Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Biochar
2.2. Experimental Design
2.3. Soil Chemical Properties and Enzyme Activity Assays and Biochar Characterization by FTIR
2.4. Calculation Method
2.5. Statistical Analyses
3. Results
3.1. FTIR of Biochar
3.2. Soil Total Organic C, pH, Available P, Dissolved Organic C
3.3. Soil Enzyme Activity
3.4. Soil Carbon Mineralization
3.5. Correlation Analysis between Soil Organic Carbon, Soil Enzymes, and Soil Physical and Chemical Properties
4. Discussion
4.1. CO2 Emissions
4.2. Impacts on Soil Nutrients after Different Straw Biochar Applications
4.3. Effects of Different Types of Straw Biochar on Soil Enzyme Activity
4.4. Effects of Soil Enzyme Activity on Soil Organic Carbon Mineralization
5. Conclusions
- (1)
- There were significant differences in catalase and urease activities among different treatments. Compared with the CK treatment, the soil enzyme activities in each treatment were higher. There was a very significant positive correlation between catalase and urease activities and soil organic carbon mineralization between the cassava straw biochar and banana straw biochar.
- (2)
- The cumulative CO2 emission of cassava straw biochar with 1% and 2% addition ratios is lower than that of banana straw biochar, which indicates that cassava straw biochar has a more certain emission reduction effect than banana straw biochar. The content of organic carbon in each treatment was higher than CK (blank control), indicating that the two kinds of biomass char were beneficial to the promotion of organic carbon, and the content of organic carbon in cassava straw biochar was higher than that in banana straw biochar. The mineralization trend of soil organic carbon is basically the same when the two kinds of straw biochar are applied. The application of biochar increases the mineralization rate and accumulated mineralization amount of soil organic carbon. Different straw biochar has different effects on soil organic carbon mineralization. Banana straw biochar has a stronger mineralization effect on soil organic carbon than cassava straw biochar.
Author Contributions
Funding
Conflicts of Interest
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Verhoeven, E.; Pereira, E.; Decock, C.; Garland, G.; Kennedy, T.; Suddick, E.; Horwath, W.; Six, J. N2O emissions from California farmlands: A review. Calif. Agric. 2017, 71, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Wu, Q.; Wang, F.; Zhang, B. Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis. Energy 2019, 171, 393–402. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Si, P.; Liu, E.; He, W.; Sun, Z.; Dong, W.; Yan, C.; Zhang, Y. Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China. Arch. Agron. Soil Sci. 2017, 64, 398–408. [Google Scholar] [CrossRef]
- Grunwald, D.; Kaiser, M.; Junker, S.; Marhan, S.; Piepho, H.-P.; Poll, C.; Bamminger, C.; Ludwig, B. Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil. Agric. Ecosyst. Environ. 2017, 241, 79–87. [Google Scholar] [CrossRef]
- Wu, M.; Han, X.; Zhong, T.; Yuan, M.; Wu, W. Soil organic carbon content affects the stability of biochar in paddy soil. Agric. Ecosyst. Environ. 2016, 223, 59–66. [Google Scholar] [CrossRef]
- Bai, J.B.; Xu, X.L.; Fu, G.; Song, M.H.; He, Y.T.; Jiang, J. Effects of Temperature and Nitrogen Input on Nitrogen Mineralization in Alpine Soils on the Tibetan Plateau. J. Agric. Sci. Technol. 2008, 12, 1909–1912. [Google Scholar] [CrossRef]
- Ventura, M.; Alberti, G.; Viger, M.; Jenkins, J.R.; Girardin, C.; Baronti, S.; Zaldei, A.; Taylor, G.; Rumpel, C.; Miglietta, F.; et al. Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices. GCB Bioenergy 2015, 7, 1150–1160. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.X.; Chen, C.J.; Lyu, H.H.; Wa, Y.Y.; He, L.L.; Yang, S.M. Priming effect of biochar on the minerialization of native soil organic carbon and the mechanisms: A review. J. Appl. Ecol. 2018, 29, 314–320. [Google Scholar]
- Bruun, S.; Clauson-Kaas, S.; Bobuľská, L.; Thomsen, I.K. Carbon dioxide emissions from biochar in soil: Role of clay, microorganisms and carbonates. Eur. J. Soil Sci. 2013, 65, 52–59. [Google Scholar] [CrossRef]
- Kappenberg, A.; Braun, M.; Lehndorff, E.; Amelung, W. Black carbon assessment using benzene polycarboxylic acids: Limitations for organic-rich matrices. Org. Geochem. 2016, 94, 47–51. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S.G. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Jien, S.-H.; Chen, W.-C.; Ok, Y.S.; Awad, Y.M.; Liao, C.-S. Short-term biochar application induced variations in C and N mineralization in a compost-amended tropical soil. Environ. Sci. Pollut. Res. 2017, 25, 25715–25725. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.A.; Jiang, J.; Li, J.-Y.; Shi, R.-Y.; Mehmood, K.; Baquy, M.A.-A.; Xu, R.-K. Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils. Arab. J. Geosci. 2018, 11, 272. [Google Scholar] [CrossRef]
- Mašek, O.; Buss, W.; Brownsort, P.; Rovere, M.; Tagliaferro, A.; Zhao, L.; Cao, X.; Xu, G. Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci. Rep. 2019, 9, 5514. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef] [Green Version]
- Sarfraz, R.; Li, S.; Yang, W.; Zhou, B.; Xing, S. Assessment of Physicochemical and Nutritional Characteristics of Waste Mushroom Substrate Biochar under Various Pyrolysis Temperatures and Times. Sustainability 2019, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Kandhro, M.N.; Chen, Z.; Guo, D.; Jogi, Q.; et al. Recent developments in biochar as an effective tool for agricultural soil management: A review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef]
- Manghabati, H.; Weis, W.; Göttlein, A. Importance of soil extractable phosphorus distribution for mature Norway spruce nutrition and productivity. Eur. J. For. Res. 2018, 137, 631–642. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Condron, L.; Gerard, E.; Dignam, B.; Black, A.; O’Callaghan, M. Long-term P fertilisation of pasture soil did not increase soil organic matter stocks but increased microbial biomass and activity. Biol. Fertil. Soils 2017, 53, 511–521. [Google Scholar] [CrossRef]
- Ilstedt, U.; Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol. Biochem. 2005, 37, 1407–1410. [Google Scholar] [CrossRef]
- Henry, H.A. Reprint of Soil extracellular enzyme dynamics in a changing climate. Soil Biol. Biochem. 2013, 56, 53–59. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Bailey, V.L.; Fansler, S.J.; Smith, J.L.; Bolton, H. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 2011, 43, 296–301. [Google Scholar] [CrossRef]
- Liu, S.; Meng, J.; Jiang, L.; Yang, X.; Lan, Y.; Cheng, X.; Chen, W. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl. Soil Ecol. 2017, 116, 12–22. [Google Scholar] [CrossRef]
- Deng, B.; Shi, Y.; Zhang, L.; Fang, H.; Gao, Y.; Luo, L.; Feng, W.; Hu, X.; Wan, S.; Huang, W.; et al. Effects of spent mushroom substrate-derived biochar on soil CO2 and N2O emissions depend on pyrolysis temperature. Chemosphere 2020, 246, 125608. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef]
- Yadav, V.; Jain, S.; Mishra, P.; Khare, P.; Shukla, A.K.; Karak, T.; Singh, A.K. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Appl. Soil Ecol. 2019, 138, 144–155. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Li, Z.G.; Luo, Y.M.; Teng, Y. Methods in Soil and Environmental Microbiology; Science Press: Beijing, China, 2008. [Google Scholar]
- Song, M.-H.; Jiang, J.; Xu, X.; Shi, P.-L. Correlation between CO2 Efflux and Net Nitrogen Mineralization and Its Response to External C or N Supply in an Alpine Meadow Soil. Pedosphere 2011, 21, 666–675. [Google Scholar] [CrossRef]
- Pokharel, P.; Kwak, J.-H.; Ok, Y.S.; Chang, S.X. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Sci. Total. Environ. 2018, 625, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Jia, Z.; Wang, S.; Chang, S.X.; Startsev, A. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils 2013, 49, 555–565. [Google Scholar] [CrossRef]
- Jegajeevagan, K.; Sleutel, S.; Ameloot, N.; Kader, M.; De Neve, S. Organic matter fractions and N mineralization in vegetable-cropped sandy soils. Soil Use Manag. 2013, 29, 333–343. [Google Scholar] [CrossRef]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, Y.; Lu, H.; He, L.; Yang, S. Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degrad. Dev. 2018, 29, 3985–3994. [Google Scholar] [CrossRef]
- Bruun, E.W.; Hauggaard-Nielsen, H.; Ibrahim, N.; Egsgaard, H.; Ambus, P.; Jensen, P.A.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 2011, 35, 1182–1189. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.; Watts, D.; Laird, D.; Ahmedna, M.; Niandou, M. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Ahmed, A.; Kurian, J.; Raghavan, V. Biochar influences on agricultural soils, crop production, and the environment: A review. Environ. Rev. 2016, 24, 495–502. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Deluca, T.H.; Gundale, M.D.; Mackenzie, M.D.; Jones, J. Biochar Effects on Soil Nutrient Transformations; Earthscan: London, UK, 2009; pp. 251–270. [Google Scholar]
- Flessa, H.; Ludwig, B.; Heil, B.; Merbach, W. The Origin of Soil Organic C, Dissolved Organic C and Respiration in a Long-Term Maize Experiment in Halle, Germany, Determined by13C Natural Abundance. J. Plant Nutr. Soil Sci. 2000, 163, 157–163. [Google Scholar] [CrossRef]
- Wang, D.; Griffin, D.; Parikh, S.J.; Scow, K.M. Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events. Chemosphere 2016, 160, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.-P.; He, B.; Zeng, Q.-P.; Li, N.-J.; Yang, L. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J. Mt. Sci. 2020, 17, 1398–1409. [Google Scholar] [CrossRef]
- Masto, R.E.; Ansari, A.; George, J.; Selvi, V.A.; Ram, L. Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol. Eng. 2013, 58, 314–322. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Wei, W.; Hu, J.; Mei, S.; Zhao, Q.; Tsang, Y.F. Enhanced roles of biochar and organic fertilizer in microalgae for soil carbon sink. Biogeochemistry 2017, 29, 313–321. [Google Scholar] [CrossRef]
- Zhou, H.J.; Yu, X.N.; Qin, Y.H.; Zhao, Z.K.; Ye, X.F.; Zhang, X.Y.; Wang, P.; Zhang, S.; Ma, M. Effect of biochar application on soil biological characteristics and soil respiration rate in Cd contaminated soil. J. Acta Tabacaria Sinica 2008, 23, 61–68. [Google Scholar]
- Tanveer, A.S. Effects of Fruit Waste and Its Biochars on Biochemical Properties, Greenhouse Gas Emissions of Sandy and Loess Soil and Plant Growth; North West Agriculture and Forestry University: Shan Xi, China, 2019. [Google Scholar]
- Chang, J.; Luo, X.; Li, M.; Wang, Z.; Zheng, H. Short-term Influences of Peanut-Biochar Addition on Abandoned Orchard Soil Organic N Mineralization in North China. Pol. J. Environ. Stud. 2016, 25, 67–72. [Google Scholar] [CrossRef]
- Foster, E.J.; Fogle, E.J.; Cotrufo, M.F. Sorption to Biochar Impacts β-Glucosidase and Phosphatase Enzyme Activities. Agriculture 2018, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.-L.; Guo, H.; Li, H.-K. Mineralization of soil organic carbon and its relationship with soil enzyme activities in apple orchard in Weibei. J. Environ. Sci. 2014, 35, 2777–2784. [Google Scholar]
- Podrepšek, G.H.; Knez, Ž.; Leitgeb, M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J. Supercrit. Fluids 2019, 154, 104629. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Q.; Luan, J.Y.; Zhang, Q.; Wang, Y.; Liu, J.; Jia, Y.H.; Liu, Y. Effects of leaf litter from different artificial forests on soil organic carbon mineralization characteristics. J. Beijing Univ. Agric. 2002, 35, 42–49. [Google Scholar]
pH | Ec (us·cm−1) | Olsen-P (mg·kg−1) | TOC (g·kg−1) | CEC (cmol·kg−1) |
---|---|---|---|---|
5.56 ± 0.01 | 40.50 ± 3.17 | 8.71 ± 0.16 | 5.31 ± 0.01 | 38.46 ± 0.25 |
7 | 14 | 21 | 28 | 35 | |
---|---|---|---|---|---|
CK | 5.61 ± 0.11D | 5.52 ± 0.18D | 5.65 ± 0.16D | 5.32 ± 0.39D | 5.01 ± 0.07D |
1%BSB | 7.20 ± 0.05C | 6.22 ± 0.14C | 6.71 ± 0.08C | 7.61 ± 0.09C | 7.29 ± 0.14C |
2%BSB | 8.46 ± 0.05B | 6.87 ± 0.18B | 8.48 ± 0.30B | 9.06 ± 0.04B | 9.14 ± 0.12B |
5%BSB | 9.85 ± 0.03A | 8.13 ± 0.17A | 10.11 ± 0.02A | 10.17 ± 0.01A | 10.06 ± 0.01A |
1%CSB | 6.34 ± 0.05C | 7.26 ± 0.11C | 6.50 ± 0.48B | 6.16 ± 0.15C | 6.02 ± 0.03B |
2%CSB | 6.86 ± 0.02B | 8.36 ± 0.27B | 6.21 ± 0.67B | 6.89 ± 0.74B | 6.79 ± 0.41A |
5%CSB | 8.15 ± 0.14A | 9.44 ± 0.02A | 7.64 ± 0.10A | 7.59 ± 0.28A | 7.36 ± 0.63A |
Different Treatments | Fitting Parameter | ||
---|---|---|---|
Cp/µg·g−1 | k/d−1 | R2 | |
CK | 12.617 ± 0.253 | 0.128 ± 0.007 | 0.99 |
1% BSB | 46.314 ± 1.487 | 0.119 ± 0.010 | 0.98 |
2% BSB | 61.197 ± 1.138 | 0.100 ± 0.004 | 0.99 |
5% BSB | 67.918 ± 5.624 | 0.036 ± 0.004 | 0.99 |
1% CSB | 13.521 ± 0.549 | 0.462 ± 0.097 | 0.79 |
2% CSB | 26.751 ± 1.048 | 0.150 ± 0.018 | 0.96 |
5%CSB | 42.318 ± 2.167 | 0.132 ± 0.019 | 0.94 |
CO2 Emissions (μg/g) | TOC Content (g/kg) | CO2/TOC (%) | |
---|---|---|---|
CK | 0.42 | 1.12 | 0.16 |
1%BSB | 3.13 | 1.95 | 0.22 |
2%BSB | 5.33 | 2.47 | 0.14 |
5%BSB | 5.68 | 3.95 | 0.03 |
1%CSB | 0.55 | 2.10 | 0.07 |
2%CSB | 1.86 | 2.80 | 0.08 |
5%CSB | 3.37 | 4.39 | 0.04 |
5 | ||||||
Banana Straw Biochar | ||||||
Indicators | Olsen-P | pH | Catalase | Urease | SOC | DOC |
Olsen-P | 1 | 0.868 ** | −0.864 ** | −0.477 ** | 0.955 ** | 0.635 ** |
pH | 1 | −0.926 ** | −00.139 | 0.855 ** | 0.301 * | |
Catalase | 1 | 0.113 | −0.859 ** | −0.289 * | ||
Urease | 1 | −0.377 ** | −0.734 ** | |||
SOC | 1 | 0.492 ** | ||||
DOC | 1 | |||||
6 | ||||||
Cassava Straw Biochar | ||||||
Indicators | Olsen-P | pH | Catalase | Urease | SOC | DOC |
Olsen-P | 1 | 0.772 ** | −0.806 ** | 0.807 ** | 0.936 ** | −0.821 ** |
pH | 1 | −0.497 ** | 0.430 ** | 0.888 ** | −0.811 ** | |
Catalase | 1 | −0.719 ** | −0.732 ** | 0.637 ** | ||
Urease | 1 | 0.688 ** | −0.624 ** | |||
SOC | 1 | −0.842 ** | ||||
DOC | 1 |
Banana Straw Biochar | Cassava Straw Biochar | |||||
---|---|---|---|---|---|---|
Urease | Catalase | CO2 Emissions | Urease | Catalase | CO2 Emissions | |
CO2 emissions | 0.442 | 0.515 * | 1 | 0.751 ** | 0.732 ** | 1 |
Catalase | 0.113 | 1 | −0.719 ** | 1 | ||
Urease | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Li, S.; Li, K.; Huang, H.; Wan, W.; Huang, Q.; Li, Q.; Li, Y.; Deng, H.; He, T. Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland. Sustainability 2020, 12, 10586. https://doi.org/10.3390/su122410586
Hu L, Li S, Li K, Huang H, Wan W, Huang Q, Li Q, Li Y, Deng H, He T. Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland. Sustainability. 2020; 12(24):10586. https://doi.org/10.3390/su122410586
Chicago/Turabian StyleHu, Lening, Shuangli Li, Ke Li, Haiyan Huang, Wenxin Wan, Qiuhua Huang, Qiuyan Li, Yafen Li, Hua Deng, and Tieguang He. 2020. "Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland" Sustainability 12, no. 24: 10586. https://doi.org/10.3390/su122410586
APA StyleHu, L., Li, S., Li, K., Huang, H., Wan, W., Huang, Q., Li, Q., Li, Y., Deng, H., & He, T. (2020). Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland. Sustainability, 12(24), 10586. https://doi.org/10.3390/su122410586