The Role of Citizen Science in Sustainable Agriculture
Abstract
:1. Introduction
1.1. Citizen Science
1.2. Sustainable Agriculture
1.3. Aims and Relevance
2. Methods
- (1)
- Searching: A search was made in April 2019 in the Lund University library database (LUBsearch) for peer-reviewed publications in English using the search terms “citizen science” AND “agriculture”, combined with one of the additional search terms “fertilization”, “irrigation”, “land use”, “crop yield”” “pest control”, “challenges”, or “opportunities”, respectively (see Table 1). LUBsearch gathers academic publications from a wide range of well-established databases, such as Web of Science, Scopus, and others. To also cover the gray literature and publications from journals not listed in these databases, an additional search was made in Google Scholar using the same search terms. In line with the explorative approach adopted, an additional search was made in Google to identify portals and projects where the interaction between citizens and scientists is mediated by websites. Additional items were found in research cited in reviewed publications. The exploratory approach used was intended to capture both mainstream research and possible emerging trends. The collected data focused on the role of citizen science in agriculture to address global sustainability challenges [5], including empirical studies, research papers, and previous or ongoing projects. The search terms were chosen to keep an open explorative approach that could capture the breadth of the field and possible emerging trends, but, at the same time, could take a deeper look at some areas of particular interest for sustainable agriculture and practitioners in the field. Crop yield is significant for food security and farmer livelihoods [41,45]. Fertilizers and chemicals used in pest control disrupt ecosystems, while large areas of the planet used for agriculture are exposed to increasing water stress [39,45]. Finally, sustainable land use [57] is one of the critical factors to mitigate climate change and respect planetary boundaries [39,51]. The keywords “challenges” and “opportunities” were chosen to gain a wider picture of expected benefits and observed difficulties in the field.
- (2)
- Screening: For each combination of search terms, abstracts of the first 40 publications yielded by the search in LUBsearch and Google Scholar were read, and relevant publications were selected (see Table 1). For the present study, the choice was made to select publications and projects that lie within issues traditionally addressed by agricultural science (e.g., irrigation, fertilization and crop patterns, control of pests and pathogens, land use, and yields) and with direct relevance to farming communities, and agronomists, horticulturalists, or agricultural engineers. Focus was also placed on environmental impacts as well as some alternatives to industrial chemical-intensive agriculture. Citizens involved in researching environmental impacts typically also include other groups than farmers, such as bird watchers, residents impacted by pollution, and activists concerned with the degradation of ecosystems. To enable an analysis based on the full text, not all publications meeting the criteria were selected for presentation in this review. Examples have instead been selected to give a broad overview of the variety of topics and methodologies used. In addition, some additional examples have been given of studies of relevance for interlinkages with forest management, health, water quality, policy, etc.
- (3)
- Analysis: In the final step, the extracted materials were summarized, organized, and analyzed in four categories (fertilization, pest control, land use and irrigation, and crops and yield). Examples of projects have been provided for the different categories of the analysis. Gaps highlighted in the literature or which appeared through the overview have been discussed to point to directions for future developments in this area.
Limitations
3. Citizen Science and Sustainable Agriculture
3.1. Fertilization
3.2. Pest, Weed, and Pathogen Control
3.3. Land Use and Irrigation
3.4. Crops and Yield
4. Challenges and Opportunities for Citizen Science in Agriculture
4.1. Challenges
4.2. Opportunities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eitzel, M.V.; Cappadonna, J.L.; Santos-Lang, C.; Duerr, R.E.; Virapongse, A.; West, S.E.; Kyba, C.; Bowser, A.; Cooper, C.B.; Sforzi, A.; et al. Citizen science terminology matters: Exploring key terms. Citiz. Sci. Theory Pract. 2017, 2, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dehnen-Schmutz, K.; Foster, G.L.; Owen, L.; Persello, S. Exploring the role of smartphone technology for citizen science in agriculture. Agron. Sustain. Dev. 2016, 36, 25. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.D.; Cawthray, J.L.; West, S.E.; Bonn, A.; Ansine, J. Ten principles of citizen science. In Citizen Science: Innovation in Open Science, Society and Policy; Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J., Bonn, A., Eds.; UCL Press: London, UK, 2018; pp. 27–40. [Google Scholar]
- Riesch, H.; Potter, C. Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions. Public Underst. Sci. 2014, 23, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.F.; Adamson, N.L.; Aktipis, A.; Andersen, L.K.; 1Austin, R.; Barnes, L.; Beasley, M.R.; Bedell, K.D.; Briggs, S.; Chapman, B.; et al. The role of citizen science in addressing grand challenges in food and agriculture research. R. Soc. Open Sci. 2018, 285, 20181977. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.B.; Dickinson, J.; Phillips, T.; Bonney, R. Citizen science as a tool for conservation in residential ecosystems. Ecol. Soc. 2007, 12, 11. [Google Scholar] [CrossRef]
- Vásquez-Bermúdez, M.; Hidalgo, J.; Crespo-León, K.; Cadena-Iturralde, J. Citizen Science in Agriculture through ICTs. A Systematic Review. In CITAMA 2019: ICT for Agriculture and Environment, Proceedings of the 2nd International Conference on ICTs in Agronomy and Environment, Guayaquil, Ecuador, 22–25 January 2019; Springer: Cham, Switzerland, 2019; pp. 111–121. [Google Scholar]
- Reed, J.; Rodriguez, W.; Rickhoff, A. A framework for defining and describing key design features of virtual citizen science projects. In iConference ’12, Proceedings of the 2012 iConference, Toronto, ON, Canada, 7–10 February 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 623–625. [Google Scholar]
- ScienceNordic. Citizen Science: How You Can Help Scientists. 2017. Available online: http://sciencenordic.com/citizen-science-how-you-can-help-scientists (accessed on 14 May 2019).
- Vetenskap & Allmänhet. New Citizen Science Portal for Sweden. 2018. Available online: https://v-a.se/2018/03/new-citizen-science-portal-sweden/ (accessed on 14 May 2019).
- Citizen Science Portal—The Government of Canada. 2019. Available online: http://science.gc.ca/eic/site/063.nsf/eng/h_97169.html (accessed on 14 May 2019).
- Citizen Science Portal—Scotland’s Environment. 2019. Available online: https://www.environment.gov.scot/get-involved/submit-your-data/citizen-science-portal (accessed on 14 May 2019).
- Bremera, S.; Haqueb, M.M.; Bin Azizb, S.; Kvammea, S. ‘My new routine’: Assessing the impact of citizen science on climate adaptation in Bangladesh. Environ. Sci. Policy 2019. [Google Scholar] [CrossRef]
- Locritania, M.; Merlinob, S.; Abbatec, M. Assessing the citizen science approach as tool to increase awareness on the marine litter problem. Mar. Pollut. Bull. 2019, 140, 320–329. [Google Scholar] [CrossRef]
- Jones, B.L.; Unsworth, R.K.F.; McKenzie, L.J.; Yoshida, R.L.; Cullen-Unsworth, L.C. Crowdsourcing conservation: The role of citizen science in securing a future for seagrass. Mar. Pollut. Bull. 2018, 134, 210–215. [Google Scholar] [CrossRef]
- Vann-Sander, S.; Clifton, J.; Harvey, E. Can citizen science work? Perceptions of the role and utility of citizen science in a marine policy and management context. Mar. Policy 2016, 72, 82–93. [Google Scholar] [CrossRef]
- Falk-Anderssona, J.; Berkhout, B.W.; Abate, T.G. Citizen science for better management: Lessons learned from three Norwegian beach litter data sets. Mar. Pollut. Bull. 2019, 138, 364–375. [Google Scholar] [CrossRef]
- Jollymore, A.; Hainesa, M.J.; Satterfield, T.; Johnson, M.S. Citizen science for water quality monitoring: Data implications of citizen perspectives. J. Environ. Manag. 2017, 200, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Torre, I.; Raspall, A.; Arrizabalaga, A.; Diaz, M. Evaluating trap performance and volunteers’ experience in small mammal monitoring programs based on citizen science: The SEMICE case study. Mamm. Biol. 2019, 95, 26–30. [Google Scholar] [CrossRef]
- Ripoll, A.; Viana, M.; Padrosa, M.; Querol, X.; Minutolo, A.; Hou, K.M.; Barcelo-Ordinas, J.M.; Garcia-Vidal, J. Testing the performance of sensors for ozone pollution monitoring in a citizen science approach. Sci. Total Environ. 2019, 651, 1166–1179. [Google Scholar] [CrossRef] [PubMed]
- Herzog, F.; Franklin, J. State-of-the-art practices in farmland biodiversity monitoring for North America and Europe. Ambio 2016, 45, 857–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartumeus, F.; Oltra, A.; Palmer, J.R.B. Citizen Science: A Gateway for Innovation in Disease-Carrying Mosquito Management? Trends Parasitol. 2018, 34, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Murindahabi, M.M.; Asingizwe, D.; Poortvliet, P.M.; van Vlietd, A.J.H.; Hakizimana, E.; Mutesa, L.; Takken, W.; Koenraadt, C.J.M. A citizen science approach for malaria mosquito surveillance and control in Rwanda. NJAS Wagening. J. Life Sci. 2018, 86–87, 101–110. [Google Scholar] [CrossRef]
- Asingizwe, D.; Poortvliet, P.M.; Koenraadt, C.J.M.; van Vlietd, A.J.H.; Murindahabi, M.M.; Ingabire, C.; Mutesa, L.; Feindt, P.H. Applying citizen science for malaria prevention in Rwanda: An integrated conceptual framework. NJAS Wagening. J. Life Sci. 2018, 86–87, 111–122. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Rust, M.; Gopalakrishnan, P.K.; Behdad, S. Use of Citizen Science to Improve Student Experience in Engineering Design, Manufacturing and Sustainability Education. Procedia Manuf. 2018, 26, 1361–1368. [Google Scholar] [CrossRef]
- MacMillan, T.; Pearce, B. Duchy Originals Future Farming Programme—A practical, farmer led approach to innovation. In Proceedings of the IFOAM Organic World Congress 2014, Istanbul, Turkey, 13–15 October 2014; pp. 1–3. [Google Scholar]
- Barrows, A.P.W.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next steps for citizen science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lade, S.J.; Steffen, W.; de Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2019. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R. Chapter 3: Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Smith, P.; Adams, J.; Beerling, D.J.; Keesstra, S. Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 2019, 44, 255–286. [Google Scholar] [CrossRef]
- Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crop. Res. 2013, 143, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Baker, B. Can modern agriculture be sustainable? Perennial polyculture holds promise. BioScience 2017, 67, 325–331. [Google Scholar] [CrossRef]
- Crews, T.; Carton, W.; Olsson, L. Is the Future of Agriculture Perennial?Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1, e11. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.L.; Leake, J.R.; Quirk, J.; Hardy, K.; Banwart, S.A.; Beerling, D.J. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology 2009, 7, 171–191. [Google Scholar] [CrossRef] [PubMed]
- FAO. Status of the World’s Soil Resources; Main Report; FAO: Rome, Italy, 2015. [Google Scholar]
- FAO. Agroecology to Reverse Soil Degradation and Achieve Food Security; Factsheet; FAO: Rome, Italy, 2015. [Google Scholar]
- Chotte, J.L.; Aynekulu, E.; Cowie, A.; Campbell, E.; Vlek, P.; Lal, R.; Barger, N. Realising the Carbon Benefits of Sustainable Land Management Practices: Guidelines for Estimation of Soil Organic Carbon in the Context of Land Degradation Neutrality Planning and Monitoring. A Report of the Science-Policy Interface 2019; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2019. [Google Scholar]
- IPBES. The Assessment Report on Land Degradation and Restoration; IPBES: Bonn, Germany, 2018. [Google Scholar]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5 °C and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- FAO. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition; HLPE Report; FAO: Rome, Italy, 2019. [Google Scholar]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2019. [Google Scholar]
- HRC. Report of the Special Rapporteur on the Right to Food. Human Rights Council Thirty-Fourth Session 27 February-24 March 2017; United Nations: Now York, NY, USA, 2017. [Google Scholar]
- FAO. The State of Food and Agriculture 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Christmann, S. Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas? Restor. Ecol. 2019, 27, 720–725. [Google Scholar] [CrossRef]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [Green Version]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Agricultural Sustainability Institute. Sustainable Agriculture Research and Education Program, US Davis. 2019. Available online: https://asi.ucdavis.edu/programs/ucsarep/about/what-is-sustainable-agriculture (accessed on 11 February 2019).
- Vasilevski, G. Perspectives of the Application of Biophysical Methods in Sustainable Agriculture. Bulg. J. Plant Physiol. 2003, 179–186. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.479.9523&rep=rep1&type=pdf (accessed on 11 February 2019).
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, M.; Niu, Y.; Liu, X.; van Zwieten, L.; Chen, D.; Bian, R.; Cheng, K.; Li, L.; Joseph, S.; et al. Is current biochar research addressing global soil constraints for sustainable agriculture? Agric. Ecosyst. Environ. 2016, 226, 25–32. [Google Scholar] [CrossRef]
- Verma, J.P.; Jaiswal, D.K.; Meena, V.S.; Kumar, A.; Meena, R.S. Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J. Clean. Prod. 2015, 107, 793–794. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Gehlot, P.; Singh, J. Fungi and Their Role in Sustainable Development: Current Perspectives; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Calabi-Floody, M.; Medina, J.; Rumpel, C.; Condron, L.M.; Hernandez, M.; Dumont, M.; de la Luz Mora, M. Chapter three—Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 2018, 147, 119–157. [Google Scholar]
- Aznar-Sánchez, J.A.; Piquer-Rodríguez, M.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Worldwide research trends on sustainable land use in agriculture. Land Use Policy 2019, 87, 104069. [Google Scholar] [CrossRef]
- Beza, E.; Steinke, J.; van Etten, J.; Reidsma, P.; Fadda, C.; Mittra, S.; Mathur, P.; Kooistra, L. What are the prospects for citizen science in agriculture? Evidence from three continents on motivation and mobile telephone use of resource-poor farmers. PLoS ONE 2017, 12, e0175700. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Thomas, Z.; Abbott, B.W.; Troccaz, O.; Baudry, J.; Pinay, G. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments. Biogeosciences 2016, 13, 1863–1875. [Google Scholar] [CrossRef] [Green Version]
- Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resour. Res. 2017, 53, 1270–1287. [Google Scholar] [CrossRef]
- Abbott, B.W.; Moatar, F.; Gauthier, O.; Fovet, O.; Antoine, V.; Ragueneau, O. Trends and seasonality of river nutrients in agricultural catchments: 18 years of weekly citizen science in France. Sci. Total Environ. 2018, 624, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Crotty, F.; McCalman, H.; Powell, H.; Buckingham, S.; Marley, C. Should farmers apply fertilizer according to when their daffodils are in flower? Utilizing a “farmer- science” approach to understanding the impact of soil temperature on spring N fertilizer application in Wales. Soil Use Manag. 2019, 35, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspective. Ecol. Indic. 2018. [Google Scholar] [CrossRef] [Green Version]
- Citizens for Science in Pesticide Regulation—A European Coalition. Available online: https://www.pan-europe.info/sites/pan-europe.info/files/Citizens%20for%20Science%20in%20Pesticide%20Regulation_Manifesto_FINAL.pdf (accessed on 9 December 2020).
- Hansen, J.G.; Lassen, P.; Bach, E.O.; Jørgensen, M.S.; Abuley, I.K. Getting Started with the BlightTracker App; Aarhus University: Aarhus, Denmark, 2019. [Google Scholar]
- Jordan, R.C.; Sorensen, A.E.; Ladeau, S. Citizen Science as a Tool for Mosquito Control. J. Am. Mosq. Control Assoc. 2017, 33, 241–245. [Google Scholar] [CrossRef]
- Ingwell, L.L.; Preisser, E.L. Using Citizen Science Programs to Identify Host Resistance in Pest-Invaded Forests. Conserv. Biol. 2011, 25, 182–188. [Google Scholar] [CrossRef]
- Lione, G.; Gonthier, P.; Garbelotto, M.; Lione, G.; Gonthier, P.; Garbelotto, M. Environmental factors driving the recovery of bay laurels from Phytophthora ramorum infections: An application of numerical ecology to citizen science. Forests 2017, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Meentemeyer, R.K.; Dorning, M.A.; Vogler, J.B.; Schmidt, D.; Garbelotto, M. Citizen science helps predict risk of emerging infectious disease. Front. Ecol. Environ. 2015, 13, 189–194. [Google Scholar] [CrossRef]
- Doohan, D.; Wilson, R.; Canales, E.; Parker, J. Investigating the Human Dimension of Weed Management: New Tools of the Trade. Weed Sci. 2010, 58, 503–510. [Google Scholar] [CrossRef]
- Phtonics. NASA Begins Citizen Science Program to Monitor Land Cover. Available online: https://www.photonics.com/Articles/NASA_Begins_Citizen_Science_Program_to_Monitor/a64035 (accessed on 12 April 2019).
- Olteanu-Raimond, A.M.; Jolivet, L.; Van Damme, M.D.; Royer, T.; Fraval, L.; See, L.; Sturn, T.; Karner, M.; Moorthy, I.; Fritz, S. An Experimental Framework for Integrating Citizen and Community Science into Land Cover, Land Use, and Land Change Detection Processes in a National Mapping Agency. Land 2018, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Car, N.J.; Christen, E.W.; Hornbuckle, J.W.; Moore, G.A. Using a mobile phone Short Messaging Service (SMS) for irrigation scheduling in Australia-Farmers’ participation and utility evaluation. Comput. Electron. Agric. 2012, 84, 132–143. [Google Scholar] [CrossRef]
- Antonopoulou, E.; Karetsos, S.T.; Maliappis, M.; Sideridis, A.B. Web and mobile technologies in a prototype DSS for major field crops. Comput. Electron. Agric. 2010, 70, 292–301. [Google Scholar] [CrossRef]
- Reddy, P.K.; Ankaiah, R. A Framework of Information Technology-based Agriculture Information Dissemination System to Improve Crop Productivity. Curr. Sci. 2005, 88, 1905–1913. [Google Scholar]
- Herrick, J.E.; Urama, K.C.; Karl, J.W.; Boos, J.; Johnson, M.-V.V.; Shepherd, K.D.; Hemple, J.; Bestelmeyer, B.T.; Davies, J.; Guerra, J.L.; et al. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 2013, 68, 5A–12A. [Google Scholar] [CrossRef] [Green Version]
- Land-Zandstra, A.M.; Devilee, J.L.; Snik, F.; Buurmeijer, F.; van den Broek, J.M. Citizen science on a smartphone: Participants’ motivations and learning. Public Underst. Sci. (Bristol Engl.) 2015, 25, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Rotman, D.; Preece, J.; Hammock, J.; Procita, K.; Hansen, D.; Parr, C.; Lewis, D.; Jacobs, D. Dynamic changes in motivation in collaborative citizen-science projects. In CSCW ′12, Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, Seattle, WA, USA, 11–15 February 2012; ACM: Now York, NY, USA, 2012. [Google Scholar]
- Rotman, D.; Hammock, J.; Preece, J.; Hansen, D.; Boston, C.; Bowser, A.; He, Y. Motivations Affecting Initial and Long-Term Participation in Citizen Science Projects in Three Countries. iConference 2014 2014, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, D.G.; Liu, J.; Carlisle, S.; Zhu, A.X. Can citizen science assist digital soil mapping? Geoderma 2015, 259–260, 71–80. [Google Scholar] [CrossRef]
- Baalbaki, R.; Ahmad, S.H.; Kays, W.; Talhouk, S.N.; Saliba, N.A.; Al-Hindi, M. Citizen science in Lebanon—A case study for groundwater quality monitoring. R. Soc. Open Sci. 2019, 6, 181871. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.L. Parsing ‘participation’ in action research: Navigating the challenges of lay involvement in technically complex participatory science projects. Soc. Nat. Resour. 2011, 24, 702–716. [Google Scholar] [CrossRef]
- Van de Gevel, J.; van Etten, J.; Deterding, S. Citizen science breathes new life into participatory agricultural research. A review. Agron. Sustain. 2020, 40, 35. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Zuckerberg, B.; Bonter, D.N. Citizen Science as an Ecological Research Tool: Challenges and Benefits. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 149–172. [Google Scholar] [CrossRef] [Green Version]
- McCampbell, M.; Schut, M.; den Bergh, I.V.; van Schagen, B.; Vanlauwe, B.; Blomme, G.; Gaidashova, S.; Njukwe, E.; Leeuwis, C. Xanthomonas Wilt of Banana (BXW) in Central Africa: Opportunities, challenges, and pathways for citizen science and ICT-based control and prevention strategies. NJAS Wagening. J. Life Sci. 2018, 86–87, 89–100. [Google Scholar] [CrossRef]
- Roy, H.E.; Baxter, E.; Saunders, A.; Pocock, M.J.O. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science. PLoS ONE 2016, 11, e0155571. [Google Scholar] [CrossRef] [Green Version]
- Couvet, D.; Jiguet, F.; Julliard, R.; Levrel, H.; Teyssedre, A. Enhancing citizen contributions to biodiversity science and public policy. Interdiscip. Sci. Rev. 2008, 33, 95–103. [Google Scholar] [CrossRef]
- Minkler, M. Linking science and policy through community-based participatory research to study and address health disparities. Am. J. Public Health 2010, S81–S87. [Google Scholar] [CrossRef] [PubMed]
- Targetti, S.; Herzog, F.; Geijzendorffer, I.R.; Wolfrum, S.; Arndorfer, M.; Balàzs, K.; Choisis, J.P.; Dennis, P.; Eiter, S.; Fjellstad, W.; et al. Estimating the cost of different strategies for measuring farmland biodiversity: Evidence from a Europe-wide field evaluation. Ecol. Indic. 2014, 45, 434–443. [Google Scholar] [CrossRef]
- Herrick, J.E.; Beh, A.; Barrios, E.; Bouvier, I.; Coetzee, M.; Dent, D.; Elias, E.; Hengl, T.; Karl, J.W.; Liniger, H.; et al. The Land-Potential Knowledge System (LandPKS): Mobile apps and collaboration for optimizing climate change investments. Ecosyst. Health Sustain. 2016, 2, e01209. [Google Scholar] [CrossRef] [Green Version]
- Farmers Weekly. 16 Essential Farming Apps for 2014. Farmers Weekly Online Edition, 5.3. 2014. Available online: https://www.fwi.co.uk/arable/16-essential-farming-apps-for-2014 (accessed on 14 May 2019).
- EurekAlert. Public Release: 8-JUN-2018. Citizen Scientists in Europe Can Help Monitor Land-Use Change with New FotoQuest Go App. Available online: https://www.eurekalert.org/pub_releases/2018-06/iifa-csi060818.php (accessed on 10 April 2019).
- Wood, C.; Sullivan, B.; Lliff, M.; Fink, D.; Kelling, S. eBird: Engaging Birders in Science and Conservation. PLoS Biol. 2011, 9, e1001220. [Google Scholar] [CrossRef]
- Curtis, V. Motivation to Participate in an Online Citizen Science Game: A Study of Foldit. Sci. Commun. 2015, 37, 723–746. [Google Scholar] [CrossRef]
- Dyment, J.E. Green school grounds as sites for outdoor learning: Barriers and opportunities. Int. Res. Geogr. Environ. Educ. 2005, 14, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Aref, F. Farmers’ participation in agricultural development: The case of Fars province, Iran. Indian J. Sci. Technol. 2011, 4, 155–158. [Google Scholar] [CrossRef]
- Ahmadvand, M.; Karami, E.; Zamani, G.H.; Vanclay, F. Evaluating the use of Social Impact Assessment in the context of agricultural development projects in Iran. Environ. Impact Assess. Rev. 2009, 29, 399–407. [Google Scholar] [CrossRef]
- Irwin, A. Citizen Science: A Study of People, Expertise and Sustainable Development; Routledge: Abingdon, UK, 1995. [Google Scholar]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178. [Google Scholar] [CrossRef]
- Imai, K.S.; Gaiha, R.; Garbero, A. Poverty reduction during the rural–urban transformation: Rural development is still more important than urbanisation. J. Policy Modeling 2017, 39, 963–982. [Google Scholar] [CrossRef] [Green Version]
- Godde, C.M.; Garnett, T.; Thornton, P.K.; Ash, A.J.; Herrero, M. Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Glob. Food Secur. 2018, 16, 93–105. [Google Scholar] [CrossRef]
- Holden, S.T.; Ghebru, H. Land tenure reforms, tenure security and food security in poor agrarian economies: Causal linkages and research gaps. Glob. Food Secur. 2016, 10, 21–28. [Google Scholar] [CrossRef] [Green Version]
Used Keywords | Lund University Database | Google Scholar |
---|---|---|
Citizen science; agriculture | 6 | 7 |
Citizen science; agriculture, crop yield | 0 | 4 |
Citizen science; agriculture, fertilization | 0 | 2 |
Citizen science; agriculture, pest control | 0 | 5 |
Citizen science; agriculture, irrigation | 0 | 7 |
Citizen science; agriculture, land use | 1 | 9 |
Citizen science; agriculture, challenges | 3 | 6 |
Citizen science; agriculture, opportunities | 1 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourad, K.A.; Hosseini, S.H.; Avery, H. The Role of Citizen Science in Sustainable Agriculture. Sustainability 2020, 12, 10375. https://doi.org/10.3390/su122410375
Mourad KA, Hosseini SH, Avery H. The Role of Citizen Science in Sustainable Agriculture. Sustainability. 2020; 12(24):10375. https://doi.org/10.3390/su122410375
Chicago/Turabian StyleMourad, Khaldoon A., Seyyed Hasan Hosseini, and Helen Avery. 2020. "The Role of Citizen Science in Sustainable Agriculture" Sustainability 12, no. 24: 10375. https://doi.org/10.3390/su122410375
APA StyleMourad, K. A., Hosseini, S. H., & Avery, H. (2020). The Role of Citizen Science in Sustainable Agriculture. Sustainability, 12(24), 10375. https://doi.org/10.3390/su122410375