Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels
Abstract
:1. Introduction
- ◊
- Combustion engines—diesel, dual fuel, Otto, gas turbine;
- ◊
- Fuel cells;
- ◊
- Electric engines.
1.1. Criteria for Fuel Choice
1.2. What is “Decarbonization”?
1.3. Definitions of “Alternative Fuels”
1.4. Different System Perspectives
1.5. Goal of the Study and Approach
2. Sustainability Assessments of Marine Fuels
2.1. Multicritiera Decision Analysis, MCDA, and Marine Fuels
2.2. Assessments of Marine Fuels in Scientific Literature Published During 2017–2019
2.3. Assessments or Reviews of Marine Fuels Performed by Classification Societies and Other Organisations Published During 2017–2019
2.4. Summary of the Assessed Articles and Reports
3. What Criteria are Important to Consider When Assessing Marine Fuels?
3.1. Technical
3.2. Economical
3.3. Environmental
3.4. Fuel Distribution
3.5. Safety and Health
3.6. Geopolitical Stability
3.7. Ethics
3.8. Public Acceptance
3.9. Policy
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. United Nations Treaty Collection: Paris Agreement; United Nations: Paris, France, December 2015. [Google Scholar]
- Smith, T.W.P.; Jalkanen, J.P.; Anderson, B.A.; Corbett, J.J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; et al. A. Third IMO GHG Study 2014; MEPC-67-6-INF3-2014; International Maritime Organization: London, UK, 2014. [Google Scholar]
- IMO. Initial IMO Strategy on Reduction of GHG Emissions from Ships, Resolution MEPC.304 (72) adopted on 13 April 2018; International Maritime Organization: London, UK, 2018 13. [Google Scholar]
- Oftedal, S. The IMO GHG Strategy—Implications for Regulations and Alternative Fuels. In Proceedings of the DNV GL Alternative Fuels online Conference, 25 September 2019. [Google Scholar]
- Chu Van, T.; Ramirez, J.; Rainey, T.; Ristovski, Z.; Brown, R.J. Global Impacts of Recent IMO Regulations on Marine Fuel Oil Refining Processes and Ship Emissions. Transp. Res. Part D Transp. Environ. 2019, 70, 123–134. [Google Scholar] [CrossRef]
- Hansson, J.; Månsson, S.; Brynolf, S.; Grahn, M. Alternative Marine Fuels: Prospects Based on Multi-Criteria Decision Analysis Involving Swedish Stakeholders. Biomass Bioenergy 2019, 126, 159–173. [Google Scholar] [CrossRef]
- Deniz, C.; Zincir, B. Environmental and Economical Assessment of Alternative Marine Fuels. J. Clean. Prod. 2016, 113, 438–449. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J. Emissions Tradeoffs among Alternative Marine Fuels: Total Fuel Cycle Analysis of Residual Oil, Marine Gas Oil, and Marine Diesel Oil. J. Air Waste Manag. Assoc. 2008, 58, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, S.; Lefebvre, N. Assessment of Hydrotreated Vegetable Oil (HVO) Applicability as an Alternative Marine Fuel Based on Its Performance and Emissions Characteristics. SAE Int. J. Fuels Lubr. 2019, 12, 109–120. [Google Scholar] [CrossRef]
- Stopford, M. Maritime Economics; Routledge: London, UK, 2009. [Google Scholar]
- Energy Information Administration (EIA); U.S. Department of Energy, Washington. Petroleum and other Liquids—Spot Prices, 2019. Available online: https://www.eia.gov/dnav/ng/hist/rngwhhdW.htm (accessed on 28 November 2019).
- Energy Information Administration (EIA); U.S. Department of Energy. Natural Gas—Henry Hub Natural Gas Spot Prices 2019. Available online: https://www.eia.gov/dnav/ng/hist/rngwhhdW.htm (accessed on 28 November 2019).
- Zelenka, J.; Wermuth, N.; Lackner, M.; Wimmer, A.; Andersson, K.; Veelken, H.; Moeyaret, P.; Jäger, B.; Url, M.; Land, M.; et al. The HyMethShip Project: Innovative Emission Free Propulsion for Ships. In Proceedings of the 29th CIMAC World Congress on Internal Combustion Engine, Vancouver, CO, Canada, 10–14 June 2019. [Google Scholar]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the Transport Sector: A Review of Production Costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Brynolf, S.; Baldi, F. Energy Efficiency and Fuel Changes to Reduce Environmental Impacts. In Shipping and the Environment; Andersson, K., Brynolf, S., Fredrik, L.J., Wiliwska-Bien, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 295–339. [Google Scholar]
- Poulikidou, S.; Heyne, S.; Grahn, M.; Harvey, S. Lifecycle Energy and Greenhouse Gas Emissions Analysis of Biomass-Based 2-Ethylhexanol as an Alternative Transportation Fuel. Energy Sci. Eng. 2019, 7, 851–867. [Google Scholar] [CrossRef]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental Assessment of Marine Fuels: Liquefied Natural Gas, Liquefied Biogas, Methanol and Bio-Methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- Brynolf, S. Environmental Assessment of Present and Future Marine Fuels. Ph.D. Thesis, Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden, 2014. [Google Scholar]
- Spoof-Tuomi, K.; Niemi, S. Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping. Clean Technol. 2020, 2, 34–52. [Google Scholar] [CrossRef] [Green Version]
- Winebrake, J.J.; Corbett, J.J.; Umar, F.; Yuska, D. Pollution Tradeoffs for Conventional and Natural Gas-Based Marine Fuels. Sustainability (Switzerland) 2019, 11, 2235. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, P.; Walsh, C.; Traut, M.; Kesieme, U.; Pazouki, K.; Murphy, A. Assessment of Full Life-Cycle Air Emissions of Alternative Shipping Fuels. J. Clean. Prod. 2018, 172, 855–866. [Google Scholar] [CrossRef]
- Thomson, H.; Corbett, J.J.; Winebrake, J.J. Natural Gas as a Marine Fuel. Energy Policy 2015, 87, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J. Decarbonizing Maritime Transport: Estimating Fleet Renewal Trends Based on Ship Scrapping Patterns; UNCTAD (United Nations Conference on Trade and Development): Geneva, Switzerland, 2020. [Google Scholar]
- Stenhede, T. Effship Project Summary; ScandiNaos AB: Gothenburg, Sweden, 2013. [Google Scholar]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the Potentials of Multi Criteria Decision Analysis Methods to Conduct Sustainability Assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Lützen, M. Selection of Sustainable Alternative Energy Source for Shipping: Multi-Criteria Decision Making under Incomplete Information. Renew. Sustain. Energy Rev. 2017, 74, 1003–1019. [Google Scholar] [CrossRef]
- Ren, J.; Liang, H. Measuring the Sustainability of Marine Fuels: A Fuzzy Group Multi-Criteria Decision Making Approach. Transp. Res. Part. D Transp. Environ. 2017, 54, 12–29. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to Decarbonise International Shipping: Options for Fuels, Technologies and Policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-Art Technologies, Measures, and Potential for Reducing GHG Emissions from Shipping—A Review. Transp. Res. Part. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Brahim, T.B.; Wiese, F.; Münster, M. Pathways to Climate-Neutral Shipping: A Danish Case Study. Energy 2019, 188, 116009. [Google Scholar] [CrossRef]
- Månsson, S. Prospects for Renewable Marine Fuels. Master’s Thesis, Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden, 2017. [Google Scholar]
- Kesieme, U.; Pazouki, K.; Murphy, A.; Chrysanthou, A. Biofuel as an Alternative Shipping Fuel: Technological, Environmental and Economic Assessment. Sustain. Energy Fuels 2019, 3, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as Alternative Fuel for Marine Diesel Engine Applications: A Review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Tanzer, S.E.; Posada, J.; Geraedts, S.; Ramírez, A. Lignocellulosic Marine Biofuel: Technoeconomic and Environmental Assessment for Production in Brazil and Sweden. J. Clean. Produc. 2019, 239, 117845. [Google Scholar] [CrossRef]
- Wendel, D. Maritime Forecast. To 2050; DNV GL: Hamburg, Germany, 2017. [Google Scholar] [CrossRef]
- Endresen, Ø.; Eide, M.; Longva, T. Maritime Forecast. To 2050. Energy Transition Outlook 2019; DNV GL: Hamburg, Germany, 2019; Available online: https://eto.dnvgl.com/2019/download (accessed on 1 March 2020).
- Ryste, J.A. Comparison of Alternative Marine Fuels - Options and Limitations. In Proceedings of the DNV GL Alternative Fuels Online Conference, 25 September 2019. [Google Scholar]
- Bleuanus, S. Fuel Flexbility for Ships with Dual Fuel Engines. In Proceedings of the DNV GL Alternative Fuels Online Conference, 25 September 2019. [Google Scholar]
- Lloyd’s Register and UMAS. Zero-Emission Vessels 2030. How Do We Get There? Lloyd’s Register and UMAS: London, UK, 2017. [Google Scholar]
- Kirstein, L.; Halim, R.; Merk, O. Decarbonising Maritime Transport.—Pathways to Zero-Carbon Shipping by 2035; OECD International Transport Forum: Paris, France, 2018. [Google Scholar]
- Lindstad, E.; Rialland, A. LNG and Cruise Ships, an Easy Way to Fulfil Regulations-versus the Need for Reducing GHG Emissions. Sustainability (Switzerland) 2020, 12, 2080. [Google Scholar] [CrossRef] [Green Version]
- Hansson, J.; Brynolf, S.; Lehtveer, M. The Potential Role of Ammonia as Marine Fuel – Based on Energy Systems Modelling and Multi-Criteria Decision Analysis. Sustainability 2020, 12, 2365. [Google Scholar] [CrossRef] [Green Version]
- Hansson, J.; Fridell, E.; Brynolf, S. On the Potential of Ammonia as Fuel for Shipping–A Synthesis of Knowledge; Lighthouse: Gothenburg, Sweden, 2020. [Google Scholar]
- Woodward, J.L.; Pitblado, R.M. LNG Properties and Overview of Hazards. In LNG Risk Based Safety: Modeling and Consequence Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- International Maritime Organisation. Studies on the Feasibility and Use of LNG as a Fuel for Shipping; International Maritime Organization: London, UK, 2016. [Google Scholar]
Journal Articles | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Balcombe et al. 2019 | Bouman et al. 2017 | Brahim et al. 2019 | Brynolf et al. 2018 | Gilbert et al. 2018 | Hansson et al. 2019 | Kesieme et al. 2019 | Mohd Noor et al. 2018 | Ren and Lützen 2017 | Ren and Liang 2017 | Tanzer et al. 2019 | Winebrake et al. 2019 | ||
Technical | x | x | |||||||||||
Fuel Properties | Energy Density | x | x | ||||||||||
Stability | |||||||||||||
Corrosivity | x | x | |||||||||||
Viscosity | x | x | |||||||||||
Flash Point | x | ||||||||||||
Standardisation | x | x | |||||||||||
Maintenance Demand | |||||||||||||
Possible Engine Adaption/Fuel Flexibility | |||||||||||||
Fuel Pre-treatment | |||||||||||||
Technology Readiness | x | x | |||||||||||
Bunkering Intervals | |||||||||||||
Economic | |||||||||||||
Investment Cost | Engines | x | x | ||||||||||
Auxiliary Systems | x | ||||||||||||
After Treatment Systems | |||||||||||||
Fuel Price | x | x | x | ||||||||||
Fuel Production Cost | x | x | x | x | |||||||||
Operational Cost | Maintenance | x | x | ||||||||||
Operation | x | x | x | x | |||||||||
Crew | x | x | |||||||||||
Incentives /taxes | x | x | |||||||||||
Environmental | |||||||||||||
Global Warming Potential | x | x | x | x | x | x | x | x | x | ||||
Life Cycle Performance | Primary Energy Use | (x) | |||||||||||
Life Cycle Assessment | x | x | |||||||||||
Exhaust Emissions | NOx | x | x | x | x | x | x | x | x | x | x | x | |
SOx | x | x | x | x | x | x | x | x | x | x | x | ||
Particles | x | x | x | x | x | x | x | x | |||||
Other | |||||||||||||
Spill and Accidents | |||||||||||||
Systems Perspective, Well to Propeller/Wake | x | x | |||||||||||
Other | |||||||||||||
Logistical Criteria | Infrastructure | x | x | ||||||||||
Market/Availability | x | x | |||||||||||
Flexible Production | |||||||||||||
Safety and Safe Handling | Risk of explosion/fire | x | x | ||||||||||
Health Hazards | |||||||||||||
Public Opinion | x | x | x | ||||||||||
Political and Strategic Aspects | x | ||||||||||||
Ethics | x | ||||||||||||
Security | |||||||||||||
Regulation | x | x |
Policy Analyses and Class Society Overviews | ||||||
---|---|---|---|---|---|---|
DNV GL 2017, 2019 | Bleuanus 2019 (DNV GL) | Ryste 2019 (DNV GL) | Kramer et al. 2018 | Kirstein et al. 2018 | ||
Technical | ||||||
Fuel Properties | Energy Density | x | x | |||
Stability | x | |||||
Corrosivity | ||||||
Viscosity | ||||||
Flash point | x | |||||
Standardization | x | |||||
Maintenance Demand | ||||||
Possible Engine Adaption/Fuel Flexibility | x | |||||
Fuel Pre-treatment | ||||||
Technology Readiness | x | |||||
Bunkering Intervals | x | |||||
Economic | x | |||||
Investment cost | Engines | x | ||||
Auxiliary Systems | x | |||||
After Treatment Systems | ||||||
Fuel Price | x | x | ||||
Fuel Production Cost | x | |||||
Operational Cost | Maintenance | |||||
Operation | x | |||||
Crew | ||||||
Incentives/Taxes | ||||||
Environmental | ||||||
Global Warming Potential | x | x | x | x | ||
Life Cycle Performance | Primary Energy Use | |||||
Life Cycle Assessment | x | |||||
Exhaust Emissions | NOx | x | x | |||
SOx | x | x | ||||
Particles | x | x | ||||
Other | x | |||||
Spill and Accidents | ||||||
Systems Perspective/Well to Propeller/Wake | x | |||||
Other | ||||||
Logistical Criteria | Infrastructure | x | ||||
Market/Availability | x | |||||
Flexible Production | ||||||
Safety and Safe Handling | Risk of Explosion/Fire | x | ||||
Health Hazards | x | x | ||||
Public Opinion | ||||||
Political and Strategic Aspects | ||||||
Ethics | ||||||
Security | ||||||
Regulation | x |
Fuel Origin | Fuel Names Used | Balcombe et al. 2019 | Bouman et al. 2017 | Brahim et al. 2019 | Brynolf et al. 2018 | Gilbert et al. 2018 | Hansson et al. 2019 | Kesieme et al. 2019 | Mohd Noor et al. 2018 | Ren and Lützen 2017 | Ren and Liang 2017 | Tanzer et al. 2019 | Winebrake et al. 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fossil-based | Methanol | x | xF | xI | x | x | x | ||||||
LNG | x | x | xF | xI | x | x | x | x | |||||
Ammonia | xF | ||||||||||||
Hydrogen | x | xF | xF | x | x | x | |||||||
LPG | |||||||||||||
DME | x | ||||||||||||
Biomass | Biofuels | x | |||||||||||
Bio-methanol | x | x | x | x | |||||||||
Biofuel | x | ||||||||||||
Bio-liquids | x | ||||||||||||
SVO soy * | xI | ||||||||||||
SVO rape | xI | ||||||||||||
SVO | x | ||||||||||||
Biodiesel soy | xI | ||||||||||||
Biodiesel rape | xI | ||||||||||||
Advanced biofuels | x | ||||||||||||
Biodiesel | xI | x | |||||||||||
Biodiesel FT | x | x | x | ||||||||||
BTL | |||||||||||||
FAME | x | ||||||||||||
HVO | x | x | |||||||||||
Pyrolysis oil ** | x | x | |||||||||||
LC-ethanol **** | x | ||||||||||||
LBG | x | xF | xI | x | x | ||||||||
Electrofuels | e-methanol | x | |||||||||||
e-FT | x | ||||||||||||
e-gasoline | x | ||||||||||||
e-diesel FT | |||||||||||||
e-OME | |||||||||||||
e methane | x | ||||||||||||
e-h2 | x | ||||||||||||
e-DME | x | ||||||||||||
e-propane FT | |||||||||||||
Misc. | Fuel cell | x | x | ||||||||||
Battery | |||||||||||||
Electricity | x | ||||||||||||
Nuclear | x | x | |||||||||||
Wind | x | x |
Fuel Origin | Fuel Names Used | DNV GL 2017, 2019 | Bleuanus 2019 (DNV GL) | Ryste 2019 (DNV GL) | Kramer et al 2018 | Kirstein et al 2018 | DNV GL 2017, 2019 |
---|---|---|---|---|---|---|---|
Fossil-based | Methanol | x | |||||
LNG | x | x I | x | x | |||
Ammonia | x F I | x I | x I | x | x | ||
Hydrogen | x F I H | x | x | x | |||
LPG | x | ||||||
DME | |||||||
Biomass | |||||||
Bio-methanol | |||||||
Biofuel | x | ||||||
Bio-liquids | |||||||
SVO soy * | |||||||
SVO rape | |||||||
SVO | |||||||
Biodiesel soy | |||||||
Biodiesel rape | |||||||
Advanced biofuels | x | x | |||||
Biodiesel | x | ||||||
Biodiesel FT | |||||||
BTL | x | ||||||
FAME | x | ||||||
HVO | x | x I | x | ||||
Pyrolysis oil ** | |||||||
LC-ethanol **** | |||||||
LBG | x | x I | |||||
Electrofuels | e-methanol | x | x | ||||
e-FT | |||||||
e-gasoline | x | ||||||
e-diesel FT | x | x | |||||
e-OME | x | ||||||
e-methane | x | x | |||||
e-h2 | x | ||||||
e-DME | x | ||||||
e-propane FT | x | ||||||
Misc. | Fuel cell | x | |||||
Battery | |||||||
Electricity | x | x | x | x | |||
Nuclear | x | xx | x | x | |||
Wind | x | ||||||
Solar | x |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson, K.; Brynolf, S.; Hansson, J.; Grahn, M. Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels. Sustainability 2020, 12, 3623. https://doi.org/10.3390/su12093623
Andersson K, Brynolf S, Hansson J, Grahn M. Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels. Sustainability. 2020; 12(9):3623. https://doi.org/10.3390/su12093623
Chicago/Turabian StyleAndersson, Karin, Selma Brynolf, Julia Hansson, and Maria Grahn. 2020. "Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels" Sustainability 12, no. 9: 3623. https://doi.org/10.3390/su12093623