Spatial Pattern of Agricultural Productivity Trends in Malawi
Abstract
:1. Introduction
1.1. Background on Agriculture Production
1.2. Crop Production in Malawi
1.3. Proxies
2. Malawi—Study Area
3. Data
4. Methods
4.1. Measurement of the Spatial Distribution of Productivity
4.2. Biophysical Drivers
4.3. Malawi Land Cover
4.4. Land Suitability Spatial Distribution
4.5. Spatial Distribution of Productivity, Soil Suitability, Precipitation, and Temperature
4.6. Agricultural Input Resource Management
5. Results
5.1. Descriptive Statisics of Trend Analysis
5.2. Spatial Distribution Pattern Analysis
6. Discussion and Conclusions
6.1. Malawi’s Productivity Trends
6.2. Malawian Spatial Distribution
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Simelton, E.; Ostwald, M. Multifunctional Land Uses in Africa (Open Access): Sustainable Food Security Solutions. Routledge 2019, 193, 5–10. Available online: https://play.google.com/books/reader?id=KOyjDwAAQBAJ&hl=en&pg=GBS.PA5. (accessed on 8 August 2019).
- Potter, C.S.; Klooster, S.; Brooks, V. Interannual Variability in Terrestrial Net Primary Production: Exploration of Trends and Controls on Regional to Global Scales. Ecosystems 1999, 2, 36–48. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Hazell, P.; Poulton, C.; Wiggins, S.; Dorward, A. The Future of Small Farms: Trajectories and Policy Priorities. World Dev. 2010, 38, 1349–1361. [Google Scholar] [CrossRef]
- Chamberlin, J.; Jayne, T.S.; Headey, D. Scarcity amidst abundance? Reassessing the potential for cropland expansion in Africa. Food Policy 2014, 48, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Pretty, J.N. The sustainable intensification of agriculture. Nat. Resour. Forum. 1997, 21, 247–256. [Google Scholar] [CrossRef]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Gunton, R.M.; Firbank, L.G.; Inman, A.; Winter, D.M. How scalable is sustainable intensification? Nat. Plants 2016, 2, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, B.; Snapp, S. What is sustainable intensification? Views from experts. Land Use Policy 2015, 46, 1–10. [Google Scholar] [CrossRef]
- Loos, J.; Abson, D.J.; Chappell, M.J.; Hanspach, J.; Mikulcak, F.; Tichit, M.; Fischer, J. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 2014, 12, 356–361. [Google Scholar] [CrossRef]
- Kumbuyo, C.P.; Yasuda, H.; Kitamura, Y.; Shimizu, K. Fluctuation of rainfall time series in Malawi: An analysis of selected areas. Geofizika 2014, 31, 13–28. [Google Scholar] [CrossRef]
- Haghtalab, N.; Moore, N.; Ngongondo, C. Spatio-temporal analysis of rainfall variability and seasonality in Malawi. Reg. Environ. Change 2019. [Google Scholar] [CrossRef]
- Snapp, S.S.; Mafongoya, P.L.; Waddington, S. Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agric. Ecosyst. Environ. 1998, 71, 185–200. [Google Scholar] [CrossRef]
- Mulwafu, W.O. Conservation Song: A History of Peasant-State Relations and The Environment in Malawi, 1860–2000; White Horse Press: Cambridge, UK, 2011; p. 269. [Google Scholar]
- Misselhorn, A.A. What drives food insecurity in southern Africa? A meta-analysis of household economy studies. Glob. Environ. Change 2005, 15, 33–43. [Google Scholar] [CrossRef]
- Chirwa, E.; Dorward, A. Agricultural Input Subsidies: The Recent Malawi Experience; OUP: Oxford, UK, 2013; p. 315. [Google Scholar]
- Masangano, C.M.; Chiwasa, H.; Kambewa, D.K.; Kakwera, M.; Chimombo, M.; Matita, M.; Gausi, W. Making the demand driven extensions services systems work through decentralised structures: Prospects for the future extension service delivery in Malawi. J. Agric. Ext. Rural Dev. 2016, 8, 240–249. [Google Scholar]
- Messina, J.P.; Peter, B.G.; Snapp, S.S. Re-evaluating the Malawian Farm Input Subsidy Programme. Nat. Plants 2017, 3, 17013. [Google Scholar] [CrossRef]
- Peter, B.G.; Messina, J.P.; Snapp, S.S. A Multiscalar Approach to Mapping Marginal Agricultural Land: Smallholder Agriculture in Malawi. Ann. Am. Assoc. Geogr. 2018, 108, 989–1005. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Magombeyi, M. Improving Water Sustainability and Food Security through Increased Crop Water Productivity in Malawi. Water 2016, 8, 411. [Google Scholar] [CrossRef]
- MoAIWD. Ministry of Agriculture, Irrigation & Water Development, Republic of Malawi. 2019. Available online: https://www.agriculture.gov.mw/ (accessed on 29 June 2019).
- Malawi Government. National Agriculture Policy. 2016. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/NAP_Final_Signed.pdf (accessed on 29 June 2019).
- Jones, A.D.; Shrinivas, A.; Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 2014, 46, 1–12. [Google Scholar] [CrossRef]
- Kane, D.A.; Rogé, P.; Snapp, S.S. A Systematic Review of Perennial Staple Crops Literature Using Topic Modeling and Bibliometric Analysis. PLoS ONE 2016, 11, e0155788. [Google Scholar] [CrossRef] [PubMed]
- Rogé, P.; Snapp, S.; Kakwera, M.N.; Mungai, L.; Jambo, I.; Peter, B. Ratooning and perennial staple crops in Malawi. A review. Agron. Sustain. Dev. 2016, 36, 50. [Google Scholar] [CrossRef]
- Nijbroek, R.P.; Andelman, S.J. Regional suitability for agricultural intensification: A spatial analysis of the Southern Agricultural Growth Corridor of Tanzania. Int. J. Agric. Sustain. 2016, 14, 231–247. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Wood, S.; Wood-Sichra, U. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agric. Syst. 2009, 99, 126–140. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Bockstaller, C.; Girardin, P.; van der Werf, H.M.G. Use of Agro-Ecological Indicators for the Evaluation of Farming Systems. Available online: http://www.sciencedirect.com/science/article/pii/S0378519X97800323 (accessed on 3 March 2018).
- Rigby, D.; Woodhouse, P.; Young, T.; Burton, M. Constructing a farm level indicator of sustainable agricultural practice. Ecol. Econ. 2001, 39, 463–478. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid. Environ. 2005, 63, 596–614. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar]
- Pan, W.K.Y.; Walsh, S.J.; Bilsborrow, R.E.; Frizzelle, B.G.; Erlien, C.M.; Baquero, F. Farm-level models of spatial patterns of land use and land cover dynamics in the Ecuadorian Amazon. Agric. Ecosyst. Environ. 2004, 101, 117–134. [Google Scholar] [CrossRef]
- Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Ngongondo, C.; Xu, C.-Y.; Gottschalk, L.; Alemaw, B. Evaluation of spatial and temporal characteristics of rainfall in Malawi: A case of data scarce region. Theor. Appl. Climatol. 2011, 106, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Dijkshoorn, J.A.; Leenaars, J.G.B.; Huting, J.; Kempen, B. Soil and Terrain database of the Republic of Malawi. Available online: https://www.isric.org/documents/document-type/isric-report-201601-soil-and-terrain-database-republic-malawi/ (accessed on 19 March 2019).
- Todd, B.; Athur, M.; Flora, N. Detailed crop suitability maps and an agricultural zonation scheme for Malawi: Spatial information for agricultural planning purposes. Available online: https://www.ifpri.org/publication/detailed-crop-suitability-maps-and-agricultural-zonation-scheme-malawi-spatial (accessed on 19 January 2019).
- Kalanda-Joshua, M.; Ngongondo, C.; Chipeta, L.; Mpembeka, F. Integrating indigenous knowledge with conventional science: Enhancing localised climate and weather forecasts in Nessa, Mulanje, Malawi. Phys. Chem. Earth Parts ABC 2011, 36, 996–1003. [Google Scholar] [CrossRef]
- Why Population Matters to Malawi’s Development—Population Reference Bureau. Available online: https://www.prb.org/malawi-population-2012/ (accessed on 21 May 2019).
- Davis, B.; Winters, P.; Carletto, G.; Covarrubias, K.; Quiñones, E.J.; Zezza, A.; Stamoulis, K.; Azzarri, C.; DiGiuseppe, S. A Cross-Country Comparison of Rural Income Generating Activities. World Dev. 2010, 38, 48–63. [Google Scholar] [CrossRef]
- UN DESA. United Nations, Department of Economic and Social Affairs/Population Division. 2018. Available online: https://population.un.org/wup/Country-Profiles/ (accessed on 9 February 2019).
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MOD13Q1.006 (accessed on 29 November 2019).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hook, W.Z.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. 2015. Available online: https://doi.org/10.5067/MODIS/MOD11A2.006 (accessed on 29 November 2019).
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2019. Available online: https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 29 November 2019).
- ESA 2010 and UCLouvain. GlobCover. Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 23 November 2018).
- 300 m Annual Global Land Cover Time Series from 1992 to 2015. Website. Available online: https://www.esa-landcover-cci.org/?q=node/175 (accessed on 23 November 2018).
- Li, G.; Messina, J.P.; Peter, B.G.; Snapp, S.S. Mapping Land Suitability for Agriculture in Malawi. Land Degrad. Dev. 2017, 28, 2001–2016. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- De Jong, R.; de Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 2012, 9, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Available online: https://doi.org/10.1007/978-94-011-2546-8_20 (accessed on 16 August 2019).
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/news/archive/news-by-date/2019/en/ (accessed on 16 August 2019).
- National Statistical Office (NSO). Malawi Living Standards Measurement Survey, Third Integrated Household Survey 2010–2011. Available online: https://microdata.worldbank.org/index.php/catalog/1003/get-microdata (accessed on 2 February 2018).
- National Statistical Office (NSO). Malawi Living Standards Measurement Survey, Fourth Integrated Household Survey 2016–2017. Available online: https://microdata.worldbank.org/index.php/catalog/2936/get-microdata (accessed on 2 February 2018).
- National Statistical Office of Malawi. Available online: http://www.nsomalawi.mw/ (accessed on 2 February 2018).
- World Bank 2020. Available online: https://www.worldbank.org/en/country/malawi/overview (accessed on 29 January 2020).
- Malawi PDNA 2015 Draft Report. Available online: https://www.gfdrr.org/sites/default/files/150528_MALAWI%20PDNA%202015%20DRAFT%20REPORT%20V1.pdf (accessed on 27 November 2019).
- Snapp, S.S. Soil nutrient status of smallholder farms in Malawi. Commun. Soil. Sci. Plant Anal. 1998, 29, 2571–2588. [Google Scholar] [CrossRef]
- Malawi Drought 2016 PDNA. Available online: https://www.recoveryplatform.org/assets/publication/PDNA/CountryPDNAs/Malawi_Drought_2016_PDNA.PDF (accessed on 18 March 2019).
- Malawi 2019 Floods Post Disaster Needs Assessment Report. Available online: https://reliefweb.int/report/malawi/malawi-2019-floods-post-disaster-needs-assessment-report (accessed on 29 November 2019).
- Galford, G.L.; Fiske, G.J.; Sedano, F.; Michelson, H. Remote Sensing Analysis of Malawi’s Agricultural Inputs Subsidy and Climate Variability Impacts on Productivity. Available online: http://adsabs.harvard.edu/abs/2016AGUFMGC53A1271G (accessed on 15 August 2019).
- Coulibaly, J.Y.; Chiputwa, B.; Nakelse, T.; Kundhlande, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–69. [Google Scholar] [CrossRef]
- Kaczan, D.; Arslan, A.; Lipper, L. Climate-Smart Agriculture? A Review of Current Practice of Agroforestry and Conservation Agriculture in Malawi and Zambia. AgEcon Search. 2013. Available online: https://ageconsearch.umn.edu/record/288985 (accessed on 18 July 2019).
- Kwesiga, F.; Akinnifesi, F.K.; Mafongoya, P.L.; McDermott, M.H.; Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 2003, 59, 173–186. [Google Scholar] [CrossRef]
- Thangata, P.H.; Alavalapati, J.R.R. Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 2003, 78, 57–71. [Google Scholar] [CrossRef]
- Kumwenda, I.; van Koppen, B.; Matete, M.; Nhamo, L. Trends and Outlook: Agricultural Water Management in Southern Africa. Available online: https://www.agrilinks.org/sites/default/files/resource/files/IWMI%20Synthesis%20report%20agwater%20management%20in%20SADC.pdf (accessed on 13 August 2019).
- Mwase, W.; Mtethiwa, A.T.; Makonombera, M. Climate Change adaptation practices for two communities in Southern Malawi. Available online: https://www.iiste.org/Journals/index.php/JEES/article/view/10592 (accessed on 15 August 2019).
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/agwa/resources/publications/en/ (accessed on 27 November 2019).
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.; Fraval, S.; Van Etten, J.; Suchini, J.G.; Mercado, L.; Pagella, T.; Frelat, R.; Lannerstad, M.; Douxchamps, S.; Teufel, N.; et al. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central America. Agric. Syst. 2017, 151, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Davenport, M.L.; Nicholson, S.E. On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa. Int. J. Remote Sens. 1993, 14, 2369–2389. [Google Scholar] [CrossRef]
- Chavula, G.; Brezonik, P.; Bauer, M. Land use and land cover change (LULC) in the Lake Malawi Drainage Basin, 1982–2005. Int. J. Geosci. 2011, 2, 172–178. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Malawi Drought 2015–2016: Post-Disaster Needs Assessment (PDNA). 2016. Available online: http://documents.worldbank.org/curated/en/640011479881661626/Malawi-drought-2015-2016-post-disaster-needs-assessment-PDNA (accessed on 29 November 2019).
- Kishindo, P. Customary land tenure and the new land policy in Malawi. J. Contemp. Afr. Stud. 2004, 22, 213–225. [Google Scholar] [CrossRef]
- Productivity and Survival Ability of Goats in Smallholder Crop/Livestock Farming Systems in Malawi. Available online: http://www.lrrd.cipav.org.co/lrrd18/1/chik18007.htm (accessed on 19 October 2019).
- Malawi Country Profile. Available online: https://mw.one.un.org/country-profile/ (accessed on 27 November 2019).
- Tittonell, P.; Gérard, B.; Erenstein, O. Tradeoffs around crop residue biomass in smallholder crop-livestock systems—What’s next? Agric. Syst. 2015, 134, 119–128. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J. The impact of agricultural extension services in the context of a heavily subsidized input system: The case of Malawi. World Dev. 2018, 105, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Masangano, C.; Mthinda, C. Pluralistic Extension System in Malawi. Available online: https://www.researchgate.net/publication/254416842_Pluralistic_Extension_System_in_Malawi (accessed on 31 January 2020).
- Kundhlande, G.; Franzel, S.; Simpson, B.; Gausi, E. Farmer-to-Farmer Extension Approach in Malawi: A Survey of Organizations. Available online: https://www.researchgate.net/publication/275154988_Farmer-to-farmer_extension_approaches_in_Malawi_a_survey_of_organizations (accessed on 1 August 2019).
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
- Franke, A.C.; van den Brand, G.J.; Giller, K.E. Which farmers benefit most from sustainable intensification? An ex-ante impact assessment of expanding grain legume production in Malawi. Eur. J. Agron. 2014, 58, 28–38. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Snapp, S.; Pound, B. Chapter 4—Farming Systems for Sustainable Intensification. Available online: http://www.sciencedirect.com/science/article/pii/B9780128020708000049 (accessed on 16 August 2019).
Dataset | Time Span | Resolution | Source |
---|---|---|---|
Land Surface Temperature (LST) MODIS/006/MOD11A2–8-day interval | 2006–2017 | 1km | NASA EOSDIS |
NDVI MODIS/006/MOD13Q1 | 2006–2017 | 250 m | NASA EOSDIS |
UCSB-CHG/CHIRPS/DAILY rainfall data | 2006–2017 | 5km | UCSB/CHG |
Malawi land suitability | [52] | - | [52] |
Annual global land cover time series | 1992–2015 | 300 m | European Space Agency (ESA) website (https://www.esa-landcover-cci.org/) |
MODIS MCD12Q1 Land cover | 2006–2017 | 500 m | NASA EOSDIS |
Global land cover GlobCover | 2009–2010 | 300 m | European Space Agency (ESA) website (https://www.esa-landcover-cci.org/) |
FAO-Africa Cover Malawi’s Land Cover Product | 2010 | 30 m | FAO GeoNetwork Website (http://www.fao.org/geonetwork/srv/en/main.home) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mungai, L.M.; Messina, J.P.; Snapp, S. Spatial Pattern of Agricultural Productivity Trends in Malawi. Sustainability 2020, 12, 1313. https://doi.org/10.3390/su12041313
Mungai LM, Messina JP, Snapp S. Spatial Pattern of Agricultural Productivity Trends in Malawi. Sustainability. 2020; 12(4):1313. https://doi.org/10.3390/su12041313
Chicago/Turabian StyleMungai, Leah M., Joseph P. Messina, and Sieglinde Snapp. 2020. "Spatial Pattern of Agricultural Productivity Trends in Malawi" Sustainability 12, no. 4: 1313. https://doi.org/10.3390/su12041313
APA StyleMungai, L. M., Messina, J. P., & Snapp, S. (2020). Spatial Pattern of Agricultural Productivity Trends in Malawi. Sustainability, 12(4), 1313. https://doi.org/10.3390/su12041313