Effects of 8-Weeks Concurrent Strength and Aerobic Training on Body Composition, Physiological and Cognitive Performance in Older Adult Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Body Composition Characteristics Measurement
2.2.2. Physiological Measurement (VO2max)
2.2.3. Cognitive Measurement by the PVT
2.3. Procedure
2.3.1. Pre-Intervention Session
2.3.2. Intervention
2.3.3. Post-Intervention Session
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruiz-Montero, P.J.; Chiva-Bartoll, Ó. Evolution of the ageing process, quality of life and physical fitness in western countries. J. Phys. Educ. Sport 2017, 17, 97–100. [Google Scholar]
- World Health Organization (WHO). World Report on Ageing and Health; World Health Organization (WHO): Geneva, Switzerland, 2018. [Google Scholar]
- World Health Organization (WHO). Ghana Country Assessment Report on Ageing and Health; WHO: Geneva, Swizerland, 2014; pp. 1–44. [Google Scholar]
- Eurostat. Population Structure and Ageing; Eurostat: Luxembourg, 2019. [Google Scholar]
- Ruiz-Montero, P.J.; Ruiz-Rico Ruiz, G.J.; Martín-Moya, R.; González-Matarín, P.J. Do Health-Related Quality of Life and Pain-Coping Strategies explain the relationship between older women participants in a Pilates-Aerobic program and bodily pain? A multiple mediation model. Int. J. Environ. Res. Public Health 2019, 16, 3249. [Google Scholar] [CrossRef] [PubMed]
- Reiner, M.; Niermann, C.; Jekauc, D.; Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 2013, 13, 813. [Google Scholar] [CrossRef]
- McMorris, T.; Davranche, K.; Jones, G.; Hall, B.; Corbett, J.; Minter, C. Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. Int. J. Psychophysiol. 2009, 73, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D. Methodological Issues: Research Approaches, Research Design, and Task Selection. In Exercise and Cognitive Function; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 9780470516607. [Google Scholar]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- WHO. WHO | Global Recommendations on Physical Activity for Health. Available online: http://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_eng.pdf?sequence=1&TSPD_101_R0=da692fc20371e2ed091b80977d349ddamQD0000000000000002a3112f8bffff00000000000000000000000000005b7faea1000eb4db8c (accessed on 12 December 2019).
- Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of cardiology/American Heart Association task force on practice guidelines and the obesity society. Circulation 2014, 63, 2985–3023. [Google Scholar] [CrossRef]
- Parker, S.M.; Erin, J.R.; Pryor, R.R.; Khorana, P.; Suyama, J.; Guyette, F.X.; Reis, S.E.; Hostler, D. The effect of prolonged light intensity exercise in the heat on executive function. Wilderness Environ. Med. 2013, 24, 203–210. [Google Scholar] [CrossRef]
- Monleón, C.; Ballester, R.; Sanchis, C.; Llorens, F.; Martín, M.; Pablos, A. The effects of eight-month physical activity intervention on vigilance performance in adult obese population. J. Mot. Behav. 2015, 47, 476–482. [Google Scholar] [CrossRef]
- Firth, J.; Stubbs, B.; Rosenbaum, S.; Vancampfort, D.; Malchow, B.; Schuch, F.; Elliott, R.; Nuechterlein, K.H.; Yung, A.R. Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. Schizophr. Bull. 2017, 43, 546–556. [Google Scholar] [CrossRef]
- Predovan, D.; Fraser, S.A.; Renaud, M.; Bherer, L. The effect of three months of aerobic training on stroop performance in older adults. J. Aging Res. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Vieira, N.D.; Testa, D.; Ruas, P.C.; Salvini, T.F.; Catai, A.M.; de Melo, R.C. The effects of 12 weeks Pilates-inspired exercise training on functional performance in older women: A randomized clinical trial. J. Bodyw. Mov. Ther. 2017, 21, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Idland, G.; Pettersen, R.; Avlund, K.; Bergland, A. Physical performance as long-term predictor of onset of activities of daily living (ADL) disability: A 9-year longitudinal study among community-dwelling older women. Arch. Gerontol. Geriatr. 2013, 56, 501–506. [Google Scholar] [CrossRef] [PubMed]
- De Lira, C.; Vargas, V.; Silva, W.; Bachi, A.; Vancini, R.; Andrade, M. Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women. Sports 2019, 7, 19. [Google Scholar] [CrossRef]
- Hongu, N.; Shimada, M.; Miyake, R.; Nakajima, Y.; Nakajima, I.; Yoshitake, Y. Promoting Stair Climbing as an Exercise Routine among Healthy Older Adults Attending a Community-Based Physical Activity Program. Sports 2019, 7, 23. [Google Scholar] [CrossRef]
- Ruiz-Montero, P.J.; Castillo-Rodriguez, A.; Mikalački, M.; Nebojsa, Č.; Korovljev, D. 24-Weeks Pilates-Aerobic and Educative Training To Improve Body Fat Mass in Elderly Serbian Women. Clin. Interv. Aging 2014, 9, 243–248. [Google Scholar] [CrossRef]
- Ruiz-Montero, P.J.; Castillo-Rodríguez, A. Differences Between Body Composition and Physiological Characteristics of Active/Inactive Elderly Women. Int. J. Morphol. 2018, 36, 262–266. [Google Scholar] [CrossRef]
- Cai, R.; Chao, J.; Li, D.; Zhang, M.; Kong, L.; Wang, Y. Effect of community-based lifestyle interventions on weight loss and cardiometabolic risk factors in obese elderly in China: A randomized controlled trial. Exp. Gerontol. 2019, 128, 110749. [Google Scholar] [CrossRef]
- Mavros, Y.; Kay, S.; Anderberg, K.A.; Baker, M.K.; Wang, Y.; Zhao, R.; Meiklejohn, J.; Climstein, M.; O’Sullivan, A.; De Vos, N.; et al. Changes in insulin resistance and HbA1c are related to exercise-mediated changes in body composition in older adults with type 2 diabetes: Interim outcomes from the GREAT2DO trial. Diabetes Care 2013, 36, 2372–2379. [Google Scholar] [CrossRef]
- Mikalački, M.; Čokorilo, N.; Ruiz-Montero, P.J. The effects of a pilates-aerobic program on maximum exercise capacity of adult women. Rev. Bras. Med. Esporte 2017, 23, 246–249. [Google Scholar] [CrossRef]
- Howley, E.T.; Bassett, D.R.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sport. Exerc. 1995, 27, 1292. [Google Scholar] [CrossRef]
- Joyner, M.J.; Casey, D.P.; Abrahams, V.; Hilton, S.; Alam, M.; Smirk, F.; Amann, M.; Andersen, P.; Adams, R.; Sjogaard, G.; et al. Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol. Rev. 2015, 95, 549–601. [Google Scholar] [CrossRef] [PubMed]
- Oyake, K.; Baba, Y.; Ito, N.; Suda, Y.; Murayama, J.; Mochida, A.; Kondo, K.; Otaka, Y.; Momose, K. Cardiorespiratory factors related to the increase in oxygen consumption during exercise in individuals with stroke. PLoS ONE 2019, 14, e0217453. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef]
- Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A Meta- Analytic Study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Thomas, A.G.; Dennis, A.; Bandettini, P.A.; Johansen-Berg, H. The effects of aerobic activity on brain structure. Front. Psychol. 2012, 3, 1–9. [Google Scholar] [CrossRef]
- Mcmorris, T.; Tomporowski, P.D.; Audiffren, M. Exercise and Cognitive Function, 1st ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2009; ISBN 978-0-470-51660-7. [Google Scholar]
- Chaddock, L.; Pontifex, M.B.; Hillman, C.H.; Kramer, A.F. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 2011, 17, 975–985. [Google Scholar] [CrossRef]
- Gunzelmann, G.; Moore, L.R.; Gluck, K.A.; Van Dongen, H.P.A.; Dinges, D.F. Fatigue in sustained attention: Generalizing mechanisms for time awake to time on task. Cogn. Fatigue Multidiscip. Perspect. Curr. Res. Future Appl. 2011, 83–101. [Google Scholar] [CrossRef]
- Larue, G.S.; Rakotonirainy, A.; Pettitt, A.N. Driving performance impairments due to hypovigilance on monotonous roads. Accid. Anal. Prev. 2011, 43, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.A.; Caldwell, J.L.; Smith, J.K.; Brown, D.L. Modafinil’s effects on simulator performance and mood in pilots during 37 h without sleep. Aviat. Space Environ. Med. 2004, 75, 777–784. [Google Scholar] [PubMed]
- Davies, D.R.; Parasuraman, R. The Psychology of Vigilance; Academic Press: London, UK, 1982. [Google Scholar]
- Basner, M.; Dinges, D.F. Maximizing sensitivity of PVT to Sleep Loss. Sleep 2011, 34, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Angevaren, M.; Vanhees, L.; Wendel-Vos, W.; Verhaar, H.J.J.; Aufdemkampe, G.; Aleman, A.; Verschuren, W.M.M. Intensity, but not duration, of physical activities is related to cognitive function. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R.; Parasuraman, R. The Psychology of Vigilance, 1st ed.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Warm, J.S.; Parasuraman, R.; Matthews, G. Vigilance requires hard mental work and is stressful. Hum. Factors 2008, 50, 433–441. [Google Scholar] [CrossRef]
- Drummond, S.P.A.; Bischoff-Grethe, A.; Dinges, D.F.; Ayalon, L.; Mednick, S.C.; Meloy, M.J. The neural basis of the psychomotor vigilance task. Sleep 2005, 28, 1059–1068. [Google Scholar] [PubMed]
- Lawrence, N.S.; Ross, T.J.; Hoffmann, R.; Garavan, H.; Stein, E.A. Multiple Neuronal Networks Mediate Sustained Attention. J. Cogn. Neurosci. 2003, 15, 1028–1038. [Google Scholar] [CrossRef]
- Culham, J.C.; Cavanagh, P.; Kanwisher, N.G. Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron 2001, 32, 737–745. [Google Scholar] [CrossRef]
- World Medical Association. WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects; 59th General Assembly; WMA: Ferney-Voltaire, France, 2008. [Google Scholar]
- Alvero, C.; Correas, G.; Ronconi, M.; Fernandez, V. La bioimpedancia electrica como metodo de estimacion de la composicion corporal. Rev. Andaluza Med. Deport. 2011, 4, 17–28. [Google Scholar]
- Kline, G.M.; Porcari, J.P.; Hintermeister, R.; Freedson, P.S.; Ward, A.; McCarron, R.F.; Ross, J.; Rippe, J.M. Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Med. Sci. Sports Exerc. 1987, 19, 253–259. [Google Scholar] [CrossRef]
- Widrick, J.; Ward, A.; Ebbeling, C.; Clemente, E.; Rippe, J.M. Treadmill validation of an over-ground walking test to predict peak oxygen consumption. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.J.; Dunican, I.C.; Murray, K.; Peeling, P.; Dawson, B.; Halson, S.; Miller, J.; Eastwood, P.R. The psychomotor vigilance test: A comparison of different test durations in elite athletes. J. Sports Sci. 2018, 36, 2033–2037. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2018.
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Montero, I.; León, O.G. A guide for naming research studies in Psychology. Int. J. Clin. Health Psychol. 2007, 7, 847–862. [Google Scholar]
- González-Fernández, F.; Etnier, J.L.; Zabala, M.; Sanabria, D. Vigilance performance during acute exercise Francisco. Int. J. Sport Psychol. 2017, 48, 435–447. [Google Scholar]
- Guiney, H.; Machado, L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 2013, 20, 73–86. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Department of Health & Human Services. Physical Activity Guidelines Advisory Committee; Department of Health & Human Services: Washington, DC, USA, 2018.
- Garber, C.E. The Health Benefits of Exercise in Overweight and Obese Patients. Curr. Sports Med. Rep. 2019, 18, 287–291. [Google Scholar] [CrossRef]
- Hajar, M.S.; Rizal, H.; Kuan, G. Effects of physical activity on sustained attention: A systematic review. Sci. Med. (Porto Alegre) 2019, 29, 32864. [Google Scholar] [CrossRef]
- Sanabria, D.; Luque-Casado, A.; Perales, J.C.; Ballester, R.; Ciria, L.F.; Huertas, F.; Perakakis, P. The relationship between vigilance capacity and physical exercise: A mixed-effects multistudy analysis. PeerJ 2019, 7, 1–15. [Google Scholar] [CrossRef]
- Bunce, D. Age differences in vigilance as a function of health-related physical fitness and task demands. Neuropsychologia 2001, 39, 787–797. [Google Scholar] [CrossRef]
- Grier, R.A.; Warm, J.S.; Dember, W.N.; Matthews, G.; Galinsky, T.L.; Szalma, J.L.; Parasuraman, R. The Vigilance Decrement Reflects Limitations in Effortful Attention, Not Mindlessness. Hum. Factors 2003, 45, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Parsons, T.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Papacosta, O.; Morris, R.W.; Wannamethee, S.G.; Lee, I.M.; Whincup, P.H. Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: Does volume of activity matter more than pattern of accumulation? Br. J. Sports Med. 2019, 53, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- García-Pinillos, F.; Laredo-Aguilera, J.A.; Muñoz-Jiménez, M.; Latorre-Román, P.A. Effects of 12-Week Concurrent High-Intensity Interval Strength and Endurance Training Program on Physical Performance in Healthy Older People. J. Strength Cond. Res. 2019, 33, 1445–1452. [Google Scholar] [CrossRef]
- Valentino, G.; Bustamante, M.J.; Orellana, L.; Krämer, V.; Durán, S.; Adasme, M.; Salazar, A.; Ibara, C.; Fernández, M.; Navarrete, C.; et al. Body fat and its relationship with clustering of cardiovascular risk factors. Nutr. Hosp. 2015, 31, 2253–2260. [Google Scholar]
- Marques, T.S.; Heubel, A.D.; Gimenes, C.; Arca, E.A.; Pessoa-Santos, B.V.; Martinelli, B.; Zamunér, A.R.; Barrile, S.R. Lipid profile, functional capacity and ankle-brachial index in active older adults. Rev. Bras. Med. Esporte 2019, 25, 316–321. [Google Scholar] [CrossRef]
- Min-Ki, J.; Seul-Hee, L.; Je-Kwang, R.; Yun-Hwan, K.; Eun-Hee, K.; Ga-Ram, H.; Jae-Hyun, P.; Sun-Hong, B.; Sang-Kab, P.; Hyun-Hun, J. Effects of long-term multi-task exercise program on blood pressure, physical function and cognitive function in mild cognitive impairment elderly women with hypertension. Arch. Budo 2019, 15, 93–102. [Google Scholar]
- Bartlett, D.B.; Willis, L.H.; Slentz, C.A.; Hoselton, A.; Kelly, L.; Huebner, J.L.; Kraus, V.B.; Moss, J.; Muehlbauer, M.J.; Spielmann, G.; et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: A pilot study. Arthritis Res. Ther. 2018, 20, 1–15. [Google Scholar] [CrossRef]
- Kenney, W.; Wilmore, J.; Costill, D.L. Physiology of Sport and Exercise, 6th ed.; Kenney, W., Wilmore, J., Costill, D.L., Eds.; Human Kinetics: Champaign, IL, USA, 2015; ISBN 978-1450477673. [Google Scholar]
- Pantelić, S.; Kostić, R.; Mikalački, M.; Đurašković, R.; Čokorilo, N.; Mladenović, I. The effects of a recreational aerobic exercise model on the functional abilities of women. Facta Univ. Ser. Phys. Educ. Sport 2007, 5, 19–35. [Google Scholar]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef]
- Hurley, D.M.; Williams, E.R.; Cross, J.M.; Riedinger, B.R.; Meyer, R.A.; Abela, G.S.; Slade, J.M. Aerobic Exercise Improves Microvascular Function in Older Adults. Med. Sci. Sports Exerc. 2019, 51, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Whipple, M.O.; Schorr, E.N.; Talley, K.M.C.; Lindquist, R.; Bronas, U.G.; Treat-Jacobson, D. Variability in Individual Response to Aerobic Exercise Interventions Among Older Adults. J. Aging Pfysical Act. 2018, 26, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Larish, J.L.; Weber, T.A.; Bardell, L. Training for executive control: Task coordination strategies and aging. In Attention and performance XVII: Cognitive Regulation of Performance: Interaction of Theory and Application; The MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Renaud, M.; Maquestiaux, F.; Joncas, S.; Kergoat, M.J.; Bherer, L. The effect of three months of aerobic training on response preparation in older adults. Front. Aging Neurosci. 2010, 2, 148. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Alkandari, J.R.; Andersen, L.B.; Bauman, A.E.; Brownson, R.C.; et al. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.; Silva-Pereyra, J.; Fernández, T.; Alatorre-Cruz, G.C.; Castro-Chavira, S.A.; González-López, M.; Sánchez-Moguel, S.M. High levels of incidental physical activity are positively associated with cognition and EEG activity in aging. PLoS ONE 2018, 13, e0191561. [Google Scholar] [CrossRef]
- Best, J.R.; Chiu, B.K.; Liang Hsu, C.; Nagamatsu, L.S.; Liu-Ambrose, T. Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial. J. Int. Neuropsychol. Soc. 2015, 21, 745–756. [Google Scholar] [CrossRef]
- Yaffe, K.; Fiocco, A.J.; Lindquist, K.; Vittinghoff, E.; Simonsick, E.M.; Newman, A.B.; Satterfield, S.; Rosano, C.; Rubin, S.M.; Ayonayon, H.N.; et al. Predictors of maintaining cognitive function in older adults: The Health ABC Study. Neurology 2009, 72, 2029–2035. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosom. Med. 2010, 72, 239. [Google Scholar] [CrossRef]
- Cian, C.; Barraud, P.A.; Melin, B.; Raphel, C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int. J. Psychophysiol. 2001, 42, 243–251. [Google Scholar] [CrossRef]
- Wong, K.F.; Teng, J.; Chee, M.W.L.; Doshi, K.; Lim, J. Positive effects of mindfulness-based training on energy maintenance and the EEG correlates of sustained attention in a cohort of nurses. Front. Hum. Neurosci. 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bos, I.; De Boever, P.; Vanparijs, J.; Pattyn, N.; Panis, L.I.; Meeusen, R. Subclinical effects of aerobic training in Urban environment. Med. Sci. Sports Exerc. 2013, 45, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Luque-Casado, A.; Perakakis, P.; Ciria, L.F.; Sanabria, D. Transient autonomic responses during sustained attention in high and low fit young adults. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ballester, R.; Huertas, F.; Yuste, F.J.; Llorens, F.; Sanabria, D. The relationship between regular sports participation and vigilance in male and female adolescents. PLoS ONE 2015, 10, e0123898. [Google Scholar] [CrossRef]
- Ballester, R.; Huertas, F.; Molina, E.; Sanabria, D. Sport participation and vigilance in children: Influence of different sport expertise. J. Sport Health Sci. 2018, 7, 497–504. [Google Scholar] [CrossRef]
- Wilson, A.N.; Olds, T.; Lushington, K.; Petkov, J.; Dollman, J. The impact of 10-minute activity breaks outside the classroom on male students’ on-task behaviour and sustained attention: A randomised crossover design. Acta Paediatr. Int. J. Paediatr. 2016, 105, e181–e188. [Google Scholar] [CrossRef]
Body Composition Characteristics | Experimental Group (n = 18) | p value | Cohe’s d | Control Group (n = 27) | p Value | Cohe’s d | ||
---|---|---|---|---|---|---|---|---|
Age (years) | 64.76 ± 4.25 | 67.23 ± 7.42 | ||||||
Body Height (cm) | 159.8 ± 6.32 | 154.03 ± 4.12 | ||||||
Pre-intervention | Post-intervention | Pre-intervention | Post-intervention | |||||
Body Weight (kg) | 69.90 ± 15.3 | 68.32 ± 14.58 | 0.001 | 0.011 | 71.16 ± 12.63 | 71.48 ± 12.10 | 0.325 | −0.025 |
Body Mass Index (BMI) (kg/m2) | 27.25 ± 5.19 | 26.73 ± 4.92 | 0.005 | 0.010 | 31.05 ± 5.07 | 31.85 ± 4.13 | 0.112 | −0.173 |
Total Fat Percentage (%) | 31.11 ± 6.57 | 30.31 ± 6.1 | 0.177 | 0.126 | 44.78 ± 5.78 | 45.42 ± 3.68 | 0.087 | −0.132 |
Skeletal Muscle Mass (kg) | 45.71 ± 9.09 | 46.72 ± 10.03 | 0.467 | −0.105 | 21.53 ± 4.58 | 21.39 ± 6.47 | 0.189 | 0.024 |
Physiological Characteristics (RWT) | Experimental Group (n=18) | p Value | Cohen’s d | Control group (n=27) | p Value | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | |||||
VO2max | 28.93 ± 9.06 | 33.51 ± 9.87 | 0.001 | 0.372 | 28.31 ± 6.81 | 27.91 ± 7.11 | 0.078 | 0.057 |
Final HR | 139.10± 15.96 | 132.16 ± 9.97 | 0.113 | 0.521 | 135.40 ± 12.83 | 134.85 ± 11.80 | 0.520 | 0.044 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morente-Oria, H.; Ruiz-Montero, P.J.; Chiva-Bartoll, Ó.; González-Fernández, F.T. Effects of 8-Weeks Concurrent Strength and Aerobic Training on Body Composition, Physiological and Cognitive Performance in Older Adult Women. Sustainability 2020, 12, 1944. https://doi.org/10.3390/su12051944
Morente-Oria H, Ruiz-Montero PJ, Chiva-Bartoll Ó, González-Fernández FT. Effects of 8-Weeks Concurrent Strength and Aerobic Training on Body Composition, Physiological and Cognitive Performance in Older Adult Women. Sustainability. 2020; 12(5):1944. https://doi.org/10.3390/su12051944
Chicago/Turabian StyleMorente-Oria, Honorato, Pedro Jesús Ruiz-Montero, Óscar Chiva-Bartoll, and Francisco Tomás González-Fernández. 2020. "Effects of 8-Weeks Concurrent Strength and Aerobic Training on Body Composition, Physiological and Cognitive Performance in Older Adult Women" Sustainability 12, no. 5: 1944. https://doi.org/10.3390/su12051944
APA StyleMorente-Oria, H., Ruiz-Montero, P. J., Chiva-Bartoll, Ó., & González-Fernández, F. T. (2020). Effects of 8-Weeks Concurrent Strength and Aerobic Training on Body Composition, Physiological and Cognitive Performance in Older Adult Women. Sustainability, 12(5), 1944. https://doi.org/10.3390/su12051944