Monitoring Air Quality and Estimation of Personal Exposure to Particulate Matter Using an Indoor Model and Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Locations
2.2. Pollutants Measurements and Instrumentation
2.3. Estimation of Personal Exposure Using an Indoor Model
2.4. Prediction of Indoor PM Concentration Using an ANN
3. Results
3.1. Analysis of Variations in the Measured Particulate Matter
3.2. Air Quality Monitoring and Management
3.3. Modeled Personal Exposures in an Indoor Office and Underground Parking Garage
3.4. PM Dosage in Respiratory System
3.5. Prediction of Indoor PM Concentration Using an ANN
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Yin, H.; Ma, S.; Jin, G.; Gao, J.; Ding, W. On-site assessments on variations of PM2.5, PM10, CO2 and TVOC concentrations in naturally ventilated underground parking garages with traffic volume. Environ. Pollut. 2019, 247, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Moreno, T.; Minguillon, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakonstantinou, K.; Chaloulakou, A.; Duci, A.; Vlachakis, N.; Markatos, N. Air quality in an underground garage: Computational and experimental investigation of ventilation effectiveness. Energy Build. 2003, 35, 933–940. [Google Scholar] [CrossRef]
- Vukovic, G.; Urosevic, M.A.; Ivana, R.; Maja, K. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos. Environ. 2014, 85, 31–40. [Google Scholar] [CrossRef]
- Oh, H.-J.; Sohn, J.-R.; Roh, J.-S.; Kim, J. Exposure to respirable particles and TVOC in underground parking garages under different types of ventilation and their associated health effects. Air Qual. Atmos. Health 2020, 13, 297–308. [Google Scholar] [CrossRef]
- Dhawan, S.; Sebastian, A.; Siby, J. Health risk assessment of workers in underground parking due to exposure to CO and VOC. Int. J. Eng. Sci. Technol. 2018, 5, 1388–1391. [Google Scholar]
- Yu, L.; Kang, N.; Wang, W.; Guo, H.; Ji, J. Study on the Influence of Air Tightness of the Building Envelope on Indoor Particle Concentration. Sustainability 2020, 12, 1708. [Google Scholar] [CrossRef] [Green Version]
- Assimakopoulos, V.D.; Bekiari, T.; Pateraki, S.; Maggos, T.; Stamatis, P.; Nicolopoulou, P.; Assimakopoulos, M.N. Assessing personal exposure to PM using data from an integrated indoor-outdoor experiment in Athens-Greece. Sci. Total Environ. 2018, 636, 1303–1320. [Google Scholar] [CrossRef]
- Mosley, R.B.; Greenwell, D.J.; Sparks, L.E.; Guo, Z.; Tucker, W.G.; Fortmann, R.; Whitfield, C. Penetration of Ambient Fine Particles into the Indoor Environment. Aerosol Sci. Tech. 2001, 34, 127–136. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Krudysz, M.; Kuhn, T.; Froines, J.; Sioutas, C. Penetration of freeway ultrafine particles into indoor environments. J. Aerosol Sci. 2005, 36, 303–322. [Google Scholar] [CrossRef]
- Kim, S.R.; Dominici, F.; Buckley, T.J. Concentrations of vehicle-related air pollutants in an urban parking garage. Environ. Res. 2007, 105, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wen, Q.; Zhang, R. Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): A review. Sci. Total Environ. 2017, 586, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Adam, N.; Kohal, J.; Riffat, S. Effect of ventilation rate on deposition of aerosol particles on materials. Build. Serv. Energy Res. Technol. 1994, 15, 185–188. [Google Scholar] [CrossRef]
- Andrew, J.; Chio, M.D. Biological effects of Utah Vally ambient air particles in humans: A Review. J. Aerosol Med. 2004, 17, 157–164. [Google Scholar]
- Carrilho da Graça, G. A technical note on simplified modeling of turbulent mixing in wind-driven single sided ventilation. Build. Environ. 2018, 131, 12–15. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Sheng, G.; Fu, J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ. Mont. Assess. 2006, 119, 425–439. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2010, 21, 191–204. [Google Scholar] [CrossRef]
- Geens, A.; Snelson, D.; Littlewood, J.; Ryan, J. Ventilation performance for spaces where smoking is permitted: A review of previous work and field study results. Build. Serv. Eng. Res. Technol. 2006, 27, 235–248. [Google Scholar] [CrossRef]
- Buonanno, G.; Marks, G.B.; Morawska, L. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environ. Pollut. 2013, 180, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Pesch, B.; Lotz, A.; Pelzer, J.; Kendzia, B.; Gawrych, K.; Heinze, E.; Van Gelder, R.; Punkenburg, E.; Weiss, T.; et al. Exposure to inhalable, respirable, and ultrafine particles in welding fume. Ann. Occup. Hyg. 2012, 56, 557–567. [Google Scholar]
- Oeder, S.; Dietrich, S.; Weichenmeier, I.; Schober, W.; Pusch, G.; Jorres, R.A.; Schierl, R.; Nowak, D.; Fromme, H.; Behrendt, H.; et al. Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. Indoor Air 2012, 22, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, Z.; Hua, R.; Su, X.; Ma, L.; Chen, Z. Simulation study on the influence of urban underground parking development on underlying surface and urban local thermal environment. Tunn. Undergr. Space Technol. 2019, 89, 133–150. [Google Scholar] [CrossRef]
- Cameron, M.J.; Bermejo-Martin, J.F.; Danesh, A.; Muller, M.P.; Kelvin, D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008, 133, 13–19. [Google Scholar] [CrossRef]
- Leung, C.W.; Chiu, W.K. Clinical picture, diagnosis, treatment and outcome of severe acute respiratory syndrome (SARS) in children. Paediatr. Respir. Rev. 2004, 5, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-J.; Kim, H.-J. An Automobile Environment Detection System Based on Deep Neural Network and its Implementation Using IoT-Enabled In-Vehicle Air Quality Sensors. Sustainability 2020, 12, 2475. [Google Scholar] [CrossRef] [Green Version]
- Abbot, J.; Marohasy, J. The application of machine learning for evaluating anthropogenic versus natural climate change. GeoRes J. 2017, 14, 36–46. [Google Scholar] [CrossRef]
- Russo, A.; Lind, P.G.; Raischel, F.; Trigo, R.; Mendes, M. Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos. Pollut. Res. 2015, 6, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; Goyal, P. Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra. Atmos. Pollut. Res. 2015, 6, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Elangasinghe, M.; Dirks, K.; Singhal, N.; Costello, S.; Longley, I.; Salmond, J. A simple semi-empirical technique for apportioning the impact of roadways on air quality in an urban neighbourhood. Atmos. Environ. 2014, 83, 99–108. [Google Scholar] [CrossRef]
- Lal, B.; Tripathy, S.S. Prediction of dust concentration in open cast coat mine using artificial neural network. Atmos. Pollut. Res. 2012, 2, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Nejadkoorki, F.; Baroutian, S. Forcasting extreme PM10 concentrations using artificial neural networks. Int. J. Environ. Res. 2011, 6, 277–284. [Google Scholar]
- WHO. Climate Change and Health. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 26 April 2020).
- The Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 1–32. [Google Scholar]
- EPA. Health, Energy Efficiency and Climate Change. 2017. Available online: https://www.epa.gov/indoor-air-quality-iaq/health-energy-efficiency-and-climate-change (accessed on 26 April 2020).
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Kassomenos, P.; Petrakis, M.; Sarigiannis, D.; Gotti, A.; Karakitsios, S. Identifying the contribution of physical and chemical stressors to the daily number of hospital admissions implementing an artificial neural network model. Air Qual. Atmos. Health 2011, 4, 263–272. [Google Scholar] [CrossRef]
- Polezer, G.; Tadano, Y.S.; Siqueira, H.V.; Godoi, A.F.L.; Yamamoto, C.I.; André, P.A.; Pauliquevis, T.; Andrade, M.F.; Oliveira, A. Assessing the impact of PM2.5 on respiratory disease using artificial neural networks. Environ. Pollut. 2018, 235, 394–403. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Pan, X. Atmosphere pollutants and mortality rate of respiratory diseases in Beijing. Sci. Total Environ. 2008, 391, 143–148. [Google Scholar] [CrossRef]
- Kachba, Y.; Chiroli, D.M.; Belotti, J.T.; Alves, T.A.; de Souza Tadano, Y.; Siqueira, H. Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America. Sustainability 2020, 12, 2621. [Google Scholar] [CrossRef] [Green Version]
- Koutrakis, P.; Briggs, S.L.K. Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New York. Environ. Sci. Pollut. 1992, 26, 521–527. [Google Scholar] [CrossRef]
- Gerharz, L.E.; Kruger, A.; Klemm, O. Applying indoor and outdoor modeling techniques to estimate individual exposure to PM2.5 from personal GPS profiles and diaries: A pilot study. Sci. Total Environ. 2009, 407, 5184–5193. [Google Scholar] [CrossRef]
- Chao, C. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmos. Environt. 2003, 37, 4233–4241. [Google Scholar] [CrossRef]
- ICRP. Human Respiratory Tract Model for Radiological Protection; ICRP Publication 66; Annals of the ICRP; ICRP: London, UK, 1994; Volume 24, pp. 1–3. [Google Scholar]
- Elbayoumi, M.; Ramli, N.A.; Yusof, N.F. Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally ventilated schools. Atmos. Pollut. Res. 2015, 6, 1013–1023. [Google Scholar] [CrossRef]
- Shepherd, A.J. Second-Order Methods for Neural Networks: Fast and Reliable Training Methods for Multi-Layer Perceptrons; Springer: New York, NY, USA, 1997. [Google Scholar]
- Sarle, W.S. Stopped training and other remedies for overfitting. In Proceedings of the 27th Symposium on the Interface of Computer Science and Statistics, Pittsburgh, PA, USA, 21–24 June 1995; pp. 352–360. [Google Scholar]
- Ul-Saufie, A.; Yahaya, A.; Ramli, N.; Awang, N.; Hamid, H. Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmos. Environ. 2013, 77, 621–630. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; pp. 237–239. [Google Scholar]
- Karppinen, A.; Kukkonen, J.; Elolahde, T.; Konttinen, M.; Koskentato, T.; Rantakrans, E. A modelling system for predicting urban air pollution: Model description and applications in the Helsinki metropolitan area. Atmos. Environ. 2000, 34, 3723–3733. [Google Scholar] [CrossRef]
- Nazarenko, Y.; Zhen, H.; Han, T.; Lioy, P.J.; Mainelis, G. Nanomaterial inhalation exposure from nanotechnology-based cosmetic powders: A quantitative assessment. J. Nanopart. Res. 2012, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Elbayoumi, M.; Ramli, N.; Yusof, N.; Al Madhoun, W. Seasonal variation in indoor air schools environments and health symptoms among students in and eastern mediterranean climate. Hum. Ecol. Risk Assess. 2014, 20, 1–21. [Google Scholar] [CrossRef]
- Stafoggia, M.; Samoli, E.; Alessandrini, E.; Cadum, E.; Ostro, B.; Berti, G.; Faustini, A.; Jacquemin, B.; Linares, C. Short-term associations between fine and coarse particulate matter and hospitalizatios in southern europe: Results from the med-particles project. Environ. Health Perspect. 2013, 121, 1026–1033. [Google Scholar] [CrossRef]
Location | Number of Samples | Area (m2) | Capacity/Number of Cars | Ventilation Rate (l/s Person), Mean (SD) | |
---|---|---|---|---|---|
Underground parking garage | UPG1 | 122 | 730 | 320 | - |
UPG2 | 102 | 730 | 300 | - | |
Indoor environment | IE1 | 86 | 30 | - | 10 (5) |
IE2 | 84 | 70 | - | 8 (50) |
NV | OP1 | OP2 | OP3 | |||||
---|---|---|---|---|---|---|---|---|
PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | |
SP | 270.15 ± 50.85 | 108.67 ± 16.25 | 287.08 ± 27.43 | 105.95 ± 13.80 | 173.58 ± 38.02 | 78.37 ± 14.74 | 124.72 ± 7.60 | 46.12 ± 4.91 |
SU | 302.88 ± 58.17 | 117.02 ± 12.57 | 251.96 ± 49.73 | 98.85 ± 14.92 | 107.85 ± 40.64 | 76.64 ± 13.32 | 111.57 ± 8.13 | 45.55 ± 4.44 |
WI | 286.65 ± 32.63 | 113.26 ± 12.60 | 214.54 ± 52.25 | 90.93 ± 22.90 | 121.27 ± 28.50 | 70.48 ± 114.77 | 114.25 ± 5.70 | 43.49 ± 4.92 |
OUT | 56.44 ± 8.16 | 35.83 ± 6.63 | 57.12 ± 6.27 | 35.20 ± 4.11 | 62.50 ± 5.49 | 41.88 ± 4.53 | 62.25 ± 5.49 | 41.88 ± 4.53 |
Particle Type | HVAC Operation | Season | p-Value | |
---|---|---|---|---|
PM10 | OP1 | SP | WI | 0.0012 |
OP2 | SP | SU | 0.001 | |
WI | 0.004 | |||
OP3 | SP | SU | 0.001 | |
SU | WI | 0.004 | ||
PM2.5 | OP1 | SP | WI | 0.01 |
UPG1 | UPG2 | IE1 | IE2 | |||||
---|---|---|---|---|---|---|---|---|
PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | |
SP | 249.97 ± 45.59 | 105.08 ± 7.54 | 275.47 ± 50.13 | 113.02 ± 213.13 | 55.78 ± 11.86 | 37.33 ± 5.88 | 59.16 ± 8.32 | 37.93 ± 5.13 |
SU | 259.59 ± 47.31 | 113.29 ± 8.50 | 300.87 ± 31.48 | 115.93 ± 10.49 | 66.32 ± 5.90 | 46.59 ± 4.40 | 52.36 ± 10.65 | 42.24 ± 6.69 |
WI | 158.31 ± 26.22 | 107.77 ± 8.01 | 272.13 ± 41.46 | 115.52 ± 11.95 | 68.51 ± 7.93 | 46.63 ± 5.56 | 58.00 ± 7.03 | 43.60 ± 4.23 |
IE1 | UPG1 | IE2 | UPG2 | |||||
---|---|---|---|---|---|---|---|---|
MD | ISP | MD | ISP | MD | ISP | MD | ISP | |
CO2 (ppm) | 687.68 ± 81.65 | 702.76 ± 127.46 | NM | 1022.55 ± 172.06 | 747.13 ± 79.39 | 767.34 ± 98.59 | NM | 1014.53 ± 158.06 |
PM10 (µg/m3) | 61.43 ± 10.24 | 65.02 ± 10.88 | NM | 171.95 ± 32.44 | 59.57 ± 9.10 | 57.78 ± 7.53 | NM | 162.75 ± 41.34 |
TVOC (ppm) | 849.38 ± 91.17 | NM | NM | 865.41 ± 118.80 | 721.60 ± 145.64 | NM | NM | 722.12 ± 82.66 |
CO (ppm) | 8.69 ± 1.80 | NM | NM | 9.28 ± 2.28 | 8.28 ± 1.16 | NM | NM | 8.32 ± 1.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.-J.; Kim, J. Monitoring Air Quality and Estimation of Personal Exposure to Particulate Matter Using an Indoor Model and Artificial Neural Network. Sustainability 2020, 12, 3794. https://doi.org/10.3390/su12093794
Oh H-J, Kim J. Monitoring Air Quality and Estimation of Personal Exposure to Particulate Matter Using an Indoor Model and Artificial Neural Network. Sustainability. 2020; 12(9):3794. https://doi.org/10.3390/su12093794
Chicago/Turabian StyleOh, Hyeon-Ju, and Jongbok Kim. 2020. "Monitoring Air Quality and Estimation of Personal Exposure to Particulate Matter Using an Indoor Model and Artificial Neural Network" Sustainability 12, no. 9: 3794. https://doi.org/10.3390/su12093794
APA StyleOh, H.-J., & Kim, J. (2020). Monitoring Air Quality and Estimation of Personal Exposure to Particulate Matter Using an Indoor Model and Artificial Neural Network. Sustainability, 12(9), 3794. https://doi.org/10.3390/su12093794