Next Article in Journal
Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling
Previous Article in Journal
How a Participatory Budget Can Support Sustainable Rural Development—Lessons From Poland
Open AccessArticle

Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America

1
Department of Production Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil
2
Department of Computational Science, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil
3
Department of Mechanical Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil
4
Department of Mathematics, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil
5
Department of Electric Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil
*
Author to whom correspondence should be addressed.
Sustainability 2020, 12(7), 2621; https://doi.org/10.3390/su12072621
Received: 10 February 2020 / Revised: 20 March 2020 / Accepted: 22 March 2020 / Published: 26 March 2020
(This article belongs to the Section Sustainable Transportation)
The emission of pollutants from vehicles is presented as a prime factor deteriorating air quality. Thus, seeking public policies encouraging the use and the development of more sustainable vehicles is paramount to preserve populations’ health. To better understand the health risks caused by air pollution and exclusively by mobile sources urges the question of which input variables should be considered. Therefore, this research aims to estimate the impacts on populations’ health related to road transport variables for São Paulo, Brazil, the largest metropolis in South America. We used three Artificial Neural Networks (ANN) (Multilayer Perceptron—MLP, Extreme Learning Machines—ELM, and Echo State Neural Networks—ESN) to estimate the impacts of carbon monoxide, nitrogen oxides, ozone, sulfur dioxide, and particulate matter on outcomes for respiratory diseases (morbidity—hospital admissions and mortality). We also used unusual inputs, such as road vehicles fleet, distributed and sold fuels amount, and vehicle average mileage. We also used deseasonalization and the Variable Selection Methods (VSM) (Mutual Information Filter and Wrapper). The results showed that the VSM excluded some variables, but the best performances were reached considering all of them. The ELM achieved the best overall results to morbidity, and the ESN to mortality, both using deseasonalization. Our study makes an important contribution to the following United Nations Sustainable Development Goals: 3—good health and well-being, 7—affordable and clean energy, and 11—sustainable cities and communities. These research findings will guide government about future legislations, public policies aiming to warranty and improve the health system. View Full-Text
Keywords: electric vehicles; respiratory diseases; UN sustainable development goals; air pollution; particulate matter electric vehicles; respiratory diseases; UN sustainable development goals; air pollution; particulate matter
Show Figures

Graphical abstract

MDPI and ACS Style

Kachba, Y.; Chiroli, D.M.G.; T. Belotti, J.; Antonini Alves, T.; de Souza Tadano, Y.; Siqueira, H. Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America. Sustainability 2020, 12, 2621.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop