The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Analyzing the Performance of the CCSM3 TraCE-21ka Model Regarding Simulating the Present-Day Southern Hemisphere Climate
2.3. Study Domain
3. Results
3.1. Zonal Wind
3.2. SO Upwelling
3.3. Zonal Wind Stress
3.4. Antarctic Sea Ice
4. Discussion
4.1. Role of Southern Hemisphere Westerlies
4.2. Role of Sea Ice
4.3. Response of SO Upwelling to the Wind and Sea Ice
4.3.1. Last Glacial Maximum
4.3.2. Deglaciation: H1 and YD
4.3.3. Deglaciation: Onset of the Holocene
5. Conclusions
- (1).
- The model simulated the deglacial evolution of the Southern Hemisphere surface westerlies, and the Antarctic sea ice, which agreed with proxy records. It established TraCE-21ka’s consistency and applicability in simulating the physical mechanisms that determine the Southern Ocean upwelling.
- (2).
- The Southern Hemisphere surface westerly winds were strong during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas compared to during the onset of the Holocene, with the Last Glacial Maximum’s westerly winds being the strongest.
- (3).
- Intense surface westerly winds and the subsequent wind stress forcing over the Southern Ocean resulted in more vigorous upwelling during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. Our investigation indicated that the strength of the wind stresses primarily governs the variability in the Southern Ocean upwelling around Antarctica.
- (4).
- The strong simulated upwelling in both the ocean sectors during the onset of the Holocene cannot be explained by weaker wind stress forcing. This study suggested that the sea ice modulated the buoyancy forcing via an enhanced freshwater flux, and together with the zonal wind stress forcing, describes the strong upwelling during the onset of Holocene.
- (5).
- The Antarctic sea ice expansion during the Last Glacial Maximum was dynamically linked to an increase in deep ocean stratification. Moreover, it resulted in the extension, shoaling, and increase in transport of the lower meridional overturning circulation (Antarctic Bottom Water and its derivatives) during the Last Glacial Maximum. Additionally, the Antarctic sea ice affected the surface buoyancy flux via freshwater and salt fluxes. It also regulated the Southern Ocean circulation by marking the division between the upper (Atlantic Meridional Ocean Circulation) and lower meridional overturning ocean circulation.
- (6).
- This study highlighted that the evolution of the Southern Hemisphere westerly winds and sea ice history is essential in understanding the ocean–atmosphere coupling at high latitudes and its role in changing the deglacial Southern Ocean upwelling. The TraCE-21ka simulation demonstrated that the Southern Ocean atmosphere, ocean, and cryosphere were dynamically interlinked. The changes in the Southern Hemisphere westerlies, Southern Ocean upwelling, and Antarctic sea ice change must have co-occurred through the last deglaciation during the late Pleistocene. This relationship is vital to include in future climate modeling studies to understand the Southern Ocean upwelling variations. Our results may help to understand the natural global warming process and its consequences for the Southern Ocean dynamics.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, A.J.; Vallis, G.K.; Nikurashin, M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci. 2015, 8, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Toggweiler, J.R.; Russell, J.L.; Carson, S.R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 2006, 21, PA2005. [Google Scholar] [CrossRef] [Green Version]
- Lourantou, A.; Chappellaz, J.; Barnola, J.M.; Masson-Delmotte, V.; Raynaud, D. Changes in atmospheric CO2 and its carbon isotopic ratio during the penultimate deglaciation. Quat. Sci. Rev. 2010, 29, 1983–1992. [Google Scholar] [CrossRef]
- Rose, K.A.; Sikes, E.L.; Guilderson, T.P.; Shane, P.; Hill, T.M.; Zahn, R.; Spero, H.J. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature 2010, 466, 1093–1097. [Google Scholar] [CrossRef] [Green Version]
- Lauderdale, J.M.; Garabato, A.C.N.; Oliver, K.I.C.; Follows, M.J.; Williams, R.G. Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO2. Clim. Dyn. 2013, 41, 2145–2164. [Google Scholar] [CrossRef] [Green Version]
- Lauderdale, J.M.; Williams, R.G.; Munday, D.R.; Marshall, D.P. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales. Clim. Dyn. 2017, 48, 1611–1631. [Google Scholar] [CrossRef] [Green Version]
- Spero, H.J.; Lea, D.W. The cause of carbon isotope minimum events on glacial terminations. Science 2002, 296, 522–525. [Google Scholar] [CrossRef]
- Anderson, R.F.; Ali, S.; Bradtmiller, L.I.; Nielsen, S.H.H.; Fleisher, M.Q.; Anderson, B.E.; Burckle, L.H. Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2. Science 2009, 323, 1443–1448. [Google Scholar] [CrossRef]
- Ahn, J.; Brook, E.J. Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 2008, 322, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Monnin, E.; Indermuhle, A.; Dallenbach, A.; Fluckiger, J.; Stauffer, B.; Stocker, T.F.; Raynaud, D.; Barnola, J.M. Atmospheric CO2 concentrations over the last glacial termination. Science 2001, 291, 112–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, L.C.; Fallon, S.; Waelbroeck, C.; Michel, E.; Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 2010, 328, 1147–1151. [Google Scholar] [CrossRef]
- Joos, F.; Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl. Acad. Sci. USA 2008, 105, 1425–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauska, T.K.; Baggenstos, D.; Brook, E.J.; Mix, A.C.; Marcott, S.A.; Petrenko, V.V.; Schaefer, H.; Severinghaus, J.P.; Lee, J.E. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl. Acad. Sci. USA 2016, 113, 3465–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menviel, L.; Spence, P.; Yu, J.; Chamberlain, M.A.; Matear, R.J.; Meissner, K.J.; England, M.H. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 2018, 9, 2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlbrodt, T.; Griesel, A.; Montoya, M.; Levermann, A.; Hofmann, M.; Rahmstorf, S. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 2007, 45, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Imbrie, J.; Boyle, E.A.; Clemens, S.C.; Duffy, A.; Howard, W.R.; Kukla, G.; Kutzbach, J.; Martinson, D.G.; McIntyre, A.; Mix, A.C.; et al. On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing. Paleoceanography 1992, 7, 701–738. [Google Scholar] [CrossRef]
- Marshall, J.; Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 2012, 5, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Abernathey, R.P.; Cerovecki, I.; Holland, P.R.; Newsom, E.; Mazloff, M.; Talley, L.D. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 2016, 9, 596–601. [Google Scholar] [CrossRef]
- Lumpkin, R.; Speer, K. Global Ocean Meridional Overturning. J. Phys. Oceanogr. 2007, 37, 2550–2562. [Google Scholar] [CrossRef]
- Allison, L.C.; Johnson, H.L.; Marshall, D.P.; Munday, D.R. Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett. 2010, 37, L12605. [Google Scholar] [CrossRef] [Green Version]
- Broecker, W.S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 1982, 11, 151–197. [Google Scholar] [CrossRef]
- Hodell, D.A.; Venz, K.A.; Charles, C.D.; Ninnemann, U.S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosystems. 2003, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Menviel, L.; Timmermann, A.; Mouchet, A.; Timm, O. Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies. Paleoceanography 2008, 23. [Google Scholar] [CrossRef] [Green Version]
- d’Orgeville, M.; Sijp, W.P.; England, M.H.; Meissner, K.J. On the control of glacial-interglacial atmospheric CO2 variations by the Southern Hemisphere westerlies. Geophys. Res. Lett. 2010, 37, L21703. [Google Scholar] [CrossRef] [Green Version]
- Shulmeister, J.; Goodwin, I.; Renwick, J.; Harle, K.; Armand, L.; McGlone, M.S.; Cook, E.; Dodson, J.; Hesse, P.P.; Mayewski, P.; et al. The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: A synthesis. Quatern. Int. 2004, 118, 23–53. [Google Scholar] [CrossRef]
- Tschumi, T.; Joos, F.; Parekh, P. How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study. Paleoceanography 2008, 23, PA4208. [Google Scholar] [CrossRef]
- Martínez Fontaine, C.; De Pol-Holz, R.; Michel, E.; Siani, G.; Reyes-Macaya, D.; Martínez-Méndez, G.; DeVries, T.; Stott, L.; Southon, J.; Mohtadi, M.; et al. Ventilation of the Deep Ocean Carbon Reservoir During the Last Deglaciation: Results From the Southeast Pacific. Paleoceanogr. Paleoclimatol. 2019. [Google Scholar] [CrossRef]
- Straub, D.N. On the Transport and Angular Momentum Balance of Channel Models of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 1993, 23, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Hallberg, R.; Gnanadesikan, A. An Exploration of the Role of Transient Eddies in Determining the Transport of a Zonally Reentrant Current. J. Phys. Oceanogr. 2001, 31, 3312–3330. [Google Scholar] [CrossRef]
- Hallberg, R.; Gnanadesikan, A. The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project. J. Phys. Oceanogr. 2006, 36, 2232–2252. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.P.; Hogg, A.M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett. 2006, 33, L16608. [Google Scholar] [CrossRef]
- Abernathey, R.; Marshall, J.; Ferreira, D. The Dependence of Southern Ocean Meridional Overturning on Wind Stress. J. Phys. Oceanogr. 2011, 41, 2261–2278. [Google Scholar] [CrossRef]
- Wolfe, C.L.; Cessi, P. The Adiabatic Pole-to-Pole Overturning Circulation. J. Phys. Oceanogr. 2011, 41, 1795–1810. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.P.; Naveira Garabato, A.C.; Hogg, A.M.; Farneti, R. Sensitivity of the Overturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing. J. Clim. 2012, 25, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.K.; McC. Hogg, A. On the Relationship between Southern Ocean Overturning and ACC Transport. J. Phys. Oceanogr. 2013, 43, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Munday, D.R.; Johnson, H.L.; Marshall, D.P. Eddy Saturation of Equilibrated Circumpolar Currents. J. Phys. Oceanogr. 2013, 43, 507–532. [Google Scholar] [CrossRef]
- Ferrari, R.; Jansen, M.F.; Adkins, J.F.; Burke, A.; Stewart, A.L.; Thompson, A.F. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA 2014, 111, 8753–8758. [Google Scholar] [CrossRef] [Green Version]
- Stein, K.; Timmermann, A.; Kwon, E.Y.; Friedrich, T. Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks. Proc. Natl. Acad. Sci. USA 2020, 117, 4498–4504. [Google Scholar] [CrossRef]
- Miller, G.H.; Wolfe, A.P.; Steig, E.J.; Sauer, P.E.; Kaplan, M.R.; Briner, J.P. The Goldilocks dilemma: Big ice, little ice, or “just-right” ice in the Eastern Canadian Arctic. Quat. Sci. Rev. 2002, 21, 33–48. [Google Scholar] [CrossRef]
- Skjelvan, I.; Johannessen, T.; Miller, L.A. Interannual variability of fCO2 in the Greenland and Norwegian Seas. Tellus B Chem. Phys. Meteorol. 1999, 51, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Stephens, B.B.; Keeling, R.F. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 2000, 404, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Keeling, R.F.; Stephens, B.B. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 2001, 16, 112–131. [Google Scholar] [CrossRef]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. 2019. Available online: https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (accessed on 11 November 2020).
- Jiang, N.; Yan, Q. Evolution of the meridional shift of the subtropical and subpolar westerly jet over the Southern Hemisphere during the past 21,000 years. Quat. Sci. Rev. 2020, 246, 106544. [Google Scholar] [CrossRef]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomas, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.; Brook, E.; et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gent, P.R.; McWilliams, J.C. Isopycnal Mixing in Ocean Circulation Models. J. Phys. Oceanogr. 1990, 20, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Gent, P.R.; Willebrand, J.; McDougall, T.J.; McWilliams, J.C. Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation Models. J. Phys. Oceanogr. 1995, 25, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Otto-Bliesner, B.L.; Russell, J.M.; Clark, P.U.; Liu, Z.; Overpeck, J.T.; Konecky, B.; deMenocal, P.; Nicholson, S.E.; He, F.; Lu, Z. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 2014, 346, 1223–1227. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Lu, Z.Y.; Wen, X.Y.; Otto-Bliesner, B.L.; Timmermann, A.; Cobb, K.M. Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature 2014, 515, 550–553. [Google Scholar] [CrossRef]
- Shi, J.; Yan, Q. Evolution of the Asian–African Monsoonal Precipitation over the last 21 kyr and the Associated Dynamic Mechanisms. J. Clim. 2019, 32, 6551–6569. [Google Scholar] [CrossRef]
- Buizert, C.; Keisling, B.A.; Box, J.E.; He, F.; Carlson, A.E.; Sinclair, G.; DeConto, R.M. Greenland-Wide Seasonal Temperatures During the Last Deglaciation. Geophys. Res. Lett. 2018, 45, 1905–1914. [Google Scholar] [CrossRef]
- He, F.; Shakun, J.D.; Clark, P.U.; Carlson, A.E.; Liu, Z.Y.; Otto-Bliesner, B.L.; Kutzbach, J.E. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 2013, 494, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. B Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Banzon, V.F.; Freeman, E.; Lawrimore, J.; Liu, W.; Peterson, T.C.; Smith, T.M.; Thorne, P.W.; Woodruff, S.D.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons. J. Clim. 2015, 28, 911–930. [Google Scholar] [CrossRef] [Green Version]
- Lowry, D.P.; Golledge, N.R.; Menviel, L.; Bertler, N.A.N. Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations. Clim. Past 2019, 15, 189–215. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, J.L.; Gruber, N.; Brzezinski, M.A.; Dunne, J.P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 2004, 427, 56–60. [Google Scholar] [CrossRef]
- Lea, D.W.; Pak, D.K.; Peterson, L.C.; Hughen, K.A. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 2003, 301, 1361–1364. [Google Scholar] [CrossRef]
- Placzek, C.; Quade, J.; Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geol. Soc. Am. Bull. 2006, 118, 515–532. [Google Scholar] [CrossRef]
- Lamy, F.; Kaiser, J.; Arz, H.W.; Hebbeln, D.; Ninnemann, U.; Timm, O.; Timmermann, A.; Toggweiler, J.R. Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1. Earth Planet. Sc. Lett. 2007, 259, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, A.; Okumura, Y.; An, S.I.; Clement, A.; Dong, B.; Guilyardi, E.; Hu, A.; Jungclaus, J.H.; Renold, M.; Stocker, T.F.; et al. The Influence of a Weakening of the Atlantic Meridional Overturning Circulation on ENSO. J. Clim. 2007, 20, 4899–4919. [Google Scholar] [CrossRef] [Green Version]
- Toggweiler, J.R.; Lea, D.W. Temperature differences between the hemispheres and ice age climate variability. Paleoceanography 2010, 25, PA2212. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Chiang, J.C.H.; Matsumoto, K.; Tokos, K.S. Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications. Paleoceanography 2011, 26, PA1214. [Google Scholar] [CrossRef] [Green Version]
- Wyrwoll, K.-H.; Dong, B.; Valdes, P. On the position of southern hemisphere westerlies at the Last Glacial Maximum: An outline of AGCM simulation results and evaluation of their implications. Quat. Sci. Rev. 2000, 19, 881–898. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Clauzet, G.; Tomas, R.; Levis, S.; Kothavala, Z. Last Glacial Maximum and Holocene Climate in CCSM3. J. Clim. 2006, 19, 2526–2544. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.S.; Hendy, I.L.; Neil, H.L.; Hendy, C.H.; Weaver, P.P.E. Last glacial jetting of cold waters through the Subtropical Convergence zone in the Southwest Pacific off eastern New Zealand, and some geological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 156, 103–121. [Google Scholar] [CrossRef]
- Carter, L.; Neil, H.L.; McCave, I.N. Glacial to interglacial changes in non-carbonate and carbonate accumulation in the SW Pacific Ocean, New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 162, 333–356. [Google Scholar] [CrossRef]
- McGlone, M.S. A late Quaternary pollen record from marine core P69, southeastern North Island, New Zealand. New Zeal J. Geol. Geop. 2001, 44, 69–77. [Google Scholar] [CrossRef]
- Russell, J.L.; Dixon, K.W.; Gnanadesikan, A.; Stouffer, R.J.; Toggweiler, J.R. The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean. J. Clim. 2006, 19, 6382–6390. [Google Scholar] [CrossRef]
- Marchitto, T.M.; Lehman, S.J.; Ortiz, J.D.; Fluckiger, J.; van Geen, A. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 2007, 316, 1456–1459. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, A.; Murakami, S.; Koide, H. A simulation of the Last Glacial Maximum with a coupled atmosphere-ocean GCM. Geophys. Res. Lett. 2001, 28, 2221–2224. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.H.; Battisti, D.S. The Importance of Tropical Sea Surface Temperature Patterns in Simulations of Last Glacial Maximum Climate. J. Clim. 2001, 14, 565–581. [Google Scholar] [CrossRef] [Green Version]
- Barrows, T.T.; Stone, J.O.; Fifield, L.K.; Cresswell, R.G. Late Pleistocene Glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quat. Res. 2001, 55, 179–189. [Google Scholar] [CrossRef]
- Barrows, T.T.; Stone, J.O.; Fifield, L.K.; Cresswell, R.G. The timing of the Last Glacial Maximum in Australia. Quat. Sci. Rev. 2002, 21, 159–173. [Google Scholar] [CrossRef]
- Gersonde, R.; Abelmann, A.; Brathauer, U.; Becquey, S.; Bianchi, C.; Cortese, G.; Grobe, H.; Kuhn, G.; Niebler, H.S.; Segl, M.; et al. Last glacial sea surface temperatures and sea-ice extent in the Southern Ocean (Atlantic-Indian sector): A multiproxy approach. Paleoceanography 2003, 18, 1061. [Google Scholar] [CrossRef]
- Wainer, I.; Clauzet, G.; Ledru, M.P.; Brady, E.; Otto-Bliesner, B. Last Glacial Maximum in South America: Paleoclimate proxies and model results. Geophys. Res. Lett. 2005, 32, L08702. [Google Scholar] [CrossRef]
- McGee, D.; Broecker, W.S.; Winckler, G. Gustiness: The driver of glacial dustiness? Quat. Sci. Rev. 2010, 29, 2340–2350. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Graham, R.M.; de Boer, A.M.; Sime, L.C.; Wolff, E.W.; Le Quéré, C.; Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev. 2013, 68, 76–95. [Google Scholar] [CrossRef]
- Sime, L.C.; Kohfeld, K.E.; Le Quéré, C.; Wolff, E.W.; de Boer, A.M.; Graham, R.M.; Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model-data comparison. Quat. Sci. Rev. 2013, 64, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Sime, L.C.; Hodgson, D.; Bracegirdle, T.J.; Allen, C.; Perren, B.; Roberts, S.; de Boer, A.M. Sea ice led to poleward-shifted winds at the Last Glacial Maximum: The influence of state dependency on CMIP5 and PMIP3 models. Clim. Past 2016, 12, 2241–2253. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, M.A.; Gille, S.T.; Bitz, C.; Carlson, D.; Cerovecki, I.; Clayson, C.A.; Cronin, M.F.; Drennan, W.M.; Fairall, C.W.; Hoffman, R.N.; et al. High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research. B Am. Meteorol. Soc. 2013, 94, 403–423. [Google Scholar] [CrossRef]
- Adkins, J.F.; McIntyre, K.; Schrag, D.P. The salinity, temperature, and delta18O of the glacial deep ocean. Science 2002, 298, 1769–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronin, M.F.; Sprintall, J. Upper ocean structure: Buoyancy and wind forcing. In Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 3219–3227. [Google Scholar]
- Jacobs, S.S. Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 2004, 16, 427–437. [Google Scholar] [CrossRef]
- Nadeau, L.-P.; Ferrari, R.; Jansen, M.F. Antarctic Sea Ice Control on the Depth of North Atlantic Deep Water. J. Clim. 2019, 32, 2537–2551. [Google Scholar] [CrossRef]
- Liu, Z.; Shin, S.; Webb, R.S.; Lewis, W.; Otto-Bliesner, B.L. Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophys. Res. Lett. 2005, 32, L02706. [Google Scholar] [CrossRef]
- Volker, C.; Kohler, P. Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum. Paleoceanography 2013, 28, 726–739. [Google Scholar] [CrossRef] [Green Version]
- Gersonde, R.; Crosta, X.; Abelmann, A.; Armand, L. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum a circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 2005, 24, 869–896. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Paul, A.; Kucera, M. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2009, 2, 127–132. [Google Scholar]
- Otto-Bliesner, B.L.; Hewitt, C.D.; Marchitto, T.M.; Brady, E.; Abe-Ouchi, A.; Crucifix, M.; Murakami, S.; Weber, S.L. Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett. 2007, 34, L12706. [Google Scholar] [CrossRef] [Green Version]
- Ninnemann, U.S.; Charles, C.D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet Sc. Lett. 2002, 201, 383–396. [Google Scholar] [CrossRef]
- Jansen, M.F.; Nadeau, L.-P. The Effect of Southern Ocean Surface Buoyancy Loss on the Deep-Ocean Circulation and Stratification. J. Phys. Oceanogr. 2016, 46, 3455–3470. [Google Scholar] [CrossRef]
- Jansen, M.F. Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl. Acad. Sci. USA 2017, 114, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouttes, N.; Paillard, D.; Roche, D.M. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past 2010, 6, 575–589. [Google Scholar] [CrossRef] [Green Version]
- Curry, W.B.; Oppo, D.W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 2005, 20, PA1017. [Google Scholar] [CrossRef] [Green Version]
- Skinner, L.C. Glacial-interglacial atmospheric CO2 change: A possible “standing volume” effect on deep-ocean carbon sequestration. Clim. Past 2009, 5, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Makou, M.C.; Oppo, D.W.; Curry, W.B. South Atlantic intermediate water mass geometry for the last glacial maximum from foraminiferal Cd/Ca. Paleoceanography 2010, 25, PA4101. [Google Scholar] [CrossRef] [Green Version]
- Siani, G.; Michel, E.; De Pol-Holz, R.; Devries, T.; Lamy, F.; Carel, M.; Isguder, G.; Dewilde, F.; Lourantou, A. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat. Commun. 2013, 4, 2758. [Google Scholar] [CrossRef] [Green Version]
- Crowley, T.J. North Atlantic Deep Water cools the southern hemisphere. Paleoceanography 1992, 7, 489–497. [Google Scholar] [CrossRef]
- Haumann, F.A.; Gruber, N.; Munnich, M.; Frenger, I.; Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 2016, 537, 89–92. [Google Scholar] [CrossRef]
Time | IO Sector: Wind Stress (dyne cm−2) | IO Sector: Upwelling Volume (Sv) | PO Sector: Wind Stress (dyne cm−2) | PO Sector: Upwelling Volume (Sv) |
---|---|---|---|---|
LGM 1 | 2.58 | 6.93 | 1.58 | 3.92 |
H1 | −4.6% | −5.3% | −4.1% | −6.9% |
YD | −5.9% | −7.0% | −2.1% | −1.3% |
O_H | −6.2% | −6.2% | −6.1% | +3.7% |
Domain | Parameters | LGM | O_H |
---|---|---|---|
IO sector | Sea ice fraction (>80%) | 50° S | 61° S |
IO sector | Zero buoyancy flux | 50° S | 61° S |
PO sector | Sea ice fraction (>80%) | 54° S | 65° S |
PO sector | Zero buoyancy flux | 54° S | 65° S |
Parameters | Domain | LGM | O_H |
---|---|---|---|
MSG | IO sector | 0.9 | 0.11 |
MSG | PO sector | 0.69 | 0.07 |
VSG | Pacific basin | 0.26 | 0.04 |
VDG | Pacific basin | 0.24 | 0.12 |
Maximum lower MOC transport | Global | 20 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, G.; Lee, S.-Y.; Yu, J.-Y. The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study. Sustainability 2021, 13, 353. https://doi.org/10.3390/su13010353
Mandal G, Lee S-Y, Yu J-Y. The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study. Sustainability. 2021; 13(1):353. https://doi.org/10.3390/su13010353
Chicago/Turabian StyleMandal, Gagan, Shih-Yu Lee, and Jia-Yuh Yu. 2021. "The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study" Sustainability 13, no. 1: 353. https://doi.org/10.3390/su13010353