Electronic Database), Version 2014; Nature Conservation Agency of the Czech Republic: Prague, Czech Rapublic, 2014. [Google Scholar]
- Seják, J.; Dejmal, I.; Petříček, V.; Cudlín, P.; Míchal, I.; Černý, K.; Kučera, T.; Vyskot, I.; Strejček, J.; Cudlínová, E. Assessment and Valuation of Habitats Czech Republic, 1st ed.; Czech Environmental Institute, Ministry of the Environment: Prague, Czech Republic, 2003; 422p. [Google Scholar]
- Frélichová, J.; Vačkář, D.; Pártl, A.; Loučková, B.; Harmáčková, Z.; Lorencová, E. Integrated assessment of ecosystem services in the Czech Republic. Ecosyst. Serv. 2014, 8, 110–117. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Štěrbová, L.; Prokopová, M.; Kilianová, H.; Chobot, K.; Cudlín, P. Monetary Valuation of Natural Forest Habitats in Protected Areas. Forests 2017, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Guth, J. Natura 2000 and Emerald Habitat Mapping Methodologies (Detailed and Contextual Mapping Methodologies), 3rd ed.; Nature Conservation Agency of the Czech Republic: Prague, Czech Republic, 2002; p. 22. [Google Scholar]
- Lustyk, P.; Guth, J. Methodology for Updating the Habitat Mapping Layer; Manuscript; Nature Conservation Agency of the Czech Republic: Praha, Czech, 2009; p. 31. [Google Scholar]
- Zapletal, M.; Skořepová, I.; Buriánek, V. The Condition of Forest Soils as A Determining Factor in The Development of Health Status, Biodiversity and the Fulfillment of Production and Non-Production Functions of Forests; Report on the Progress of the Project NAZV QI112A168; Forestry and Game Management Research Institute: Prague, Czech Republic, 2014. [Google Scholar]
- UBA. Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollutions Effects, Risks and Trends; Federal Environmental Agency (Umweltbundesamt): Berlin, Germany, 2004; Texte 52/04. [Google Scholar]
- Skokanová, H.; Falťan, V.; Havlíček, M. Driving forces of main landscape change processes from past 200 years in Central Europe—Differences between old democratic and post-socialist countries. Ekológia (Bratisl.) 2016, 35, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Stenhouse, R.N. Fragmentation and internal disturbance of native vegetation reserves in the Perth metropolitan area, Western Australia. Landsc. Urban Plan. 2004, 68, 389–401. [Google Scholar] [CrossRef]
- Clewell, F.; Aronson, J. Ecological Restoration, Second Edition. Principles, Values, and Structure of an Emerging Profession, 2nd ed.; Island Press: Washington, DC, USA, 2013; 336p. [Google Scholar]
- Ellenberg, H. Vegetation Mitteleuropas Mit den Alpen, in Kausaler, Dynamischer Und Historischer Sicht, 1st ed.; Eugen Ulmer: Stuttgart, Germany, 1963; 981p. [Google Scholar]
- Seják, J.; Cudlín, P. On measuring the natural and environmental resource value and damages. Studia Ecol. 2010, 4, 53–68. [Google Scholar]
- Sklenicka, P.; Molnarova, K.; Pixova, K.C.; Salek, M.E. Factors affecting farmland prices in the Czech Republic. Land Use Policy 2013, 30, 130–136. [Google Scholar] [CrossRef]
- Keken, Z.; Sebkova, M.; Skaloš, J. Analyzing land cover change—The impact of the motorway construction and their operation on landscape structure. J. Geogr. Inf. Syst. 2014, 6, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Zapletal, M.; Chroust, P.; Kunak, D. The relationship between defoliation of Norway spruce and atmospheric deposition of sulphur and nitrogen compounds in Hruby Jesenik Mountains (the Czech Republic). Ecology 2003, 22, 337–347. [Google Scholar]
- Cudlín, O.; Pechanec, V.; Purkyt, J.; Chobot, K.; Salvati, L.; Cudlín, P. Are valuable and representative natural habitats sufficiently protected? Application of Marxan model in the Czech Republic. Sustainability 2020, 12, 402. [Google Scholar] [CrossRef] [Green Version]
- Vopravil, J.; Khel, T.; Vrabcová, T. Soil and Its Evaluation in the Czech Republic, Part I; Research Institute of Land Reclamation and Soil Protection: Prague, Czech Republic, 2009; 148p. [Google Scholar]
- Smolová, I.; Szczyrba, Z. Large commercial centers in the Czech Republic–landscape and regionally aspects of development (contribution to the study of the problematic). Acta Univ. Palacki. Olomuc. Geogr. 2000, 36, 81–87. [Google Scholar]
- Kupková, L.; Bičík, I. Landscape transition after the collapse of communism in Czechia. J. Maps 2016, 12, 526–531. [Google Scholar] [CrossRef]
- Stych, P.; Kabrda, J.; Bicik, I.; Lastovicka, J. Regional Differentiation of Long-Term Land Use Changes: A Case Study of Czechia. Land 2019, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Halada, L.; Ružičková, H.; David, S.; Halabuk, A. Semi-natural grasslands under impact of changing land use during last 30 years: Trollio-Cirsietum community in the Liptov region (N Slovakia). Community Ekol. 2008, 9, 115. [Google Scholar]
- Krause, B.; Culmsee, H.; Wesche, K.; Bergmeier, E.; Leuschner, C. Habitat loss of floodplain meadows in north Germany since the 1950s. Biodivers. Conserv. 2011, 20, 2347–2364. [Google Scholar] [CrossRef] [Green Version]
- Šerá, B. Road vegetation in Central Europe—An example from the Czech Republic. Biologia 2008, 63, 1085–1088. [Google Scholar] [CrossRef]
- Nedbal, V.; Brom, J. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data. Sci. Total Environ. 2018, 633, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Anděl, P.; Andreas, M.; Gorčicová, I.; Hlaváč, V.; Mináriková, T.; Romportl, D.; Strnad, M.; Zieglerová, A. The Concept of Protection of Migration Corridors of Large Mammals and the Territorial System of Ecological Stability; Proceedings of ÚSES-Green Backbone of the Landscape; The Silva Tarouca Research Institute for Landscape and Ornamental Gardening: Kostelec nad Černými lesy, Czech Republic, 2009; pp. 1–8. [Google Scholar]
- Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Beneš, J. Origin and history of grasslands in Central Europe—A review. Grass Forage Sci. 2013, 68, 345–363. [Google Scholar] [CrossRef]
- Romportl, D. (Ed.) Final Report for 2018 on the Contract on the Implementation and Provision of Activities and Services in the Public Contract “Biological Research and Monitoring at the Landscape Level of the Czech Republic—Providing Professional Support for the Activities of the Ministry of the Environment. Part D: Changes in the Landscape and Trends in Landscape Development; The Silva Tarouca Research Institute for Landscape and Ornamental Gardening: Prague, Czech Republic, 2018. [Google Scholar]
- Vacek, S.; Bílek, L.; Schwarz, O.; Hejcmanová, P.; Mikeska, P. Effect of air pollution on the health status of spruce stands. A case study in the Krkonoše Mountains, Czech Republic. Mt. Res. Dev. 2013, 33, 40–50. [Google Scholar] [CrossRef]
- Hošek, J.; Schwarz, O.; Svoboda, T. Results of a ten-year measurement of atmospheric deposition in the Krkonoše Mountains. In Geoecological Problems of the Krkonoše Mountains, 1st ed.; Štursa, J., Knapik, R., Eds.; Sborník Mez. Věd. Konf.: Svoboda nad Úpou, Czech Republic, 2006; pp. 179–191. [Google Scholar]
- Jandová, V.; Dostál, I.; Pelikán, L.; Špička, L.; Ličbinský, R. Study on Transport Trends from Environmental Viewpoints in the Czech Republic 2017; Transport Research Centre: Brno, Czech Republic, 2018; 191p. [Google Scholar]
- Sejak, J.; Cudlin, P.; Pokorny, J.; Zapletal, M.; Petricek, V.; Guth, J.; Chuman, T.; Romportl, D.; Skorepova, I.; Vacek, V.; et al. Assessment of Ecosystem Functions and Services in the Czech Republic, 1st ed.; University, J.E., Ed.; Purkyne: Usti nad Labem, Czech Republic, 2010; 197p. [Google Scholar]
- Kolář, T.; Čermák, P.; Oulehle, F.; Trnka, M.; Štěpánek, P.; Cudlín, P.; Hruška, J.; Büntgen, U.; Rybníček, M. Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Sci. Total Environ. 2015, 538, 703–711. [Google Scholar] [CrossRef]
- Chloupek, O.; Hrstkova, P.; Schweigert, P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res. 2004, 85, 67–190. [Google Scholar] [CrossRef]
- Hůnová, I.; Kurfürst, P.; Vlček, O.; Stráník, V.; Stoklasová, P.; Schovánková, J.; Srbová, D. Towards a better spatial quantification of nitrogen deposition: A case study for Czech forests. Environ. Pollut. 2016, 213, 1028–1041. [Google Scholar] [CrossRef] [PubMed]
- Kucera, T.; Pojer, F. Habitat mapping for the European Natura 2000 system in the Czech Republic. In Habitats and Their Vegetation Interpretation in the Czech Republic, 1st ed.; Kucera, T., Navrátilová, J., Eds.; Czech Botanical Society: Prague, Czech Republic, 2006; pp. 3–6. [Google Scholar]
- Lustyk, P.; Oušková, V. Habitat mapping layer and its updating—The first possibilities of data comparison. Ochr. Přírody 2011, 66, 20–22. [Google Scholar]
Indicators of MSA | Category of the Input Data | Global Scale (Original Model GLOBIO3) | Detailed Scale (Adapted Model CZ-GLOBIO) |
---|---|---|---|
MSALU | Land use, habitats | Global land cover 2000 1:1,000,000 | Combined layer of habitats (CL), 1:10,000/1:100,000 |
MSAI | Roads, settlements | World road map 1:1,000,000 | CL, 1:10,000/1:100,000; ZABAGED/open street map 1:10,000 |
MSAF | Fragmentation | Patches of natural area | CL, 1:10,000/1:100,000, own analyses, 1:10,000 |
MSAN | Nitrogen critical load exceedance | Outputs from model IMAGE (100 × 100 km) | Detailed combine layer (DCL) 1:10,000; nitrogen deposition map for CR 500 × 500 m (Zapletal unpublished data) |
Very SensitiveAreas, Sensitivity Value = 1 | |||||||||
Buffer zone (km) | 0–0.5 | 0.5–1.0 | 1.0–1.5 | 1.5–3 | 3–4.5 | 4.5–5 | 5–10 | 10–15 | >15 |
Density 0–10 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | 1 | 1 | 1 |
Density 10–50 | 0.5 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | 1 | 1 |
Density >50 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | 1 |
SensitiveAreas, Sensitivity Value = 2 | |||||||||
Buffer zone (km) | 0–0.25 | 0.25–0.5 | 0.5–0.75 | 0.75–1.5 | 1.5–2.25 | 2.25–5 | 5–7.5 | >7.5 | |
Density 0–10 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 1 | 1 | 1 | |
Density 10–50 | 0.5 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 1 | 1 | |
Density >50 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | |
Low-Sensitive Areas,Sensitivity Value = 3 | |||||||||
Buffer zone (km) | 0–0.15 | 0.15–0.3 | 0.3–0.45 | 0.45–0.9 | 0.9–1.35 | 1.35–1.5 | 1.5–3 | 3–4.5 | >4.5 |
Density 0–10 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | 1 | 1 | 1 |
Density 10–50 | 0.5 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | 1 | 1 |
Density >50 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | 1 |
Area (km2) | MSAF |
---|---|
<0.5 | 0.3 |
1 | 0.6 |
2 | 0.7 |
4.5 | 0.9 |
10 | 0.95 |
>10 | 1 |
Values/MSA Indicators | MSALU | MSAI | MSAF | MSAN | MSATOT2 |
---|---|---|---|---|---|
Weighted average of MSA | 0.38 | 0.62 | 0.74 | 0.52 | 0.62 |
Number of habitat segments in the CR | 2,051,876 | 8,781,992 | 580,983 | 6,329,639 | 33,133,951 |
Category | Interval of MSA Value (%) | MSALU % | MSAI % | MSAF % | MSAN % | MSATOT2 % |
---|---|---|---|---|---|---|
1 | >0 and ≤0.2 | 41.8 | 8.2 | 6.8 | 12.17 | 6.12 |
2 | >0.2 and ≤0.4 | 20 | <1 | 14.9 | 20.13 | 10.01 |
3 | >0.4 and ≤0.6 | 21 | 35.8 | 7 | 17.04 | 28.94 |
4 | >0.6 and ≤0.8 | 7.8 | 38.5 | 9.3 | 15.62 | 47.28 |
5 | >0.8 and ≤1 | 9.5 | 17.5 | 62 | 35.04 | 7.65 |
Category of Habitat Types | Groups of Natural, Near-Natural Habitats | MSALU | MSAI | MSAF | MSAN | MSATOT2 |
---|---|---|---|---|---|---|
Grasslands | Alluvial meadows | 0.72 | 0.67 | 0.48 | 1.00 | 0.76 |
Dry meadows | 0.75 | 0.67 | 0.52 | 0.99 | 0.77 | |
Mesic meadows | 0.72 | 0.59 | 0.51 | 0.99 | 0.74 | |
Alpine grasslands | 0.85 | 0.74 | 0.76 | 0.54 | 0.76 | |
Heaths | 0.77 | 0.66 | 0.55 | 0.72 | 0.70 | |
Forests | Alluvial forests | 0.82 | 0.62 | 0.53 | 0.95 | 0.77 |
Oak and oak–hornbeam forests | 0.82 | 0.62 | 0.57 | 0.88 | 0.76 | |
Ravine forests | 0.84 | 0.60 | 0.64 | 0.97 | 0.79 | |
Beech forests | 0.84 | 0.66 | 0.64 | 0.87 | 0.78 | |
Dry pine forests | 0.81 | 0.65 | 0.54 | 0.75 | 0.72 | |
Spruce forests | 0.87 | 0.75 | 0.82 | 0.74 | 0.81 | |
Bog forests | 0.85 | 0.69 | 0.75 | 0.66 | 0.76 | |
Native dwarf pine scrub | 0.98 | 0.84 | 0.98 | 0.38 | 0.84 | |
Native shrub vegetation | 0.73 | 0.59 | 0.46 | 0.78 | 0.68 | |
Wetlands | Wetlands and littoral vegetation | 0.73 | 0.63 | 0.46 | 0.73 | 0.68 |
Peatbogs and springs | 0.87 | 0.80 | 0.75 | 0.64 | 0.80 | |
Rocks, rubble | 0.83 | 0.60 | 0.64 | 0.40 | 0.66 |
Degree of Naturalness of Habitat | Category of Habitat Types | MSALU | MSAI | MSAF | MSAN | MSATOT2 |
---|---|---|---|---|---|---|
Distant natural | Non-native dwarf pine | 0.49 | 0.69 | 0.67 | 0.33 | 0.57 |
Intensive mixed forests | 0.46 | 0.59 | 0.60 | 0.63 | 0.63 | |
Intensive broad-leaved forests | 0.43 | 0.49 | 0.65 | 0.48 | 0.54 | |
Anthropogenic swamps | 0.42 | 0.62 | 0.71 | 0.38 | 0.58 | |
Intensive coniferous forests | 0.42 | 0.66 | 0.55 | 0.53 | 0.63 | |
Introduced shrub vegetation | 0.34 | 0.54 | 0.62 | 0.44 | 0.54 | |
Intensive grasslands | 0.31 | 0.58 | 0.76 | 0.77 | 0.64 | |
Artificial rocks and quarries | 0.21 | 0.36 | 0.65 | 0.25 | 0.38 | |
Unnatural | Orchards and gardens | 0.29 | 0.57 | 0.71 | 0.32 | 0.53 |
Vineyard | 0.28 | 0.51 | 0.44 | 0.27 | 0.45 | |
Hop fields | 0.27 | 0.59 | 0.57 | 0.34 | 0.54 | |
Green urban areas (parks, gardens, cemeteries) | 0.25 | 0.25 | 0.68 | 0.27 | 0.32 | |
Recreation sport areas | 0.24 | 0.42 | 0.22 | 0.29 | 0.42 | |
Arable land | 0.24 | 0.61 | 0.72 | 0.26 | 0.53 | |
Anthropogenic | Discontinuous urban fabric | 0.19 | 0.34 | 0.38 | 0.25 | 0.35 |
Dumps and construction units | 0.16 | 0.29 | 0.42 | 0.24 | 0.32 | |
Industrial and commercial units | 0.12 | 0.22 | 0.26 | 0.22 | 0.27 | |
Transport network | 0.12 | 0.40 | 0.49 | 0.24 | 0.37 | |
Continuous urban fabric | 0.10 | 0.19 | 0.34 | 0.21 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pechanec, V.; Cudlín, O.; Zapletal, M.; Purkyt, J.; Štěrbová, L.; Chobot, K.; Tangwa, E.; Včeláková, R.; Prokopová, M.; Cudlín, P. Assessing Habitat Vulnerability and Loss of Naturalness: Applying the GLOBIO3 Model in the Czech Republic. Sustainability 2021, 13, 5355. https://doi.org/10.3390/su13105355
Pechanec V, Cudlín O, Zapletal M, Purkyt J, Štěrbová L, Chobot K, Tangwa E, Včeláková R, Prokopová M, Cudlín P. Assessing Habitat Vulnerability and Loss of Naturalness: Applying the GLOBIO3 Model in the Czech Republic. Sustainability. 2021; 13(10):5355. https://doi.org/10.3390/su13105355
Chicago/Turabian StylePechanec, Vilém, Ondřej Cudlín, Miloš Zapletal, Jan Purkyt, Lenka Štěrbová, Karel Chobot, Elvis Tangwa, Renata Včeláková, Marcela Prokopová, and Pavel Cudlín. 2021. "Assessing Habitat Vulnerability and Loss of Naturalness: Applying the GLOBIO3 Model in the Czech Republic" Sustainability 13, no. 10: 5355. https://doi.org/10.3390/su13105355
APA StylePechanec, V., Cudlín, O., Zapletal, M., Purkyt, J., Štěrbová, L., Chobot, K., Tangwa, E., Včeláková, R., Prokopová, M., & Cudlín, P. (2021). Assessing Habitat Vulnerability and Loss of Naturalness: Applying the GLOBIO3 Model in the Czech Republic. Sustainability, 13(10), 5355. https://doi.org/10.3390/su13105355