Accessibility and Sustainability of Hybrid Energy Systems for a Cement Factory in Oman
Abstract
:1. Introduction
Location of the Study
2. Methodology
2.1. Homer Software Program
2.2. Description of the System Components
2.3. System Description
2.3.1. Factory Load Profile
2.3.2. Solar Energy Availability
2.3.3. Temperature Profile
2.3.4. Wind Turbine Profile
2.4. Economic Mathematical Models
- Eanloadserved = the total yearly load served by the system in kWh.
- Ci,ref = the reference system nominal yearly cash flow
- Ci implies the current system nominal yearly cash flow
- Ccap is the current capital cost and Ccap ref is the reference capital cost.
2.5. Existing and Proposed Energy Power Supply Scenarios
3. Hybrid System Optimization and Modeling
4. Results and Discussion
4.1. Average Yearly Electricity Production and Usage
4.2. Hybrid Energy System Cost Analysis
4.3. System Pollutant and Emission
4.4. Return on Investment (ROI) and Internal Rate of Return (IRR) Analysis
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudley, B. BP statistical review of world energy. BP Stat. Rev. 2018, 6, 2018. [Google Scholar]
- Safinia, S.; Al-Hinai, Z.; Yahia, H.A.; Abushammala, M.F. Sustainable construction in sultanate of Oman: Factors effecting materials utilization. Procedia Eng. 2017, 196, 980–987. [Google Scholar] [CrossRef]
- Azam, M.H.; Abushammala, M. Assessing the Effectiveness of Solar and Wind Energy in Sultanate of Oman. J. Stud. Res. 2017. [Google Scholar] [CrossRef]
- Kazem, H.A. Renewable energy in Oman: Status and future prospects. Renew. Sustain. Energy Rev. 2011, 15, 3465–3469. [Google Scholar] [CrossRef]
- Albadi, M.; El-Saadany, E.; Albadi, H. Wind to power a new city in Oman. Energy 2009, 34, 1579–1586. [Google Scholar] [CrossRef]
- Umar, T.; Wamuziri, S. Briefing: Conventional, wind and solar energy resources in Oman. Proc. Inst. Civ. Eng. Energy 2016, 169, 143–147. [Google Scholar] [CrossRef]
- Al-Badi, A.; Albadi, M.; Al-Lawati, A.; Malik, A. Economic perspective of PV electricity in Oman. Energy 2011, 36, 226–232. [Google Scholar] [CrossRef]
- Panwar, N.; Kaushik, S.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Liserre, M.; Sauter, T.; Hung, J.Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag. 2010, 4, 18–37. [Google Scholar] [CrossRef]
- Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef]
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 32, 1155–1164. [Google Scholar] [CrossRef]
- Belhaouas, N.; Cheikh, M.-S.A.; Agathoklis, P.; Oularbi, M.-R.; Amrouche, B.; Sedraoui, K.; Djilali, N. PV array power output maximization under partial shading using new shifted PV array arrangements. Appl. Energy 2017, 187, 326–337. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Lewis, J.I.; Wiser, R.H. Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms. Energy Policy 2007, 35, 1844–1857. [Google Scholar] [CrossRef] [Green Version]
- Peterseim, J.H.; White, S.; Tadros, A.; Hellwig, U. Concentrating solar power hybrid plants–Enabling cost effective synergies. Renew. Energy 2014, 67, 178–185. [Google Scholar] [CrossRef]
- Lajunen, A. Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C Emerg. Technol. 2014, 38, 1–15. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.; Jayasinghe, S.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef]
- Sawle, Y.; Gupta, S.; Bohre, A.K. Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renew. Sustain. Energy Rev. 2018, 81, 2217–2235. [Google Scholar] [CrossRef]
- Panapakidis, I.P.; Sarafianos, D.N.; Alexiadis, M.C. Comparative analysis of different grid-independent hybrid power generation systems for a residential load. Renew. Sustain. Energy Rev. 2012, 16, 551–563. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Bourdoucen, H. Economic analysis of hybrid power system for rural electrification in Oman. In Proceedings of the 2009 2nd International Conference on Adaptive Science & Technology (ICAST), Accra, Ghana, 14–16 January 2009; pp. 284–289. [Google Scholar]
- Valente, L.C.G.; de Almeida, S.C.A.b. Economic analysis of a diesel/photovoltaic hybrid system for decentralized power generation in northern Brazil. Energy 1998, 23, 317–323. [Google Scholar] [CrossRef]
- Ramli, M.A.; Hiendro, A.; Twaha, S. Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renew. Energy 2015, 78, 398–405. [Google Scholar] [CrossRef]
- Fazelpour, F.; Soltani, N.; Rosen, M.A. Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. Int. J. Hydrogen Energy 2016, 41, 7732–7743. [Google Scholar] [CrossRef]
- Amutha, W.M.; Rajini, V. Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER. Renew. Sustain. Energy Rev. 2016, 62, 236–246. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Borgohain, D.; Mahapatra, S. Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy 2017, 126, 461–474. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Zahid, A.; ur Rashid, T.; Rehan, M.A.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Li, C.; Ge, X.; Zheng, Y.; Xu, C.; Ren, Y.; Song, C.; Yang, C. Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy 2013, 55, 263–272. [Google Scholar] [CrossRef]
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Das, H.S.; Tan, C.W.; Yatim, A.; Lau, K.Y. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renew. Sustain. Energy Rev. 2017, 76, 1332–1347. [Google Scholar] [CrossRef]
- Mandal, S.; Das, B.K.; Hoque, N. Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. J. Clean. Prod. 2018, 200, 12–27. [Google Scholar] [CrossRef]
- Lozano, L.; Querikiol, E.M.; Abundo, M.L.S.; Bellotindos, L.M. Techno-economic Analysis of a Cost-effective Power Generation System for Off-grid Island Communities: A Case Study of Gilutongan Island, Cordova, Cebu, Philippines. Renew. Energy 2019, 140, 905–911. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Huda, A.; Ohunakin, O.S. Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renew. Energy 2015, 83, 435–446. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Mahdy, A.M.; Al-Waeely, A.A. Optimal sizing of a hybrid system of renewable energy for lighting street in Salalah-Oman using Homer software. Int. J. Sci. Eng. Appl. Sci. (IJSEAS) 2016, 2, 157–164. [Google Scholar]
- Okonkwo, P.C.; Barhoumi, E.M.; Murugan, S.; Zghaibeh, M.; Otor, C.; Abo-Khalil, A.G.; Amer Mohamed, A.M. Economic analysis of cross-breed power arrangement for Salalah region in the Al-Khareef season. Int. J. Sustain. Energy 2020, 1–19. [Google Scholar] [CrossRef]
- Ajao, K.; Oladosu, O.; Popoola, O. Using HOMER power optimization software for cost benefit analysis of hybrid-solar power generation relative to utility cost in Nigeria. Int. J. Res. Rev. Appl. Sci. 2011, 7, 96–102. [Google Scholar]
- Givler, T.; Lilienthal, P. Using HOMER Software, NREL’s Micropower Optimization Model., to Explore the Role of Gen.-Sets in Small Solar Power Systems; Case Study: Sri Lanka; National Renewable Energy Lab: Golden, CO, USA, 2005.
- Solar Choice. 5 kW solar systems: Pricing, output, and returns. In Solar Choice Solar PV Energy System Installation Brokers 5 kW Solar Systems Pricing Output and Returns Comments; Available online: https://www.solarchoice.net.au/blog/5kw-solar-system-price-output-return/ (accessed on 22 December 2020).
- Baneshi, M.; Hadianfard, F. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Convers. Manag. 2016, 127, 233–244. [Google Scholar] [CrossRef]
- Energy, H. Homer Pro Version 3.7 User Manual; HOMER Energy: Boulder, CO, USA, 2016. [Google Scholar]
- Mirhassani, S.; Ong, H.C.; Chong, W.; Leong, K. Advances and challenges in grid tied photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 49, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Divya, K.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Bahramara, S.; Moghaddam, M.P.; Haghifam, M. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.; Charabi, Y.; Al-Mahruqi, A.M.; Osman, I.; Osman, S. Selection of the best solar photovoltaic (PV) for Oman. Sol. Energy 2019, 188, 1156–1168. [Google Scholar] [CrossRef]
- Al-Habsi, M.; Gunawardhana, L.; Al-Rawas, G. Trend analysis of climate variability in Salalah, Oman. Int. J. Stud. Res. Technol. Manag. 2014, 2, 168–171. [Google Scholar]
- Al Charabi, Y.; Al-Yahyai, S. Projection of future changes in rainfall and temperature patterns in Oman. J. Earth Sci. Clim. Chang. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Efe, S.; Ogban, F.; Horsfall, M.J.; Akporhonor, E. Seasonal variations of physico-chemical characteristics in water resources quality in western Niger Delta region, Nigeria. J. Appl. Sci. Environ. Manag. 2005, 9, 191–195. [Google Scholar]
- Dufo-López, R.; Bernal-Agustín, J.L.; Yusta-Loyo, J.M.; Domínguez-Navarro, J.A.; Ramírez-Rosado, I.J.; Lujano, J.; Aso, I. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage. Appl. Energy 2011, 88, 4033–4041. [Google Scholar] [CrossRef]
- Liu, G.; Rasul, M.; Amanullah, M.; Khan, M.M.K. Feasibility study of stand-alone PV-wind-biomass hybrid energy system in Australia. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011; pp. 1–6. [Google Scholar]
- Das, B.K.; Hoque, N.; Mandal, S.; Pal, T.K.; Raihan, M.A. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy 2017, 134, 775–788. [Google Scholar] [CrossRef]
- Reddy, K.Y. Economic analysis of trickle irrigation system considering planting geometry. Agric. Water Manag. 1997, 34, 195–206. [Google Scholar]
- Shinnar, R. The hydrogen economy, fuel cells, and electric cars. Technol. Soc. 2003, 25, 455–476. [Google Scholar] [CrossRef]
- Sorensen, B. Hydrogen and Fuel Cells: Emerging Technologies and Applications; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Nelson, D.; Nehrir, M.; Wang, C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renew. Energy 2006, 31, 1641–1656. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Dolatabadi, A.; Ebadi, R.; Mohammadi-Ivatloo, B. A two-stage stochastic programming model for the optimal sizing of hybrid PV/diesel/battery in hybrid electric ship system. J.Oper. Autom. Power Eng. 2019, 7, 16–26. [Google Scholar]
- Shiroudi, A.; Rashidi, R.; Gharehpetian, G.; Mousavifar, S.; Akbari Foroud, A. Case study: Simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan-Iran using homer software. J. Renew. Sustain. Energy 2012, 4, 053111. [Google Scholar] [CrossRef]
- Kusakana, K.; Vermaak, H. Cost and performance evaluation of hydrokinetic-diesel hybrid systems. Energy Procedia 2014, 61, 2439–2442. [Google Scholar] [CrossRef] [Green Version]
- Acar, C.; Dincer, I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrogen Energy 2014, 39, 1–12. [Google Scholar] [CrossRef]
- Szabo, S.; Bódis, K.; Huld, T.; Moner-Girona, M. Energy solutions in rural Africa: Mapping electrification costs of distributed solar and diesel generation versus grid extension. Environ. Res. Lett. 2011, 6, 034002. [Google Scholar] [CrossRef]
- Brockway, P.E.; Owen, A.; Brand-Correa, L.I.; Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 2019, 4, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Warner, K.J.; Jones, G.A. Energy and population in sub-Saharan Africa: Energy for four billion? Environments 2018, 5, 107. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Units |
---|---|---|
Rated Capacity | 21.0 | kW |
Mean Output | 0.245 | kW |
Capacity Factor | 20 | % |
Parameter | Value | Units |
---|---|---|
Rated Capacity | 42.4 | kW |
Mean Output | 8.52 | kW |
Capacity Factor | 20.1 | % |
Parameter | Inverter/Value | Units |
---|---|---|
Capacity | 20 | kW |
Mean Output | 12 | kW |
Minimum Output | 0 | kW |
Maximum Output | 18 | kW |
Capacity Factor | 0.9 | % |
Parameter | Value | Units |
---|---|---|
Hours of Operation | 4857 | hrs/yr |
Number of Starts | 1913 | starts/yr |
Capacity Factor | 0.8 | % |
Fixed Generation Cost | 141 | $/hr |
Marginal Generation Cost | 0.0628 | $/kWh |
No | Load Type | Power (Watt) | Time (h) | Quantity Required | Energy Demand (kWh) |
---|---|---|---|---|---|
1 | Grinding Machine | 195,750 | 8 | 3 | 1566 |
2 | Crushers | 15,000 | 10 | 2 | 150 |
3 | Separator | 2250 | 8 | 3 | 18 |
4 | Feeders | 18,750 | 8 | 1 | 150 |
5 | Elevators | 660 | 10 | 2 | 6.6 |
6 | Conveyors | 3262.5 | 8 | 1 | 26.1 |
7 | Storage Hopper | 6433.3 | 12 | 2 | 77.2 |
8 | Others | 2935 | 10 | - | 29.35 |
Total in kWh | 2023.25 |
No | Component | Type | Units | Value Cost ($) |
---|---|---|---|---|
1 | Generator | Autosize Genset | kW | 96,266.60 |
2 | PV | Generic flat-plate PV | kW | 147.86 |
3 | Storage | Generic 100 kW Li-ion | kW | 1100.00 |
4 | Wind Turbine | Generic 1 | kW | 9000 |
5 | System Inverter | Inverter | kW | 2380.95 |
HES | Capital ($) | Replacement ($) | O&M ($) | Fuel ($) | Salvage ($) | Total ($) |
---|---|---|---|---|---|---|
PV/DG/WT/B | 6,856,355.51 | 1,052,196.65 | 682,460.19 | 902,509.75 | −16,927.88 | 9,476,594.22 |
PV/WT/B | 442,122.48 | 557,532.60 | 132,089.09 | 0.00 | −78,841.78 | 1,052,902.39 |
PV/B | 210,000.00 | 509,103.32 | 51,900.43 | 0.00 | −19,571.88 | 769,045.87 |
DG | 487,200.00 | 1,506,360.31 | 1,410,975.72 | 1,242,574.14 | −368,466.11 | 4,278,644.06 |
Emissions (year-1) | ||||||
---|---|---|---|---|---|---|
System Configuration | CO2 (kg/year) | CO (kg/year) | Unburned Hydrocarbon (kg/yaer) | Particulate Matter (kg/year) | SO2 (kg/year) | NO2 (kg/year) |
PV/DG/WT/B | 739,218 | 4660 | 203 | 28.2 | 1810 | 4377 |
PV/WT/B | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PV/B | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
DG | 1,017,755 | 6415 | 280 | 38.9 | 2492 | 6027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beitelmal, W.H.; Okonkwo, P.C.; Al Housni, F.; Alruqi, W.; Alruwaythi, O. Accessibility and Sustainability of Hybrid Energy Systems for a Cement Factory in Oman. Sustainability 2021, 13, 93. https://doi.org/10.3390/su13010093
Beitelmal WH, Okonkwo PC, Al Housni F, Alruqi W, Alruwaythi O. Accessibility and Sustainability of Hybrid Energy Systems for a Cement Factory in Oman. Sustainability. 2021; 13(1):93. https://doi.org/10.3390/su13010093
Chicago/Turabian StyleBeitelmal, Wesam H., Paul C. Okonkwo, Fadhil Al Housni, Wael Alruqi, and Omar Alruwaythi. 2021. "Accessibility and Sustainability of Hybrid Energy Systems for a Cement Factory in Oman" Sustainability 13, no. 1: 93. https://doi.org/10.3390/su13010093
APA StyleBeitelmal, W. H., Okonkwo, P. C., Al Housni, F., Alruqi, W., & Alruwaythi, O. (2021). Accessibility and Sustainability of Hybrid Energy Systems for a Cement Factory in Oman. Sustainability, 13(1), 93. https://doi.org/10.3390/su13010093