Evaluation of Climatic Condition Suitability for Elderly Care Industry Development in Prefecture-Level Cities in China
Abstract
:1. Introduction
2. Methods and Data Sources
2.1. Index System Construction
2.1.1. Temperature Indexes
2.1.2. Humidity Indexes
2.1.3. Airflow Indexes
2.1.4. Air Pressure Index
2.1.5. Sunshine Index
2.1.6. Precipitation Index
2.2. Data sources
2.3. Evaluation of Technical Routes
- (1)
- Data preparation and processing
- (2)
- Establishing the evaluation index system
- (3)
- Determining the domain of comment rating
- (4)
- Determining the subordinate layer
- (5)
- Determining the comprehensive subordinate layer
3. Results
3.1. Temperature Suitability
3.2. Humidity Suitability
3.3. Airflow Suitability
3.4. Analysis of the Comprehensive Suitability Results
3.5. Analysis of the Areas Suitable for Elderly Individuals in Special Elderly Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Office of the National Committee on Aging. China Population Aging Tendency Forecasts. Chin. Women’s Mov. 2007, 2, 15–18. [Google Scholar]
- Mu, G. Silver-haired economy is a sunrise industry. Global Times 2019. [Google Scholar] [CrossRef]
- Ahrens, C.D. Meteorology Today; Brooks/Cole: Sao Paulo, Brazil, 2009. [Google Scholar]
- Baughman, A.V.; Arens, E.A. Indoor humidity and human health-part Ⅰ: Literature review of humidity-influenced indoor pollutants. Ashrae Trans. Res. 1996, 102, 193–211. [Google Scholar]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathegen 2007, 3, 1470–1476. [Google Scholar] [CrossRef]
- Shaman, J.; Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA 2009, 106, 3243–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Li, Y.; Chwang AT, Y.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments-revisiting the Wells evaporation-falling curve. Indoor Air 2007, 17, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Zhang, L. Theoretical analysis of the impact of high humidity environment on human health. Med. Inf. 2010, 23, 3709–3710. [Google Scholar]
- Cui, B. Environment and Health; Chemical Industry Press: Beijing, China, 2012. [Google Scholar]
- Liang, Y.; Xiao, Y.; Ren, Z.; Yan, S.; Ge, M. Old female normal hemoglobin reference value of Chinese geographical factors. Anhui Norm. Univ. (Nat. Sci.) 2004, 4, 453–456. [Google Scholar]
- Wang, Z.; Liu, Q.; Ge, M. Curve model analysis of normal reference value of hematocrit in presenile men and environmental factors. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2004, 3, 429–433. [Google Scholar]
- Ge, M. The curve model analysis of reference value of erythrocyte sedimentation rate and altitude in pre-senile women. Chin. Microcirc. 2004, 5, 348. [Google Scholar]
- Ge, M.; Xiao, Y.; Liu, K.; Li, X.; Liang, W.; Chen, H. Normal reference value of hemoglobin in presenile men and geographical factors in China. Geogr. Sci. 2004, 6, 767–770. [Google Scholar]
- Yang, Q.; Zhang, H.; Ge, M.; Liu, Y.; Jiang, H.; Ge, W. Study in elderly men erythrocyte sedimentation rate reference value and geographical relationships based on artificial neural networks. Geogr. Sci. 2006, 6, 749–754. [Google Scholar]
- Liu, G.; Wang, H.; Wang, Q.; Li, C.; Ye, G.; Tan, C. Comparative analysis of APOE gene polymorphisms between Hubei Zhongxiang and longevity elderly people at home and abroad. Pract. Geriatr. 2017, 31, 766–769. [Google Scholar]
- Liu, B.; Shen, K.; Liu, H.; Fan, L. Population dynamics and regional distribution of centenarians in China. Geriatr. Health Care 2003, 1, 52–53. [Google Scholar]
- Xia, L. Human Biometeorology; Meteorology Press: Beijing, China, 1986. [Google Scholar]
- Werner, H.T. Physiologic Climates of the Conterminous United States: A Bioclimatic Classification Based on Man. Ann. Assoc. Am. Geogr. 1966, 56, 141–179. [Google Scholar]
- Zhang, J.; Feng, Y. Discussion on the evaluation of climate pleasantness in Guizhou Province. Tour. Trib. 1991, 3, 50–53. [Google Scholar]
- Sun, G.; Wang, X.; Zhang, X.; Wu, H.; Shen, L. Spatiotemporal characteristics of human comfort BTH Region. J. Meteorol. Environ. 2011, 27, 18–23. [Google Scholar]
- Wu, J.; Gao, X.; Han, Z.; Xu, Y. Analysis of Yunnan comfort degree changes based on effective temperature index. Adv. Earth Sci. 2017, 32, 174–186. [Google Scholar]
- Nely, A.M.; Richarde, M.S.; Celso, A.; Joel, S. Analysis of the environmental thermal comfort conditions in public squares in the semiarid region of northeastern Brazil. Build. Environ. 2019, 152, 145–159. [Google Scholar]
- Li, X.; Liu, J. Comprehensive evaluation of the major climatic factors suitable for urban living environment to live. Econ. Geogr. 2003, 5, 656–660. [Google Scholar]
- Tang, Y.; Feng, Z.; Yang, Y. Evaluation of climate suitability for human settlements in China based on grid scale. Resour. Sci. 2008, 5, 648–653. [Google Scholar]
- Yin, W.; Pan, Z.; Pan, Y.; Korea, L.; Wang, J.; Huang, N.; Zhang, Z.; Zhang, J. Research on the characteristics of climate comfort of human settlements in Mainland China. China Popul. Resour. Environ. 2018, 28, 5–8. [Google Scholar]
- Zhu, B.; Zhou, Q.; Zhu, H.; Sun, W.; Guo, Y.; Wang, X. Climate suitability and change characteristics of human settlement environment in Dezhou City. Chin. Agric. Sci. Bull. 2019, 35, 95–100. [Google Scholar]
- Negin, N.; Tiffany, S.; Leslie, N. Numerical modeling of outdoor thermal comfort in 3D. Urban Clim. 2018, 26, 212–230. [Google Scholar]
- Giuffrida, L.; Lokys, H.; Klemm, O. Assessing the effect of weather on human outdoor perception using Twitter. Int. J. Biometeorol. 2020, 64, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wu, J.; Shi, Y.; Wu, J.; Han, Z.; Zhang, D.; Tong, Y.; Li, R.; Xu, Y.; GIORGI, F. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations. Atmos. Ocean. Sci. Lett. 2018, 11, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Hu, X. Environmental temperature and human health. Knowl. Cardiovasc. Dis. Prev. Treat. (Sci. Ed.) 2011, 11, 54. [Google Scholar]
- Chen, R.; Yin, P.; Wang, L.; Liu, C.; Niu, Y.; Wang, W.; Jiang, Y.; Liu, Y.; Liu, J.; Qi, J.; et al. Association between ambient temperature and mortality risk and burden: Time series study in 272 main Chinese cities. BMJ 2018, 363. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Chen, R.; Kan, H. Temperature-related mortality in 17 large Chinese cities: How heat and cold affect mortality in China. Environ. Res. 2014, 134, 127–133. [Google Scholar] [CrossRef]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Monacelli, F.; Aramini, I.; Odetti, P. For debate: The August sun and the December snow. J. Am. Med Dir. Assoc. 2010, 11, 449–452. [Google Scholar] [CrossRef]
- Lin, H.; Hong, Z.; Hu, H.; Hu, C. Effects of temperature on mortality in the elderly. Zhejiang J. Prev. Med. 2016, 28, 230–233. [Google Scholar]
- Qu, F.; Xiao, Z. Assessment of the impact of climate change on human health. Adv. Meteorol. Sci. Technol. 2019, 9, 34–47. [Google Scholar]
- Gerber, Y.; Jacobsen, S.J.; Killian, J.M.; Weston, S.A.; Roger, V.L. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002. J. Am. Coll. Cardiol. 2006, 48, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Kriszbacher, I.; Bódis, J.; Csoboth, I. The occurrence of acute myocardial infarction in relation to weather conditions. Int. J. Cardiol. 2009, 135, 136–138. [Google Scholar] [CrossRef]
- Lee, J.H.; Chae, S.C.; Yang, D.H.; Park, H.S.; Cho, Y.; Jun, J.E.; Park, W.-H.; Kam, S.; Lee, W.K.; Kim, Y.J.; et al. Influence of weather on daily hospital admissions for acute myocardial infarction (from the Korea Acute Myocardial Infarction Registry). Int. J. Cardiol. 2010, 144, 16–21. [Google Scholar] [CrossRef]
- Baker-Blocker, A. Winter weather and cardiovascular mortality in Minneapolis-St. Paul. Am. J. Public Health 1982, 72, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Rongjun, A.; Haoci, L.; Zhen, Y.; Tao, Z. Research on the Spatial Differentiation and Influencing Factors of Elderly Population Health—Taking Hubei Province as an Example. Geogr. Sci. Prog. 2017, 36, 1218–1228. [Google Scholar]
- Huang, X.; Liao, X.; Xie, M.; Xu, S.; Zhu, Q.; Guangxi Climate Center; Guangxi Meteorological Society. The influence of weather and climate on human health in Guangxi. Meteorol. Res. Appl. 2019, 40, 42–45. [Google Scholar]
- Sun, Y.; Wang, J.; Zong, P. Relationship of cardiovascular and cerebrovascular diseases to meteorological conditions and forecast method in Nanjing City. Meteor. Environ. Res. 2013, 4, 25. [Google Scholar]
- Li, Z.; He, Z.; Hu, Z. Research progress on climate and health and climate health. J. Mar. Meteorol. 2020, 40, 107–116. [Google Scholar]
- Cheng, L. Study on the correlation between the incidence of rheumatoid arthritis and meteorological factors in Beijing. China Acad. Chin. Med. Sci. 2010. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2010180467.nh&DbName=CMFD2011 (accessed on 5 November 2020).
- Xie, R. Research on the Relationship between Environmental Health Preservation and Health; Guangzhou University of Chinese Medicine: Guangdong, China, 2009. [Google Scholar]
- Chen, Y.; Chen, X. Series of studies on geographical environment and military health (1) risk factors and preventive measures of high altitude polycythemia. Chin. Mil. Med. J. 2019, 62, 723–727. [Google Scholar]
- Cheng, A.; Liang, Y.; Tan, F.; Wei, H. Analysis on the Climate and Environment Characteristics of Longevity Township in Bama. Meteorol. Res. Appl. 2010, 31, 50–52. [Google Scholar]
- Qu, T. Research on the Spatiotemporal Evolution and Influencing Factors of Longevity Level in the Lower Yangtze River Provinces. Huazhong Norm. Univ. 2015. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1015444330.nh&DbName=CMFD2016 (accessed on 5 November 2020).
- Song, X.; Wang, S.; Hu, Y.; Le, M.; Zhang, T.; Liu, Y.; Tian, J.; Shang, K. Effects of temperature on incidence rate and mortality of diseases. The 34th Annual Meeting of China Meteorological Society S15 climate and environmental change and human health sub collection. China Meteorol. Soc. 2017. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGQX201709015035&DbName=CPFD2017 (accessed on 5 November 2020).
- Wiebe, P.; Rasker, R.; Johannes, J. Weather effects in rheumatoid arthritis: From controversy to consensus. A review. J. Rheumatol. 2004, 31, 1327–1334. [Google Scholar]
- Barrak, A.; Ahmed, F.; Haitham, K.; Mohammad, A.; Janvier, G.; Ali, A.; Petros, K.; Mary, A.F. Extreme temperatures and mortality in Kuwait: Who is vulnerable. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
Target Layer | Standard Layer | Index Layer | Unit | Direction | Weights |
---|---|---|---|---|---|
Suitability of climatic conditions for the elderly care industry | Temperature | Number of days when the daily minimum temperature is below 5 °C | Days/year | Reverse | 0.1464 |
Number of days with the highest temperature above 30 °C | Days/year | Reverse | 0.0273 | ||
Number of days when the average temperature difference between two adjacent days is less than 5 °C | Days/year | Reverse | 0.0647 | ||
Annual average temperature | °C | Forward/reverse | 0.1464 | ||
Average temperature in January | °C | Forward/reverse | 0.1464 | ||
Average temperature in July | °C | Forward/reverse | 0.0273 | ||
Annual temperature range | °C | Reverse | 0.0273 | ||
Humidity | Annual average relative humidity | % | Forward/reverse | 0.106 | |
Number of days in which the annual relative humidity changes by less than 10% | day | Forward | 0.106 | ||
Airflow | Annual average wind speed | m/s | Reverse | 0.0542 | |
Number of days with winds above level 3 in winter and spring | day | Reverse | 0.0542 | ||
Air pressure | Air pressure | hPa | Forward/reverse | 0/1 (note) | |
Sunshine | Annual average sunshine hours | h | Forward/reverse | 0.0469 | |
Precipitation | Annual precipitation | mm | Forward/reverse | 0.0469 |
Standard | Index | Highly Suitable | Slightly Suitable | Low Suitability | Non-Suitable |
---|---|---|---|---|---|
Temperature | Number of days when the daily minimum temperature is below 5 °C | ≤30 | 30–90 | 90–180 | ≥180 |
Number of days with the highest temperature above 30 °C | ≤20 | 20–60 | 60–100 | ≥100 | |
Number of days when the average temperature difference between two adjacent days is less than 5 °C | ≥345 | 320–345 | 295–320 | ≤295 | |
Annual average temperature (°C) | 15–18 | 18–20; 13–15 | 8–13; 20–25 | ≤8; ≥25 | |
Average temperature in January (°C) | ≥15 | 4–15 | −5–4 | ≤−5 | |
Average temperature in July (°C) | 15–18 | 18–23; ≤15 | 23–30 | ≥30 | |
Annual range of temperature (°C) | ≤20 | 20–30 | 30–40 | >40 | |
Humidity | Annual average relative humidity (%) | 45–60 | 60–70 | 70–80 | ≤45; ≥80 |
Number of days in which the annual relative humidity changes by less than 10% | >290 | 250–290 | 210–250 | <210 | |
Airflow | Annual average wind speed (m/s) | ≤1.8 | 1.8–2.5 | 2.5–3.3 | >3.3 |
Number of days with winds above level 3 in winter and spring | ≤10 | 10–20 | 20–40 | >40 | |
Air pressure | Air pressure (hPa) | <701 | |||
Sunshine | Annual average sunshine hours (h) | 1400–1800 | 1800–2400 | 2400–2800; 1200–1400 | <1200; >2800 |
Precipitation | Annual precipitation (mm) | 1250–1500 | 800–1250; 1500–1700 | 400–800; 1700–1900 | <400; >1900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Qi, X.; Li, Z.; Hu, M. Evaluation of Climatic Condition Suitability for Elderly Care Industry Development in Prefecture-Level Cities in China. Sustainability 2020, 12, 9308. https://doi.org/10.3390/su12229308
Wang M, Qi X, Li Z, Hu M. Evaluation of Climatic Condition Suitability for Elderly Care Industry Development in Prefecture-Level Cities in China. Sustainability. 2020; 12(22):9308. https://doi.org/10.3390/su12229308
Chicago/Turabian StyleWang, Mengyuan, Xiaoming Qi, Zehong Li, and Maogui Hu. 2020. "Evaluation of Climatic Condition Suitability for Elderly Care Industry Development in Prefecture-Level Cities in China" Sustainability 12, no. 22: 9308. https://doi.org/10.3390/su12229308
APA StyleWang, M., Qi, X., Li, Z., & Hu, M. (2020). Evaluation of Climatic Condition Suitability for Elderly Care Industry Development in Prefecture-Level Cities in China. Sustainability, 12(22), 9308. https://doi.org/10.3390/su12229308