Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries
Abstract
1. Introduction
2. Literature Review
2.1. Factors Influencing Agricultural Performance
2.2. Linkages between Agricultural Performance and Rural Sustainability
3. Methods
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Swinnen, J. Compensation Payments in EU Agriculture. 2009, pp. 1–31. Available online: https://core.ac.uk/download/pdf/6560232.pdf (accessed on 26 November 2019). CEPR-Worldbank Paper Working paper.
- Djokoto, J.G. Technical efficiency of organic agriculture: A quantitative review. Stud. Agric. Econ. 2015, 117, 67–71. [Google Scholar] [CrossRef]
- Oluwatayo, I.B.; Adedeji, T.A. Comparative analysis of technical efficiency of catfish farms using different technologies in Lagos State, Nigeria: A Data Envelopment Analysis (DEA) approach. Agric. Food Secur. 2019, 8, 8. [Google Scholar] [CrossRef]
- Piłatowska, M.; Włodarczyk, A. Decoupling Economic Growth from Carbon Dioxide Emissions in the EU Countries. Montenegrin J. Econ. 2018, 14, 7–26. [Google Scholar] [CrossRef]
- Sharma, D.; Shardendu, S. Assessing farm-level agricultural sustainability over a 60-year period in rural eastern India. Environmentalist 2011, 31, 325. [Google Scholar] [CrossRef]
- Smith, G.; Nandwani, D.; Kankarla, V. Facilitating resilient rural-to-urban sustainable agriculture and rural communities. Int. J. Sustain. Dev. World Ecol. 2017, 24, 485–501. [Google Scholar] [CrossRef]
- Veisi, H.; Liaghati, H.; Alipour, A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic. 2016, 60, 644–654. [Google Scholar] [CrossRef]
- De Olde, E.M.; Moller, H.; Marchand, F.; McDowell, R.W.; MacLeod, C.J.; Sautier, M.; Halloy, S.; Barber, A.; Benge, J.; Bockstaller, C.; et al. When experts disagree: The need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 2017, 19, 1327–1342. [Google Scholar] [CrossRef]
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- S tanciu, S.; Virlanuta, F.O.; Dinu, V.; Zungun, D.; Antohi, V.M. The Perception of the Social Economy by Agricultural Producers in the North-East Development Region of Romania. Transform. Bus. Econ. 2019, 18, 879–899. [Google Scholar]
- Mariyono, J.; Kuntariningsih, A.; Suswati, E.; Kompas, T. Quantity and monetary value of agrochemical pollution from intensive farming in Indonesia. Manag. Environ. Qual. 2018, 29, 759–779. [Google Scholar] [CrossRef]
- Djokoto, J.G.; Srofenyo, F.Y.; Arthur, A.A.A. Technical inefficiency effects in agriculture—A meta-regression. J. Agric. Sci. 2016, 8, 109–121. [Google Scholar] [CrossRef][Green Version]
- Nyemeck Binam, J.; Tonye, J.; Wandji, N. Source of technical efficiency among small holder maize and peanut farmers in the slash and burn agriculture zone of Cameroon. J. Econ. Coop. Islam. Count. 2005, 26, 193–210. [Google Scholar]
- Bokusheva, R.; Hockmann, H.; Kumbhakar, S.C. Dynamics of productivity and technical efficiency in Russian agriculture. Eur. Rev. Agric. Econ. 2011, 39, 611–637. [Google Scholar] [CrossRef]
- Masterson, T. Productivity, Technical Efficiency, and Farm Size in Paraguayan Agriculture; Levy Economics Institute Working Paper No. 490; The Levy Economics Institute: New York, NY, USA, 2007. [Google Scholar]
- de Freitas, C.O.; Teixeira, E.C.; Braga, M.J. Technical efficiency and farm size: An analysis based on the Brazilian agriculture and livestock census. Ital. Rev. Agric. Econ. 2019, 74, 33–48. [Google Scholar]
- Haq, U.S.; Ceyhan, V.; Boz, I.; Shahbaz, P. Effect of different crop management system on technical efficiency in sugarcane production in Faisalabad, Punjab Region of Pakistan. J. Biol. Agric. Healthc. 2016, 6, 106–114. [Google Scholar]
- Schmitz, H. Collective efficiency: Growth path for small-scale industry. J. Dev. Stud. 1995, 31, 529–566. [Google Scholar] [CrossRef]
- Muhammad-Lawal, A.; Omotesho, O.A.; Falola, A. Technical efficiency of youth participation in agriculture: A case study of the youth-in-agriculture programme in ondo state, south western Nigeria. Niger. J. Agric. Food Environ. 2009, 5, 20–26. [Google Scholar]
- GÜL, M.; Yilmaz, H.; Parlakay, O.; Akkoyun, S.; Bilgili, M.E.; Vurarak, Y.; Hizli, H.; Kilicalp, N. Technical efficiency of dairy cattle farms in East Mediterranean region of Turkey. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2018, 18, 213–226. [Google Scholar]
- Błażejczyk-Majka, L.; Kala, R. On the combined estimation of technical efficiency and its application to agriculture. Agric. Econ. 2015, 61, 441–449. [Google Scholar] [CrossRef]
- Hřebíková, B.; Čechura, L. An Analysis of the Impacts of Weather on Technical Efficiency in Czech Agriculture. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 1645–1652. [Google Scholar] [CrossRef]
- Diallo, Y.; Marchand, S.; Espagne, E. Impacts of extreme climate events on technical efficiency in Vietnamese agriculture; Études et Documents, n° 12, CERDI. 2019. Available online: https://ideas.repec.org/p/hal/ciredw/halshs-02080285.html (accessed on 17 November 2019).
- Latruffe, L.; Bravo-Ureta, B.E.; Carpentier, A.; Desjeux, Y.; Moreira, V.H. Subsidies and technical efficiency in agriculture: Evidence from European dairy farms. Am. J. Agric. Econ. 2017, 99, 783–799. [Google Scholar] [CrossRef]
- Minviel, J.J.; Latruffe, L. Effect of public subsidies on farm technical efficiency: A meta-analysis of empirical results. Appl. Econ. 2017, 49, 213–226. [Google Scholar] [CrossRef]
- Lachaal, L. Subsidies, endogenous technical efficiency and the measurement of productivity growth. J. Agric. Appl. Econ. 1994, 26, 299–310. [Google Scholar] [CrossRef][Green Version]
- Zhu, X.; Milán Demeter, R.; Lansink, A.O. Technical efficiency and productivity differentials of dairy farms in three EU countries: The role of CAP subsidies. Agric. Econ. Rev. 2012, 13, 66–92. [Google Scholar]
- Mehta, N. Technical efficiency and reduction in input costs in agriculture: Case of genetically modified cotton. Agric. Econ. Res. Rev. 2019, 32, 105–116. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Sarkar, M.A.R.; Rahman, M.C.; Chowdhury, A.; Rahaman, M.S.; Deb, L. Rice farmers’ technical efficiency under abiotic stresses in Bangladesh. Asian J. Agric. Rural Dev. 2017, 7, 219–232. [Google Scholar]
- Hasnain, M.N.; Hossain, M.E.; Islam, M.K. Technical efficiency of Boro rice production in Meherpur district of Bangladesh: A stochastic frontier approach. Am. J. Agric. For. 2015, 3, 31–37. [Google Scholar] [CrossRef][Green Version]
- Nowak, A.; Kijek, T.; Domańska, K. Technical efficiency and its determinants in the European Union. Agric. Econ. 2015, 61, 275–283. [Google Scholar] [CrossRef]
- Huy, H.T.; Nguyen, T.T. Cropland rental market and farm technical efficiency in rural Vietnam. Land Use Policy 2019, 81, 408–423. [Google Scholar] [CrossRef]
- Hoang Linh, V. Efficiency of rice farming households in Vietnam. Int. J. Dev. Issues 2012, 11, 60–73. [Google Scholar] [CrossRef]
- Temoso, O.; Hadley, D.; Villano, R. Sources of efficiency, productivity and output growth in Botswana agriculture. Rev. Dev. Econ. 2018, 22, 1105–1124. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B.; Zhang, L. A technical efficiency evaluation system for vegetable production in China. Inf. Process. Agric. 2018, 5, 345–353. [Google Scholar] [CrossRef]
- Souza, G.D.S.; Gomes, E.G. The effect of marketing imperfection variables on production in the context of brazilian agriculture. In Área de Informação da Sede-Artigo em Anais de Congresso (ALICE). International Conference on Operations Research and Enterprises Systems; ScitePress: Funchal, Portugal, 2018; pp. 15–20. [Google Scholar]
- Čechura, L. Technical efficiency and total factor productivity in Czech agriculture. Agric. Econ. 2012, 58, 147–156. [Google Scholar] [CrossRef]
- Varasani, J.; Shiyani, R.L.; Ardeshna, N.J.; Swaminathan, B. Technical efficiency analysis of groundnut production in Saurashtra region of Gujarat. Int. J. Agric. Sci. 2016, 8, 852–858. [Google Scholar]
- Ahmad, D.; Afzal, M. Comparative Analysis of Bt and Non-Bt Cotton Farmers Technical Efficiency of Core Cotton Zone in Punjab Pakistan. Sarhad J. Agric. 2019, 35, 358–368. [Google Scholar] [CrossRef]
- Ho, T.T.; Shimada, K. The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam. Agriculture 2019, 9, 99. [Google Scholar] [CrossRef]
- Khataza, R.R.; Hailu, A.; Kragt, M.E.; Doole, G.J. Estimating shadow price for symbiotic nitrogen and technical efficiency for legume-based conservation agriculture in Malawi. Aust. J. Agric. Resour. Econ. 2017, 61, 462–480. [Google Scholar] [CrossRef]
- Moreno-Moreno, J.J.; Morente, F.V.; Díaz, M.T.S. Assessment of the operational and environmental efficiency of agriculture in Latin America and the Caribbean. Agric. Econ. 2018, 64, 74–88. [Google Scholar]
- Buckley, C.; Carney, P. The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level. Environ. Sci. Policy 2013, 25, 118–126. [Google Scholar] [CrossRef]
- You, H.; Zhang, X. Sustainable livelihoods and rural sustainability in China: Ecologically secure, economically efficient or socially equitable? Resour. Conserv. Recycl. 2017, 120, 1–13. [Google Scholar] [CrossRef]
- Nazzaro, C.; Marotta, G. The Common Agricultural Policy 2014–2020: Scenarios for the European agricultural and rural systems. Agric. Food Econ. 2016, 4, 16. [Google Scholar] [CrossRef]
- Zeller, M.; Lapenu, C.; Minten, B.; Ralison, E.; Randrianaivo, D.; Randrianarisoa, C. The Critical Triangle Between Environmental Sustainability, Economic Growth, and Poverty Alleviation. In Beyond Market Liberalization: Welfare, Income Generation and Environmental Sustainability in Rural Madagascar; Minten, B., Zeller, M., Eds.; Routledge: Abingdon, UK, 2000; p. 259. [Google Scholar]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Akroyd, H.D. Agriculture and Rural Development Planning: A Process in Transition; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Babych, M. Social-economic and environmental sustainability of short supply chains: Opportunities for development rural territories. Agric. Resour. Econ. Int. Sci. E J. 2018, 4, 42–59. [Google Scholar]
- Thurlow, J.; Dorosh, P.; Davis, B. Demographic Change, Agriculture, and Rural Poverty. In Sustainable Food and Agriculture; Academic Press: Cambridge, MA, USA, 2019; pp. 31–53. [Google Scholar]
- Imai, K.S.; Gaiha, R.; Garbero, A. Poverty reduction during the rural–urban transformation: Rural development is still more important than urbanisation. J. Policy Model. 2017, 39, 963–982. [Google Scholar] [CrossRef]
- Kadir, K.; Amalia, R.R. Economic growth and poverty reduction: The role of the agricultural sector in rural Indonesia. In Proceedings of the ICAS VII Seventh International Conference on Agricultural Statistics, Rome, Italy, 24–26 October 2016. [Google Scholar]
- Edwards, R.B. Export Agriculture and Rural Poverty: Evidence from Indonesian Palm Oil; Dartmouth College: Hanover, Germany, 2019; Available online: https://static1.squarespace.com/static/57d5edcf197aea51693538dc/t/5c6cbb1aa4222f75067de956/1550629671736/eard_v9_1901-merged.pdf (accessed on 17 November 2019).
- Thuita, G.; Ouma, M. Inequality and rural poverty: Innovative agricultural practices for sustainable and social development in Kenya. In Emerging Economic Models for Global Sustainability and Social Development; IGI Global: Hershey, PA, USA, 2019; pp. 84–97. [Google Scholar]
- Evans, N.; Yarwood, R. Farm animals and rural sustainability. In Sustainable Rural Systems; Routledge: Abingdon, UK, 2008; pp. 99–114. [Google Scholar]
- Mansfield, L. The Cumbria Hill Sheep initiative: A Solution to the Decline in upland Hill Farming Community in England. In Sustainable Rural Systems: Sustainable Agriculture and Rural Communities; Robinson, G., Ed.; Ashgate: Aldershot, UK, 2008; pp. 161–184. [Google Scholar]
- Janker, J.; Mann, S.; Rist, S. Social sustainability in agriculture–A system-based framework. J. Rural Stud. 2019, 65, 32–42. [Google Scholar] [CrossRef]
- De los Ríos, I.; Rivera, M.; García, C. Redefining rural prosperity through social learning in the cooperative sector: 25 years of experience from organic agriculture in Spain. Land Use Policy 2016, 54, 85–94. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Reddy, D.N.; Venkatanarayana, M.; Harriss-White, B. System of Rice Intensification provides environmental and economic gains but at the expense of social sustainability—A multidisciplinary analysis in India. Agric. Syst. 2016, 143, 159–168. [Google Scholar] [CrossRef]
- Carles, L.; Joly, M.; Joly, P. Mesotrione herbicide: Efficiency, effects, and fate in the environment after 15 years of agricultural use. Clean Soil Air Water 2017, 45, 1700011. [Google Scholar] [CrossRef]
- Bowers, J.K.; Cheshire, P. Agriculture, the Countryside and Land Use: An Economic Critique; Routledge: Abingdon, UK, 2019; Volume 4. [Google Scholar]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Zhang, X.; Bol, R.; Rahn, C.; Xiao, G.; Meng, F.; Wu, W. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 2017, 596, 61–68. [Google Scholar] [CrossRef]
- Devkota, M.; Devkota, K.P.; Gupta, R.K.; Sayre, K.D.; Martius, C.; Lamers, J.P. Conservation agriculture farming practices for optimizing water and fertilizer use efficiency in Central Asia. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI): Paris, France, 2015; pp. 242–257. [Google Scholar]
- Etingoff, K. Sustainable agriculture: The basics. In Sustainable Agriculture and Food Supply Scientific, Economic and Policy Enhancements; Apple Academic Press: Oakville, ON, Canada, 2016; p. 386. [Google Scholar]
- Czyżewski, B.; Matuszczak, A.; Muntean, A. Influence of agricultural policy on the environmental sustainability of European farming. J. Environ. Prot. Ecol. 2018, 19, 426–434. [Google Scholar]
- Czyżewski, B.; Majchrzak, A. Market versus agriculture in Poland—Macroeconomic relations of incomes, prices and productivity in terms of the sustainable development paradigm. Technol. Econ. Dev. Econ. 2018, 24, 318–334. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; and McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Louhichi, K.; Ciaian, P.; Espinosa, M.; Colen, L.; Perni, A.; y Paloma, S.G. Does the crop diversification measure impact EU farmers’ decisions? An assessment using an Individual Farm Model for CAP Analysis (IFM-CAP). Land Use Policy 2017, 66, 250–264. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. Environmental impacts of genetically modified (GM) crop use 1996–2015: Impacts on pesticide use and carbon emissions. GM Crops Food 2017, 8, 117–147. [Google Scholar] [CrossRef]
- Kuhn, A.; Leibowitz, S.G.; Johnson, Z.C.; Lin, J.; Massie, J.A.; Hollister, J.W.; Bennett, M.G. Performance of national maps of watershed integrity at watershed scales. Water 2018, 10, 604. [Google Scholar] [CrossRef]
- Choi, H.S.; Entenmann, S.K. Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices. Land Use Policy 2019, 82, 292–306. [Google Scholar] [CrossRef]
- Pimentel, D. Handbook of Energy Utilization in Agriculture; CRC Press: New York, NY, USA, 2019; p. 487. [Google Scholar]
- European Commission. FADN Public Database. Available online: https://ec.europa.eu/agriculture/rica/database/database_en.cfm (accessed on 3 February 2020).
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making-Methods and Applications, A State of the Art Survey; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Eurostat. Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 3 February 2020).
- Crespo Cuaresma, J.; Ritzberger-Grünwald, D.; Silgoner, M.A. Growth, convergence and EU membership. Appl. Econ. 2008, 40, 643–656. [Google Scholar] [CrossRef]
- Patton, M.; Kostov, P.; McErlean, S.; Moss, J. Assessing the influence of direct payments on the rental value of agricultural land. Food Policy 2008, 33, 397–405. [Google Scholar] [CrossRef]





| Criterion | Share of LPCQ in GFI | Share of B in GFI | Share of M in GFI | Share of BL in GFI |
|---|---|---|---|---|
| Type | Cost (-) | Cost (-) | Cost (-) | Cost (-) |
| Specialist cereals, oilseeds, and protein crops | ||||
| Ei | 0.91025 | 0.95134 | 0.98210 | 0.91008 |
| di | 0.08975 | 0.04866 | 0.01790 | 0.08992 |
| 0.364 | 0.198 | 0.073 | 0.365 | |
| Specialist milk | ||||
| Ei | 0.92367 | 0.96930 | 0.98087 | 0.98603 |
| di | 0.07633 | 0.03070 | 0.01913 | 0.01397 |
| 0.545 | 0.219 | 0.136 | 0.100 | |
| Specialist cattle | ||||
| Ei | 0.89544 | 0.95162 | 0.97204 | 0.97112 |
| di | 0.10456 | 0.04838 | 0.02796 | 0.02888 |
| 0.498 | 0.231 | 0.133 | 0.138 | |
| Farming Types | Specialist Cereals, Oilseeds and Protein Crops | Specialist Milk | Specialist Cattle | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Countries | Share of LPCQ in the GFI | Share of B in the GFI | Share of M in the GFI | Share of BL in the GFI | Share of LPCQ in the GFI | Share of B in the GFI | Share of M in the GFI | Share of BL in the GFI | Share of LPCQ in the GFI | Share of B in the GFI | Share of M in the GFI | Share of BL in the GFI |
| Bulgaria | 0.0100 | 0.0032 | 0.0054 | 0.0204 | 0.0084 | 0.0032 | 0.0052 | 0.0417 | 0.0015 | 0.0000 | 0.0501 | 0.0366 |
| Czechia | 0.0211 | 0.0272 | 0.0146 | 0.0582 | 0.0167 | 0.0405 | 0.0209 | 0.0096 | 0.0154 | 0.0300 | 0.0319 | 0.0156 |
| Denmark | 0.2120 | 0.0839 | 0.0254 | 0.0324 | 0.1935 | 0.0546 | 0.0294 | 0.0173 | 0.1980 | 0.0718 | 0.0335 | 0.0103 |
| Germany | 0.0990 | 0.0168 | 0.0165 | 0.0594 | 0.1157 | 0.0276 | 0.0400 | 0.0226 | 0.0688 | 0.0281 | 0.0362 | 0.0057 |
| Spain | 0.1080 | 0.0134 | 0.0051 | 0.0162 | 0.0705 | 0.0154 | 0.0003 | 0.0727 | 0.0432 | 0.0156 | 0.0078 | 0.0638 |
| Estonia | 0.0203 | 0.0225 | 0.0350 | 0.0105 | 0.0207 | 0.0561 | 0.0329 | 0.0172 | 0.0148 | 0.0217 | 0.0544 | 0.0308 |
| France | 0.0156 | 0.0073 | 0.0153 | 0.2455 | 0.0108 | 0.0344 | 0.0381 | 0.0495 | 0.0072 | 0.0213 | 0.0349 | 0.0744 |
| Croatia | 0.0441 | 0.0324 | 0.0308 | 0.0418 | 0.0633 | 0.0704 | 0.0795 | 0.0242 | 0.0270 | 0.0584 | 0.0539 | 0.0186 |
| Hungary | 0.0261 | 0.0168 | 0.0177 | 0.0426 | 0.0167 | 0.0243 | 0.0152 | 0.0252 | 0.0133 | 0.0270 | 0.0269 | 0.0323 |
| Italy | 0.2982 | 0.0278 | 0.0049 | 0.0034 | 0.0999 | 0.0113 | 0.0035 | 0.0290 | 0.0513 | 0.0198 | 0.0121 | 0.0178 |
| Lithuania | 0.0209 | 0.0104 | 0.0226 | 0.0378 | 0.0367 | 0.0055 | 0.0861 | 0.0169 | 0.0153 | 0.0029 | 0.0615 | 0.0196 |
| Latvia | 0.0247 | 0.0192 | 0.0239 | 0.0399 | 0.0335 | 0.0173 | 0.0266 | 0.0154 | 0.0167 | 0.0131 | 0.0299 | 0.0279 |
| Austria | 0.0224 | 0.0852 | 0.0330 | 0.0043 | 0.0595 | 0.1807 | 0.0963 | 0.0069 | 0.0528 | 0.1293 | 0.0705 | 0.0024 |
| Poland | 0.1265 | 0.0789 | 0.0354 | 0.0341 | 0.1327 | 0.0709 | 0.0822 | 0.0326 | 0.0900 | 0.0872 | 0.0765 | 0.0192 |
| Portugal | 0.0457 | 0.0107 | 0.0085 | 0.1811 | 0.0458 | 0.0063 | 0.0390 | 0.0510 | 0.0224 | 0.0067 | 0.0180 | 0.0306 |
| Romania | 0.0153 | 0.0250 | 0.0142 | 0.0110 | 0.0263 | 0.0680 | 0.0101 | 0.0074 | 0.0105 | 0.0628 | 0.0136 | 0.0117 |
| Finland | 0.1408 | 0.0475 | 0.0369 | 0.0023 | 0.0811 | 0.0713 | 0.0673 | 0.0086 | 0.0300 | 0.0529 | 0.0394 | 0.0000 |
| Sweden | 0.2264 | 0.0586 | 0.0463 | 0.0137 | 0.0724 | 0.0787 | 0.0690 | 0.0295 | 0.0938 | 0.0642 | 0.1157 | 0.0150 |
| Slovakia | 0.0097 | 0.0353 | 0.0124 | 0.0915 | 0.0082 | 0.0480 | 0.0100 | 0.0022 | 0.0015 | 0.0453 | 0.0168 | 0.0082 |
| Slovenia | 0.1214 | 0.1112 | 0.0403 | 0.0366 | 0.1907 | 0.1522 | 0.1077 | 0.0317 | 0.1240 | 0.1486 | 0.1042 | 0.0122 |
| United Kingdom | 0.3052 | 0.0170 | 0.0241 | 0.1620 | 0.2478 | 0.0088 | 0.0336 | 0.0690 | 0.2211 | 0.0164 | 0.0469 | 0.0502 |
| Member State | Average Performance | High-Input Farms (% of Area) | Air Pollution, kg/ha |
|---|---|---|---|
| Austria | 0.275 | 25.823 | 43.92 |
| Bulgaria | 0.050 | 5.400 | 16.64 |
| Croatia | 0.199 | 30.225 | 33.31 |
| Czech Republic | 0.111 | 21.431 | 19.36 |
| Denmark | 0.495 | 57.992 | 53.26 |
| Estonia | 0.108 | 4.108 | 17.76 |
| Finland | 0.168 | 31.954 | 25.86 |
| France | 0.201 | 44.031 | 22.85 |
| Germany | 0.195 | 62.092 | 60.03 |
| Hungary | 0.076 | 13.200 | 29.37 |
| Italy | 0.273 | 26.569 | 45.92 |
| Latvia | 0.068 | 5.646 | 14.41 |
| Lithuania | 0.116 | 4.600 | 19.67 |
| Poland | 0.265 | 23.723 | 33.71 |
| Portugal | 0.091 | 12.177 | 19.87 |
| Romania | 0.088 | 7.170 | 17.70 |
| Slovakia | 0.106 | 4.685 | 20.68 |
| Slovenia | 0.406 | 31.808 | 52.62 |
| Spain | 0.183 | 14.600 | 31.59 |
| Sweden | 0.256 | 35.031 | 32.15 |
| United Kingdom | 0.473 | 33.238 | 24.05 |
| Average Performance | High-Input Farms | Air Pollution | |
|---|---|---|---|
| Average performance | 1 | ||
| High-input farms | 0.679 | 1 | |
| Air pollution | 0.651 | 0.75 | 1 |
| Variable | Description | Source |
|---|---|---|
| lag_crop lag_milk lag_cattle | The lagged score rendered by the VIKOR method (specific to each farming type) | Own calculation |
| cropShare | The ratio of the crop output to the total output (specific to each farming type) | FADN |
| AWUha | The ratio of labor input to land area (specific to each farming type) | FADN |
| LUha | The ratio of LU to land area (specific to each farming type) | FADN |
| lAsset | The ratio of liabilities top assets (specific to each farming type) | FADN |
| pay | Direct payments per land area unit (for crop farms) or per LU (for milk and cattle farms) | FADN |
| ESU | Economic farm size in Euro (specific to each farming type) | FADN |
| HDD | Heating degree days | Eurostat |
| interest | The ratio of interest paid to liabilities (specific to each farming type) | FADN |
| landP | Land price derived as the ratio of the rent paid to the rented land area (specific to each farming type) | FADN |
| laborP | Labor price derived as the ratio of the wages paid to the paid labor input (specific to each farming type) | FADN |
| PR | Price recovery ratio derived by dividing output price indices (crop or livestock) by input price index | Eurostat |
| Variable | Crop | Milk | Cattle | |||
|---|---|---|---|---|---|---|
| Coefficient | Sig. | Coefficient | Sig. | Coefficient | Sig. | |
| lag_crop | 0.262692 | ** | 0.180956 | *** | 0.145714 | ** |
| lag_milk | −0.27516 | . | −0.36626 | *** | ||
| lag_cattle | 0.158771 | 0.202933 | *** | 0.603742 | *** | |
| cropShare | 0.405328 | . | 0.145009 | . | ||
| AWUha | 4.140393 | . | 0.456514 | |||
| LUha | 1.931309 | ** | ||||
| lAsset | −0.29106 | . | −0.46544 | *** | −0.44095 | *** |
| log(pay) | −0.183352 | ** | −0.05683 | * | ||
| log(ESU) | −0.05349 | |||||
| log(HDD) | 2.094569 | * | ||||
| log(HDD)^2 | −0.13444 | * | ||||
| interest | −0.48056 | * | ||||
| log(landP) | 0.04877 | 0.044971 | * | |||
| log(laborP) | −0.07798 | |||||
| PR | ||||||
| R-Squared | 0.28706 | 0.34735 | 0.39904 | |||
| Adj. R-Squared | 0.10882 | 0.18925 | 0.26712 | |||
| F-test (p-value) | 2.61 × 10−08 | 1.43 × 10−11 | 4.22 × 10−16 | |||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, A.; Morkunas, M.; Balezentis, T.; Šapolaitė, V. Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries. Sustainability 2020, 12, 1210. https://doi.org/10.3390/su12031210
Volkov A, Morkunas M, Balezentis T, Šapolaitė V. Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries. Sustainability. 2020; 12(3):1210. https://doi.org/10.3390/su12031210
Chicago/Turabian StyleVolkov, Artiom, Mangirdas Morkunas, Tomas Balezentis, and Vaida Šapolaitė. 2020. "Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries" Sustainability 12, no. 3: 1210. https://doi.org/10.3390/su12031210
APA StyleVolkov, A., Morkunas, M., Balezentis, T., & Šapolaitė, V. (2020). Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries. Sustainability, 12(3), 1210. https://doi.org/10.3390/su12031210

