Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Trend Analysis Approaches
2.2.1. Mann–Kendall Test
- (1)
- Initially, the homogeneity test, i.e., Standard Normal Homogeneity Test (SNHT) and Buishand test was applied to test for homogeneity in the precipitation series [31].
- (2)
- Then, Lag 1 autocorrelation was computed to check whether the selected precipitation series are serial independent or not at the 5% significance level.
- (3)
- If applicable, the data with a serial correlation was detrended, and a new blended series was obtained using a trend-free pre-whitening test (TFPW) as proposed by [16].
- (4)
- Lastly, the standardised test statistic (Equation (3)) was then applied to check the significance of the trend at the 5% significance level.
2.2.2. Innovative Trend Analysis
- (1)
- Dividing the selected hydrometeorological time series () into two equal halves (i.e., and ).
- (2)
- Arranging the subclasses independently in an ascending order.
- (3)
- Then, by using ordered data, a 1:1 scatter plot was drawn by plotting the 1st half ) on the x-axis and the 2nd half () on the y-axis.
- (4)
- A straight line 1:1 (45° line) was then drawn on the same graph.
- (5)
- If the scatter data points lie below (above) the straight line, i.e., 1:1 (45° line), then there will be a decreasing (increasing) trend in the selected hydrometeorological time series. Similarly, if all the data points lie on the straight line, then no trend exists in the time series.
- (6)
- The trend magnitude (hereafter ITA) in a time series could be estimated by the average difference between two halves as given below:
2.3. Precipitation Variability Indices
2.3.1. Consecutive Disparity Index (S)
2.3.2. Absolute Inter-Variability (IV) Index
2.3.3. Entropy-Based Variability Index (D)
3. Results and Discussions
3.1. Spatiotemporal Variation in Rainfall Series
3.2. Trend Analysis
3.2.1. Monthly Series Trends
3.2.2. Seasonal Series Trends
3.2.3. Annual Series Trends
3.3. Precipitation Variability
3.4. Interrelationship between Approaches on a Seasonal and Annual Basis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adler, R.F.; Huffman, G.J.; Bolvin, D.T.; Curtis, S.; Nelkin, E.J. Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteorol. 2000, 39, 2007–2023. [Google Scholar] [CrossRef] [Green Version]
- Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Fai, C.M.; Afan, H.A.; Ridwam, W.M.; Sefelnasr, A.; El-Shafie, A. Precipitation forecasting using multilayer neural network and support vector machine optimization based on flow regime algorithm taking into account uncertainties of soft computing models. Sustainability 2019, 11, 6681. [Google Scholar] [CrossRef] [Green Version]
- Eshetu, G.; Johansson, T.; Garedew, W. Rainfall trend and variability analysis in setema-gatira area of Jimma, southwestern Ethiopia. Afr. J. Agric. Res. 2016, 11, 3037–3045. [Google Scholar]
- Begum, M.A.R.M. Application of non-parametric test for trend detection of rainfall in the largest island of Bangladesh. ARPN J.Earth Sci. 2006, 2, 40–44. [Google Scholar]
- Khan, N.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N.; Son, M. Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets. Water 2018, 10, 1793. [Google Scholar] [CrossRef] [Green Version]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Ambun, D.; Azlai, B.; Phuah, E. Statistical and trend analysis of rainfall data in Kuching, Sarawak from 1968–2010. Res. Publ. 2013, 6, 17. [Google Scholar]
- Kansiime, M.K.; Wambugu, S.K.; Shisanya, C.A. Perceived and actual rainfall trends and variability in eastern Uganda: Implications for community preparedness and response. J. Nat. Sci. Res. 2013, 3, 179–194. [Google Scholar]
- Nyatuame, M.; Owusu-Gyimah, V.; Ampiaw, F. Statistical analysis of rainfall trend for Volta region in Ghana. Int. J. Atmos. Sci. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Manly, B.F.; Mackenzie, D. A cumulative sum type of method for environmental monitoring. Environmetrics 2000, 11, 151–166. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Haktanir, T.; Citakoglu, H. Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. J. Hydrol. Eng. 2014, 19, 05014009. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend analysis in reference evapotranspiration using Mann-Kendall and spearman’s rho tests in arid regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Wang, S.-J.; Zhang, J.-M.; Wang, G.; Tang, X.-Y. Temporal and spatial variability in precipitation trends in the southeast Tibetan plateau during 1961–2012. Clim. Past Discuss. 2015, 11, 447–487. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huang, Q.; Chang, J.; Liu, D.; Huang, S.; Shi, X. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei river basin. Environ. Res. 2015, 139, 55–64. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Markus, M.; Demissie, M.; Short, M.B.; Verma, S.; Cooke, R.A. Sensitivity analysis of annual nitrate loads and the corresponding trends in the lower Illinois river. J. Hydrol. Eng. 2014, 19, 533–543. [Google Scholar] [CrossRef]
- Zahid, M.; Rasul, G. Frequency of extreme temperature and precipitation events in Pakistan 1965–2009. Sci. Int. 2011, 23, 313–319. [Google Scholar]
- Wani, J.M.; Sarda, V.; Jain, S.K. Assessment of trends and variability of rainfall and temperature for the district of mandi in Himachal Pradesh, India. Slovak J. Civ. Eng. 2017, 25, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, H.; Andresky, L. Flooding in the Indus river basin—A spatiotemporal analysis of precipitation records. Glob. Planet. Chang. 2013, 107, 25–35. [Google Scholar] [CrossRef]
- Abbas, F. Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interact. 2013, 17, 1–23. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Ali, N.; Ahmad, I.; Chaudhry, A.G.; Raza, M.A. Trend analysis of precipitation data in Pakistan. Sci. Int. 2015, 27, 803–808. [Google Scholar]
- Bocchiola, D.; Diolaiuti, G. Recent (1980–2009) evidence of climate change in the upper Karakoram, Pakistan. Theor. Appl. Climatol. 2013, 113, 611–641. [Google Scholar] [CrossRef]
- Gadiwala, M.S.; Burke, F. Climate change and precipitation in Pakistan-a meteorological prospect. Int. J. Econ. Environ. Geol. 2019, 4, 10–15. [Google Scholar]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Hussain, M.S.; Lee, S. Long-term variability and changes of the precipitation regime in Pakistan. Asia Pac. J. Atmos. Sci. 2014, 50, 271–282. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.F.; Athar, H. Variability, trends, and teleconnections of observed precipitation over Pakistan. Theor. Appl. Climatol. 2018, 134, 613–632. [Google Scholar] [CrossRef]
- Latif, Y.; Yaoming, M.; Yaseen, M. Spatial analysis of precipitation time series over the upper Indus basin. Theor. Appl. Climatol. 2018, 131, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Naheed, G.; Kazmi, D.; Rasul, G. Seasonal variation of rainy days in Pakistan. Pak. J. Meteorol. 2013, 9, 18. [Google Scholar]
- Raza, M.; Hussain, D.; Rasul, G. Climatic Variability and Linear Trend Models for the Six Major Regions of Gilgit-Baltistan Pakistan. B. Life Environ. Sci. 2016, 53, 129–136. [Google Scholar]
- Ahmed, K.; Shahid, S.; Ali, R.O.; Harun, S.; Wang, X. Evaluation of the performance of gridded precipitation products over Balochistan province, Pakistan. Desalination 2017, 1, 14. [Google Scholar] [CrossRef]
- Salma, S.; Shah, M.; Rehman, S. Rainfall trends in different climate zones of Pakistan. Pak. J. Meteorol. 2012, 9, 17. [Google Scholar]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A. Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2018, 210, 1–14. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Lakhankar, T.; Dars, G.H. Precipitation trends over the Indus basin. Climate 2019, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019, 137, 2755–2769. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus river basin. Atmos. Res. 2018, 213, 346–360. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Pettitt, A.N. A simple cumulative sum type statistic for the change-point problem with zero-one observations. Biometrika 1980, 67, 79–84. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, Z.; Yan, Z.; Teng, M.; Huang, C. Climate change and its attribution in three gorges reservoir area, China. Sustainability 2019, 11, 7206. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Carnicer, J.; Martín-Vide, J.; Peñuelas, J. The consecutive disparity index, d: A measure of temporal variability in ecological studies. Ecosphere 2018, 9, e02527. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Zhao, C.; Ding, Y.; Ye, B.; Yao, S.; Zhao, Q.; Wang, Z.; Wang, Y. An analyses of long-term precipitation variability based on entropy over Xinjiang, northwestern China. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 2975–2999. [Google Scholar] [CrossRef]
- Aamir, E.; Hassan, I. Trend analysis in precipitation at individual and regional levels in Baluchistan, Pakistan. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012042. [Google Scholar]
- Faiz, M.A.; Liu, D.; Fu, Q.; Wrzesiński, D.; Muneer, S.; Khan, M.I.; Li, T.; Cui, S. Assessment of precipitation variability and uncertainty of streamflow in the Hindu kush himalayan and Karakoram river basins of Pakistan. Meteorol. Atmos. Phys. 2019, 131, 127–136. [Google Scholar] [CrossRef]
- Hasson, S.; Böhner, J.; Lucarini, V. Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus basin. Earth Syst. Dyn. 2017, 8, 337–355. [Google Scholar] [CrossRef] [Green Version]
- Hasson, S.U.; Pascale, S.; Lucarini, V.; Böhner, J. Seasonal cycle of precipitation over major river basins in south and southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res. 2016, 180, 42–63. [Google Scholar] [CrossRef] [Green Version]
Sr # | By | Region | Approach | Finding |
---|---|---|---|---|
1 | [24] | Punjab, Pakistan | MK | No considerable trend was identified |
2 | [25] | Himalaya Region | MK | An increasing trend in annual precipitation |
3 | [26] | Himalaya and Hindu Kush-Karakoram | MK | The overall decrease in trend except for 1 basin |
4 | [27] | Himalaya region | MK with moving window, LR | Precipitation substantial increase at 1 out of 4 station |
5 | [28] | Hindu Kush-Karakoram region | LR and MK | Rise in annual precipitation during 1901–2010 |
6 | [29] | Himalaya and Hindu Kush-Karakoram | MK | Increasing precipitation trend in annual and monsoon season |
7 | [30] | Himalaya and Hindu Kush-Karakoram | MK and LR | The decreasing trend in the wet day and inclination in precipitation intensity |
8 | [31] | Swat River | MK and Spearman’s rho test | A mix of increasing and decreasing trends |
9 | [32] | Himalaya and Hindu Kush-Karakoram | MK | Positive variation in rainfall extreme resulted in some regions |
10 | [33] | Himalaya and Hindu Kush-Karakoram | MK | A mixture of the trend at 5 selected station |
11 | [34] | Himalaya and Hindu Kush-Karakoram | LR | Increase in intensity, while a decrease in the frequency of heavy rainfall |
12 | [35] | Himalaya and Hindu Kush-Karakoram | LR | Increasing precipitation trend at 1 station while decreasing at two stations |
13 | [36] | Three stations of Balochistan | MK | Decreasing trend direction on an annual and seasonal basis |
14 | [37] | 30 stations from all over Pakistan with three from west | ANOVA Dennett T3 | A decrease in precipitation trends at the rate of 1.18 mm/year at three stations during 1961–1999 |
15 | [38] | Himalaya and Hindu Kush-Karakoram | MK | The decrease in winter and annual precipitation and an increase in monsoon precipitation |
16 | [39] | Indus Basin of Pakistan | MK test | No significant trend was observed. However, increase in mean precipitation |
17 | [40] | Sub-Himalayan region of Pakistan | Modified MK test | Increase in extreme precipitation and dry days |
18 | [41] | Upper Indus Basin of Pakistan | MK test and ITA | A mixture of increasing and decreasing trend in precipitation extreme |
Stations | Long | Lat | Elevation (m) | Record Period | Record Length (Years) |
---|---|---|---|---|---|
Barkhan | 69.52 | 29.90 | 1097 | 1990–2018 | 29 |
Dalbandin | 64.40 | 28.89 | 848 | 1981–2018 | 38 |
Jiwani | 61.77 | 25.05 | 56 | 1981–2018 | 38 |
Kalat | 66.59 | 29.05 | 2015 | 1981–2018 | 38 |
Khuzdar | 66.61 | 27.82 | 1231 | 1981–2018 | 38 |
Lasbella | 66.71 | 25.87 | 87 | 1981–2018 | 38 |
Nokkundi | 62.75 | 28.83 | 682 | 1981–2018 | 38 |
Panjgur | 64.15 | 26.73 | 968 | 1981–2018 | 38 |
Quetta | 66.96 | 30.25 | 1626 | 1981–2018 | 38 |
Sibbi | 67.88 | 29.55 | 133 | 1981–2018 | 38 |
Zhob | 69.47 | 31.35 | 1405 | 1981–2018 | 38 |
Haiderabad | 68.42 | 25.38 | 30 | 1981–2018 | 38 |
Karachi | 66.93 | 24.90 | 11 | 1981–2018 | 38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waseem, M.; Ahmad, I.; Mujtaba, A.; Tayyab, M.; Si, C.; Lü, H.; Dong, X. Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan. Sustainability 2020, 12, 2305. https://doi.org/10.3390/su12062305
Waseem M, Ahmad I, Mujtaba A, Tayyab M, Si C, Lü H, Dong X. Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan. Sustainability. 2020; 12(6):2305. https://doi.org/10.3390/su12062305
Chicago/Turabian StyleWaseem, Muhammad, Ijaz Ahmad, Ahmad Mujtaba, Muhammad Tayyab, Chen Si, Haishen Lü, and Xiaohua Dong. 2020. "Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan" Sustainability 12, no. 6: 2305. https://doi.org/10.3390/su12062305
APA StyleWaseem, M., Ahmad, I., Mujtaba, A., Tayyab, M., Si, C., Lü, H., & Dong, X. (2020). Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan. Sustainability, 12(6), 2305. https://doi.org/10.3390/su12062305