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Abstract: This paper aims at to identify the differences in the performance of the agricultural sectors
in the selected European Union Member States. The research covers 21 countries in the period
from 2007-2017. The paper uses data from the Farm Accountancy Data Network (FADN). Three
types of sectors were considered: Crop farming (wheat and rapeseed), specialist milk, and specialist
cattle. The sector’s performance was measured by calculating the aggregate scores using the VIKOR
technique. The panel regression model was also used to estimate and assess the technical and
economic determinants of the sector’s performance. The obtained results indicated that the new
EU Member States showed higher levels of performance compared to the old Member States. This
finding may be attributed to the fact that some of the production factors in the new EU Member States
are still under-valued compared to those of the old EU Member States.
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1. Introduction

Since the expansion of the European Union (EU), significant funding under the Common
Agricultural Policy (CAP) and structural funds umbrella has been allocated to ensure the renewal
of agricultural machinery in the new EU Member States. This was done to improve the industrial
performance (productivity) of these countries [1] and hasten the convergence between old and new
Member States. Measures such as technical efficiency were applied to the agricultural sector to identify
its performance gaps [2,3]. In addition to the industrial performance, the ecological considerations
are also important in terms of sustainable development [4]. Sharma and Shardendu [5] revealed that
improvement in agricultural performance was positively linked to the sustainability levels of the rural
regions of a particular country. These findings were furthered by Smith et al. [6], pointing out the
positive impact of agriculture on the sustainable development of rural communities.

This motivated us to compare the preconditions of rural sustainability across the EU Member
States in order to understand which of them had the strongest basis in the sustainable development
of their rural regions. Alongside the economic objectives, the concept of sustainability poses certain
environmental objectives [7-11]. In order to answer the question about which countries within the EU
possess the most formidable base for the formation of rural sustainability, we compared 21 EU Member
States in terms of their agricultural performance. Additionally, we compared the agricultural sectors
of the countries under analysis in terms of air pollutant emission intensity (per ha) in order to relate
economic and environmental performance. The composite performance indicators were calculated for
the three agricultural sectors types, namely crop farming, specialist milk, and specialist cattle.
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2. Literature Review

2.1. Factors Influencing Agricultural Performance

Agricultural performance can be measured by applying composite indicators. One of the concepts
is the technical efficiency [12]. The scientific literature dealing with the technical efficiency can be
separated into a few interdependent streams. One of the streams describes the phenomenon of technical
efficiency; it is used as a constant regardless of the researched variables. Nymeck Binam et al. [13]
found that technical efficiency was virtually uniform throughout the whole country and practically did
not depend on the cultivated crop type. This significant finding allowed us to construct our research
design, treating each country as a homogeneous entity. It also supplemented the idea of researching
crop farming in general, not distinguishing between wheat, rye, etc. The stability of the technical
efficiency within the researched country regardless of its regions was also documented by Bokusheva
et al. [14]. Masterson [15] and de Freitas et al. [16] found that there was no direct link between technical
efficiency and farm size. This was contradicted by Haq et al. [17], who found that small farmers were
substantially more technically efficient. This interesting finding, which did not correspond to classical
examples of the increasing efficiency due to economies of scale [18], emphasized the dissimilarity of
agriculture compared to other economic sectors. Technical efficiency was also researched with respect
to the age of farmers [19], also showing no statistically significant difference between age groups,
although Gul et al. [20] provided a contrary argument. The robustness of the technical efficiency
indicators was assessed by Blazejcyk-Majka and Kala [21], who used different measurement techniques,
but obtained very similar results; however, it was very susceptible to extreme weather conditions [22].
Variations in climate conditions and their impacts on the technical efficiency were modeled by Diallo
et al. [23]. Subsidies and their impact on the technical efficiency have also received attention in the
literature. Latruffe et al. [24] focused on the Western European countries and found that subsidies may
have a different impact on the technical efficiency of farming. This may be attributed to the fact that
financial support that is too big curtails the incentives for more efficient production and management
because this income stabilization tool is enough to ensure acceptable standards of living for the farmers,
who will not put all possible effort into achieving this. The negative effect of subsidies on the technical
efficiency was prevalent in the research of Minviel and Latruffe [25], showing that there were many
more cases in which the subsidies negatively affected the output of farms, then it showed positive
results. The ambiguity of these results should be also credited to different calculation models and
different theoretical assumptions accepted, although these findings correspond to the presumptions of
Lachaal [26] about the negative impact of government subsidies on farming efficiency. Zhu et al. [27],
researching the impact of direct payments under CAP on the technical efficiency of those of the most
advanced agricultural sectors, noticed that in the most advanced agricultural sectors (in terms of
technical efficiency), the subsidies had a negative effect, lowering the technical efficiency level, but
in slightly less advanced ones, it showed a positive outcome. This raises the idea that various forms
of protectionism are preferred in less developed economic sectors; thus, more developed economies
should place their emphasis on liberal free trade and market relations in order to facilitate growth and
efficiency. Mehta [28] focused on the effect the technical efficiency had on the labor market, stressing its
impact on lowering demand for labor in agriculture, but also showing its negative consequences during
peak moments. Siddique et al. [29] showed a strong correlation between the education level of farmers
and the technical efficiency level. The cost perspective dominated the research of Hasnain et al. [30],
showing that increases in the prices of at least one of the production factors significantly affected
the technical efficiency in developing economies. This finding, contradicting the mainstream theory
about the robustness of the technical efficiency indicator, can be explained by the fragility and lack of
resilience of various economic sectors in the developing world compared to developed economies.

An important research area is concentrated at identifying the determinants of technical efficiency
in agriculture. Nowak et al. [31] suggested capital expenditures, e.g., investment in machinery, as
a determinant of the technical efficiency. The importance of investments into machinery was also
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stressed by Huy and Nguyen [32]. Siddique et al. [29] noted a strong correlation between the education
level of farmers and level of the technical efficiency. The emphasis on farmers’ characteristics was also
confirmed in the context of the small household farms [33].

Temoso et al. [34] related efficiency and productivity gains to output growth in agriculture. The
changes in consumer income and preferences are considered as determinants of technical efficiency
of vegetable farming [35], as the rapid changes in consumer preferences preclude farmers from
specialization gains and distort investment decisions. Market imperfections are considered the main
determinant of efficiency by Souza and Gomes [36]. Cehura [37] identified the quality of management
processes as the main driving force of technical efficiency. Varasani et al. [38] found soil quality to
be a determinant of the agricultural technical efficiency. Ahmad and Afzal [39] argue that technical
efficiency is related to the economies of scale.

Another body of literature aims to reveal the macro level determinants of technical efficiency.
Ho and Shimada [40] showed that climate change has negative impact on the agricultural technical
efficiency in a short run. Anyway, climate change may trigger changes that positively affect the technical
efficiency in medium and long run. Khatazza et al. [41] discussed the effects of shadow economy on
the agricultural technical efficiency. Moreno-Moreno et al. [42] showed how environmental issues
affect technical efficiency by directing the technological innovations progress towards predefined path.
Environmental concerns were also identified as a determinant of efficiency by Buckley and Carney [43]
who showed that improved economic performance (indicated by increased technical efficiency) of
agricultural entities can serve as a basis for pollution mitigation.

2.2. Linkages between Agricultural Performance and Rural Sustainability

You and Zhang [44] considered the economic efficiency as one of the key pillars for rural
sustainability. Nazzaro and Marotta [45] analyzed the link between the economic viability of agriculture
and rural communities within the EU. Zeller et al. [46] concluded that more economically efficient
agricultural practices create favorable conditions for rural development, including social and cultural
aspects. Rockstrom et al. [47] stressed that increasing agricultural efficiency increases prosperity and
sustainability not only for rural but also for the whole population. Akroyd [48] argued that increase
in rural sustainability is related to implementation of modern management practices in agriculture.
This point was supported by Babych [49] who also place emphasis on novel agricultural management
practices. Some studies [50-52] consider agricultural efficiency gains as the main tool for alleviating
poverty and ensuring sustainable rural development. This was supported by Edwards [53] who
documented the changes in rural development rendered by the expansion of agricultural activities.
Thuita and Ouma [54] showed how improvements in agricultural performance not only helped to
increase the living standards, but also to substantially decreased inequality in the rural regions of the
developing countries. Evans and Yarwood [55] put emphasis on the primary sector and its viability in
the context of sustainability of rural regions.

Mansfield [56] demonstrated that sustainable agriculture contributes to communities in rural
regions, thus serving as a basis for social sustainability. Importance of farming in maintaining social
sustainability was also noted by Janker et al. [57]. De los Rios et al. [58] identified agriculture as a
contributor to social sustainability in rural regions trough cooperative social learning and voluntary
knowledge sharing. Gathorne-Hardy [59] documented that agricultural intensification may lead to
increased economic efficiency which improves economic dimension of rural sustainability but this
is at the expense of decrease in social and, especially, environmental dimensions. The latter conflict
is also noted by Carles et al. [60], Bowers and Cheshire [61], Clark and Tilman [62], Zhang et al. [63],
Devkota et al. [64], and Etingoff [65]. Czyzewski et al. [66,67] considered agriculture as a major actor
determining environmental sustainability of rural regions. These findings motivate us to include
environmental indicators when evaluating the performance of agricultural.
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3. Methods

For construction of the composite indicator of the performance of the agriculture, we used four
variables: Land, permanent crops and quotas (LPCQ); buildings (B); machinery (M); breeding livestock
(BL). These variables are divided by the gross farm income (GFI). These indicators are widely used in
assessing agricultural performance [68-73]. Data from the Farm Accountancy Data Network (FADN)
for the period from 2007-2017 are used for the analysis [74]. The research covers the three main types
of farming (specialist cereals, oilseeds, and protein crops, specialist milk, and specialist cattle). Note
that the use of the Net Farm Income would render more nuanced patterns of the farm performance,
yet this indicator is often negative in the new EU Member States. This precludes us from using it
in the further analysis. Due to data availability, the performance of such countries as Belgium, the
Netherlands, Greece, Malta, Cyprus, Luxembourg, and Ireland has not been assessed.

Multi-criteria analysis involves weighting of the criteria. In this study, the entropy method was
used to determine the importance of the four above-mentioned indicators. The vector normalization is
applied to normalize the initial data for the entropy method [74]:
T j

n
j=1

@
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where r; j are the values of indicators withi=1,2,..,mandj=1,2, ..., n; mrepresents the number
of indicators for each type of farming, n is the number of compared alternatives (countries from the
EU-21 which is defined as the EU-28 excluding Belgium, the Netherlands, Greece, Malta, Cyprus,
Luxembourg, and Ireland).

The entropy level for the i-th indicators within a certain type of farming is denoted as E; and
calculated following [75]:

n
Ei = (—1/lnn) Z?i’j 11’1171'/]',‘ i = 1, 2, e, m. (2)
=1

After calculating the degrees of variation for each indicator (d;) and normalizing them, a vector of

weights, w, is obtained [75]:
di
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VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) method was chosen for
aggregating the four performance indicators into the composite indicator. The VIKOR method
focuses on ranking alternatives from a finite set of feasible alternatives. The VIKOR method was
proposed by Opricovic and Tzeng [76]. The method belongs to a class of multi-criteria methods relying
on the reference point approach. As it relies on the two types of distances to the best (“ideal”) solutions,
it is less sensitive to variations in the initial data.

di=1-E;, w; = 3)

The VIKOR method uses the linear normalization. In the case of benefit criteria, normalization is
carried out as:
71] = (max]'wirij - wirij)/(max]-wirij - minjwirij). (4)

Normalization of cost criteria is carried out as:

max]-wiri]- - wiri]- min]-wirij - wirij

Tij=1- ®)

max]-wiri]- - rnin]-wirij a rnin]-wl-rl-]- - manwiTl‘]'I
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The VIKOR method uses three measures for the evaluation: Sj, Rj, Qj (=1, .., n). Scores, Sj and
m
R;, are calculated as the Ly-norms: S; = El witij and R; = max;(w;r;j). The aggregate score Q; is

calculated as
(S;-8)  (1-v)(R;-R)
Q=< t—Fx_rg ©
where §* = mianj, S™ = maij]', R* = min;R;, R™ = max;R;, v =0.5.
The best performance is related to the smallest distance to the ideal solutions, i.e., the lowest
values of 5, R;, and Q;. The alternatives compared should be arranged in an ascending order of Q;.

The values of Q; range from 0 to 1, where the lowest value represents the best result.

4. Results

The four criteria used in the construction of the composite indicator are the cost ones (i.e., lower
values of the criteria are desirable). The data are pooled across years 2007-2017. First, the entropy
method is applied to calculate the weights of the criteria. The resulting weights are presented in Table 1.

Table 1. The weights of criteria based on the entropy method for each farming type.

Criterion Share of LPCQ in GFI  Share of B in GFI Share of M in GFI  Share of BL in GFI
Type Cost (-) Cost (-) Cost (-) Cost (-)
Specialist cereals, oilseeds, and protein crops

E; 0.91025 0.95134 0.98210 0.91008
d; 0.08975 0.04866 0.01790 0.08992

w; 0.364 0.198 0.073 0.365
Specialist milk

E; 0.92367 0.96930 0.98087 0.98603

d; 0.07633 0.03070 0.01913 0.01397

w; 0.545 0.219 0.136 0.100
Specialist cattle

E; 0.89544 0.95162 0.97204 0.97112

d; 0.10456 0.04838 0.02796 0.02888

w; 0.498 0.231 0.133 0.138

According to the entropy method, the criteria are ordered differently for each farming type. For
the specialist cereal, oilseed and protein crop farming, the most important indicators are the shares of
BL and LPCQ in the GFI (weights of 0.364 and 0.365), whereas the least important is the share of M in
the GFI (0.073). For the specialist milk farming, the most important indicator is the share of LPCQ in
the GFI (0.545) and the least important one is the share of BL in the GFI (0.100). For the specialist cattle
farming, the most significant indicator is the share of LPCQ in the GFI (0.498), whereas the share of M
in the GFI (0.138) is the least important criterion. In order to calculate the VIKOR-based aggregate
indicators of the farming performance, the weighted normalized values wi7ij are used (Table 2).
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Table 2. The weighted normalized decision matrices for the three types of farming in EU-21, 2017.

F;;r;:}l;g Specialist Cereals, Oilseeds and Protein Crops Specialist Milk Specialist Cattle
Share of Share of B Share of Share of Share of Share of B Share of Share of Share of Share of B Share of Share of
Countries LPCQ in . M in the BL in the LPCQ in . M in the BL in the LPCQ in . M in the BL in the

the Grr i the GFI GFI GFI the Grr I the GFI GFI GFI the Grr i the GFI GFI GFI

Bulgaria 0.0100 0.0032 0.0054 0.0204 0.0084 0.0032 0.0052 0.0417 0.0015 0.0000 0.0501 0.0366
Czechia 0.0211 0.0272 0.0146 0.0582 0.0167 0.0405 0.0209 0.0096 0.0154 0.0300 0.0319 0.0156
Denmark 0.2120 0.0839 0.0254 0.0324 0.1935 0.0546 0.0294 0.0173 0.1980 0.0718 0.0335 0.0103
Germany 0.0990 0.0168 0.0165 0.0594 0.1157 0.0276 0.0400 0.0226 0.0688 0.0281 0.0362 0.0057
Spain 0.1080 0.0134 0.0051 0.0162 0.0705 0.0154 0.0003 0.0727 0.0432 0.0156 0.0078 0.0638
Estonia 0.0203 0.0225 0.0350 0.0105 0.0207 0.0561 0.0329 0.0172 0.0148 0.0217 0.0544 0.0308
France 0.0156 0.0073 0.0153 0.2455 0.0108 0.0344 0.0381 0.0495 0.0072 0.0213 0.0349 0.0744
Croatia 0.0441 0.0324 0.0308 0.0418 0.0633 0.0704 0.0795 0.0242 0.0270 0.0584 0.0539 0.0186
Hungary 0.0261 0.0168 0.0177 0.0426 0.0167 0.0243 0.0152 0.0252 0.0133 0.0270 0.0269 0.0323
Italy 0.2982 0.0278 0.0049 0.0034 0.0999 0.0113 0.0035 0.0290 0.0513 0.0198 0.0121 0.0178
Lithuania 0.0209 0.0104 0.0226 0.0378 0.0367 0.0055 0.0861 0.0169 0.0153 0.0029 0.0615 0.0196
Latvia 0.0247 0.0192 0.0239 0.0399 0.0335 0.0173 0.0266 0.0154 0.0167 0.0131 0.0299 0.0279
Austria 0.0224 0.0852 0.0330 0.0043 0.0595 0.1807 0.0963 0.0069 0.0528 0.1293 0.0705 0.0024
Poland 0.1265 0.0789 0.0354 0.0341 0.1327 0.0709 0.0822 0.0326 0.0900 0.0872 0.0765 0.0192
Portugal 0.0457 0.0107 0.0085 0.1811 0.0458 0.0063 0.0390 0.0510 0.0224 0.0067 0.0180 0.0306
Romania 0.0153 0.0250 0.0142 0.0110 0.0263 0.0680 0.0101 0.0074 0.0105 0.0628 0.0136 0.0117
Finland 0.1408 0.0475 0.0369 0.0023 0.0811 0.0713 0.0673 0.0086 0.0300 0.0529 0.0394 0.0000
Sweden 0.2264 0.0586 0.0463 0.0137 0.0724 0.0787 0.0690 0.0295 0.0938 0.0642 0.1157 0.0150
Slovakia 0.0097 0.0353 0.0124 0.0915 0.0082 0.0480 0.0100 0.0022 0.0015 0.0453 0.0168 0.0082
Slovenia 0.1214 0.1112 0.0403 0.0366 0.1907 0.1522 0.1077 0.0317 0.1240 0.1486 0.1042 0.0122
United 0.3052 0.0170 0.0241 0.1620 0.2478 0.0088 0.0336 0.0690 0.2211 0.0164 0.0469 0.0502

Kingdom
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Decision matrix comprises data for the period of 2007-2017. By considering the normalized
values, the two distances from the ideal solution (S; and R;) are calculated. The resulting distances are
further normalized.

The composite VIKOR-based performance indicator shows that, in 2007-2017, Bulgaria, Romania,
Hungary, Estonia, and Lithuania were the best performing countries in specialist cereals, oilseeds, and
protein crops on average (the values of the composite indicator for these countries ranged from 0.039
to 0.112). At the other end of spectrum, Slovenia, France, Denmark, Italy, and the United Kingdom
were the worst performing countries (the mean values of the composite indicator ranged from 0.392 to
0.641). Figure 1 presents the results.
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Figure 1. The VIKOR-based composite indicator for specialist cereal, oilseed, and protein crop farms in
the EU-21 (averages for 2007-2017).

Analysis of the specialist milk farms revealed that, in 2007-2017, Hungary, Latvia, Bulgaria,
Portugal, and Slovakia were the best performing countries (the average values of the composite
indicator ranged from 0.038 to 0.073). On the contrary, Poland, Austria, the United Kingdom, Slovenia,
and Denmark were the worst performing countries (the average values of the composite indicator
ranged from 0.303 to 0.504 for 2007-2017). Figure 2 summarizes results for the dairy farms.

As regards specialist cattle farms, the best performing countries were Latvia, Slovakia, Portugal,
Bulgaria, and the Czech Republic (the average composite scores for these countries ranged from 0.033
to 0.061 during 2007-2017). The worst performing countries coincided with those mentioned for
the milk farms—Poland, Austria, United Kingdom, Slovenia, and Denmark (the mean values of the
composite indicator range from 0.212 to 0.461). Figure 3 presents the details for the cattle farms.
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Figure 2. The VIKOR-based composite indicator for specialist milk farms in the EU-21 (averages for

2007-2017).
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Figure 3. The VIKOR-based composite indicator for specialist cattle farms in the EU-21 (averages for
2007-2017).

The resulting rankings of the countries may appear to be contradictory. Indeed, these results are
based on the profitability approach, i.e., the prices of land, machinery, biological assets prevailing
across individual EU countries are taken into account. Thus, the new Member States face lower input
prices and appear to be better performing. The opposite pattern is observed in the old Member States,
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thus, the differences in the output levels and profits do not compensate the differences in production
costs. In the case of the Baltic States, input prices have been increasing since accession to the EU and
approaching the EU average levels.

We further examine the relationship between performance of the agricultural sector in selected
EU-21 countries and air pollution related to agriculture in these countries. We also consider the high
intensity of fertilizer application as a proxy for environmental pressures. The aggregation of the
performance indicators rendered by the VIKOR for the three different farming types was carried out by
calculating the average score. Table 3 presents the results. Indeed, the correlation among the average
industrial performance indicator and the environmental indicators (air pollution in agriculture and
share of the land area under high-input farms) for selected countries is strong, i.e., greater than 0.65
(Table 4).

Table 3. Farm industrial performance and environmental indicators in the EU countries (EU-21),
average values for 2007-2017.

Member State Peﬁ‘;izgflce High-Input Farms (% of Area) Air Pollution, kg/ha
Austria 0.275 25.823 43.92
Bulgaria 0.050 5.400 16.64
Croatia 0.199 30.225 33.31
Czech Republic 0.111 21.431 19.36
Denmark 0.495 57.992 53.26
Estonia 0.108 4.108 17.76
Finland 0.168 31.954 25.86
France 0.201 44.031 22.85
Germany 0.195 62.092 60.03
Hungary 0.076 13.200 29.37
Italy 0.273 26.569 45.92
Latvia 0.068 5.646 14.41
Lithuania 0.116 4.600 19.67
Poland 0.265 23.723 33.71
Portugal 0.091 12.177 19.87
Romania 0.088 7.170 17.70
Slovakia 0.106 4.685 20.68
Slovenia 0.406 31.808 52.62
Spain 0.183 14.600 31.59
Sweden 0.256 35.031 32.15
United Kingdom 0.473 33.238 24.05

Source: Average score is calculated as the average of the VIKOR-based performance scores for each observation;
Eurostat, 2019 [77].
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Table 4. Correlation among the average values of the industrial performance and environmental

indicators.
Average Performance High-Input Farms Air Pollution
Average performance 1
High-input farms 0.679 1
Air pollution 0.651 0.75 1
[801irce: Average score is calculated as the average of the VIKOR-based performance scores for each observation;
77].

This shows that countries with lower performance levels (i.e., a higher value of the aggregate
indicator) are also more polluting ones. Meanwhile, most of the EU countries that joined the EU in
2004 show moderate performance and environment-friendly mode of production which follows the
concept of sustainable agricultural development (Figures 4 and 5).
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Figure 4. Distribution of the share of high-input farms.
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Figure 5. Distribution of the average industrial performance scores.
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The VIKOR-based performance scores are regressed on the covariates describing the structure
of the farms across different EU countries and farming types. Note that increasing values of the
aggregate performance score imply lower performance as discussed in Section 3. The regressors are
chosen to describe the technical and economic aspects of the farm management and operation. The
lagged performance scores based on the VIKOR method are included in order to account for the
autocorrelation among the scores. The share of the crop output in the total output is included in order
to check the effects of specialization. The labor-land ratio is included to account for technological
differences. Similar, livestock intensity variable (livestock units to land area) describe the development
of livestock farming. Liability-to-asset ratio identifies the integration into capital markets. Logged
direct payments per ha or per LU identify the degree of subsidization. The logged economic size of an
average farm is included to account for differences in the farm structure. The heating degree days is
used as a measure of climatic conditions (the squared logged form is applied). The prices of the capital,
land, and labor are accounted for by considering the ratios of costs and input quantities provided in
the FADN. Finally, the price recovery ratio (output price index divided by the input price index) is
used to account for the market conditions. Table 5 describes the variables used for the regression.

Table 5. Definition of the explanatory variables.

Variable Description Source
lag_crop The lagged score rendered by the
lag_milk VIKOR method (specific to each Own calculation
lag_cattle farming type)
The ratio of the crop output to the
cropShare total output (specific to each FADN
farming type)

The ratio of labor input to land

AWUha area (specific to each farming type)

FADN

LUha The 'rz'atlo of LU to lapd area FADN
(specific to each farming type)

The ratio of liabilities top assets

[Asset (specific to each farming type)

FADN

Direct payments per land area unit
pay (for crop farms) or per LU (for FADN
milk and cattle farms)

ESU ECOI:l?mlC farm size ‘m Euro FADN
(specific to each farming type)

HDD Heating degree days Eurostat
The ratio of interest paid to
interest liabilities (specific to each farming FADN
type)
Land price derived as the ratio of
landP the rent paid to the rented land FADN

area (specific to each farming type)

Labor price derived as the ratio of
the wages paid to the paid labor

laborP input (specific to each farming FADN
type)
Price recovery ratio derived by
PR dividing output price indices (crop Eurostat

or livestock) by input price index
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The fixed effects two-way panel models are implemented for each farming type. We do not use
the censored regression model, as only several observations actually achieve the extreme values of
the aggregate performance score (i.e., the value of unity). Note that some data are unavailable for,
e.g., Croatia. The insignificant variables are omitted through the backward procedure. The resulting
estimates are presented in Table 6.

Table 6. Effects of the farm performance (the panel model).

Variable Crop Milk Cattle
Coefficient Sig. Coefficient Sig. Coefficient Sig.
lag_crop 0.262692 * 0.180956 o 0.145714 *
lag_milk —-0.27516 . —0.36626 el
lag_cattle 0.158771 0.202933 o 0.603742 i
cropShare 0.405328 . 0.145009
AWUha 4.140393 . 0.456514
LUha 1.931309 *
[Asset —-0.29106 . —0.46544 o —0.44095 ok
log(pay) —0.183352 * —0.05683 *
log(ESU) —0.05349
log(HDD) 2.094569 *
log(HDD)"2 —0.13444 *
interest —0.48056 *
log(landP) 0.04877 0.044971 *
log(laborP) —-0.07798
PR
R-Squared 0.28706 0.34735 0.39904
R—Squ;'re d 0.10882 0.18925 0.26712
(pl-:x_itaelife) 2.61x107% 143 x 1071 42210716

Note: Signif. codes: 0 ***” 0.001 **" 0.01 “*" 0.05“.” 0.1 *” 1. Unbalanced Panel: n =22, T = 3-10, N = 201.

The results show that the autocorrelative terms are significant for crop and cattle farm models. The
cattle farms show the highest persistence in their performance. Milk farms show only dependence on
the lagged performance of the crop and cattle farms. The negative coefficients for the lagged industrial
performance score of the milk farms are observed for the crop and cattle farms. This indirectly suggests
the possible movement across farming types from the milk sector. One of the possible channels
connecting these three farming types is the dynamics in opportunity costs associated with the input use.

The three variables appeared to be insignificant across all the three models. The labor price
remained in the crop farm model after the backward procedure even though its coefficient did not
significantly differ from zero. As for the price recovery ratio, it was removed from all the models during
the backward procedure. This indicates that price data are not significantly driving the performance of
farms in the EU. The extensive support under the CAP may have contributed to such a situation. The
economic farm size also appeared as an insignificant determinant of the industrial performance, yet it
remained in the milk farm model following the backward procedure.

The share of crop output in the total output significantly affects the performance (as represented
by the VIKOR-based scores) of the crop and cattle farms. Specifically, the positive coefficients
indicate that increasing specialization in crop farming and decreasing specialization in cattle farming
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renders a decline in the performance. Note that the measures used in this study are mostly those
defining cost performance. The ratio of the labor-to-land is significant at 10% for crop farms and
indicates decline in industrial performance as the ratio increases. Livestock intensity appears as a
significant determinant of performance for the crop farms only. The increasing livestock intensity
decreases cost-based performance, even though the increasing farm specialization is also associated
with declining performance. Thus, physical farm size indicators are also important as determinants of
farm performance besides the economic ones. The increasing share of borrowed capital (as indicated
by the liability-to-assets ratio) positively affects crop, milk, and cattle farm performance. This can
be explained by the fact that reasonable investment decisions may increase costs and the gross farm
income to different extent. Direct payment rate positively impacts the performance of the crop and
milk farms (again, note that the coefficients need to be interpreted in an opposite manner as the lower
values of the dependent variable represent better performance). This can be explained by the fact that
direct payments substantially contribute to the growth in the gross farm income. The farm structure
(as represented by the economic farm size indicator) does not significantly affect farm performance.
Interest rate improves the performance of the milk farms (coefficient is significant at 10%). This finding
may be related to the increasing pressure for adoption of the efficient farming practices under the
increasing competitive pressure. The increasing land price is associated with decreasing milk farm
performance. Indeed, the increasing land price may indicate higher opportunity costs for milk farming
and decreasing motivation to embark on this activity.

Note that the coefficients of determination are rather low for the models in Table 4 this may be due
to several reasons. At the aggregate level, the regional differences may be masked to a certain extent.
What is more, non-linearities may be present in the relationships between farm performance and the
explanatory variables. Finally, some of the explanatory variables may have been omitted. Therefore,
further analysis is needed to gain more insights into the factors of the farm performance.

5. Conclusions

The results based on the composite indicator representing agricultural performance showed that
the new EU Member States performed better if compared to the old ones with regards to three farming
types (crop farming, specialist milk, and specialist cattle farming). This means that in order to achieve
the same farming profitability level, one should invest less in the new Member States, compared to the
old ones. These results are determined by relatively low prices of the production factors in the new EU
Member States. It shows that investments into agricultural production factors (especially, land) in the
new Member States may be a reasonable choice as the long-run convergence processes in the EU [78]
should diminish the differences in productivity.

The lower levels of the industrial performance obtained for the old EU Member States can be
attributed to the higher production costs. They are reflected not only in higher wages, but also higher
subsidies—direct payments—which contribute to increasing costs in two ways: The direct financial aid
is included into production costs and capitalized in the land price [79]. The comparably low scores of
Poland with respect to other new Member States (Slovakia, Hungary) can be attributed to the fact that
the average farm holding in Poland (10.2 ha), is much smaller than in Slovakia (73.7 ha). Countries
with lower cost-based industrial performance levels (Denmark, the Netherlands, Austria) are among
the ones where the direct payments per ha of UAA are the highest. These results suggest that the
current EU direct payments scheme under the CAP redistribution mechanism is aimed at supporting
low performing countries and is not encouraging the increase in the agricultural performance of the EU
Member States. However, further revisions of the financial data in the FADN are necessary to ensure
full comparability. The decreasing industrial performance was related to increasing pollution intensity.
In this regard, the CAP also needs further revisions in order to ensure that the direct payments induce
environment-friendly farming practices.

Regression analysis was carried out to quantify the determinants of farm performance. In the
selected EU Member States, crop and cattle farm performance is strongly influenced by the share of
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crop output in the total output, i.e., that less specialized farming can induce cost savings. Increasing
leverage (as evidenced by the ratio of liabilities to assets) has a positive impact on dairy and cattle
farming. Direct payments also have a positive impact on the performance of crop and milk farms.
However, as revealed by the correlation analysis, this effect is not sufficient to reverse the general direct
payment-farm performance pattern (and the resulting externalities).
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