The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region
Abstract
:1. Introduction
2. Behaviour and Viability Analysis of Photovoltaic Solar Systems
3. Components and Methods
3.1. Description of the Grid-Connected Photovoltaic Architecture
3.2. Weather Data
3.3. PVSyst Simulation
3.4. Performance and Loss Parameters: Description and Definition
3.5. Thermal Losses of the PV Array
4. Results and Discussion
4.1. Annual Parameters Calculated
4.2. Main Results from PVSyst
4.3. Normalised Energy Productions
4.4. Energy Injection of a Grid-Tied Solar PV System
Month | (kWh) | (kWh/kWp) | (kWh/kWp) | Performance Ratio (%) |
---|---|---|---|---|
January | 928.1 | 113.05 | 3.65 | 84.8 |
February | 714.1 | 86.98 | 3.11 | 85.4 |
March | 674.6 | 82.17 | 2.65 | 86.0 |
April | 418.3 | 50.95 | 1.70 | 86.6 |
May | 282.5 | 34.41 | 1.11 | 86.2 |
June | 128.5 | 15.65 | 0.52 | 83.3 |
July | 177.2 | 21.58 | 0.70 | 85.0 |
August | 290.5 | 35.38 | 1.14 | 87.4 |
September | 563.6 | 68.65 | 2.29 | 87.6 |
October | 704.0 | 85.75 | 2.77 | 86.2 |
November | 943.3 | 114.90 | 3.83 | 85.3 |
December | 953.4 | 116.13 | 3.75 | 83.9 |
Year | 6778.0 | 825.60 | 2.27 | 85.5 |
4.5. Performance Ratio and Capacity Factor Results
4.6. PV System Performance Parameters Compared with Other Installations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- MINENERGIA. Energía 2050: Política Energética Magallanes y Antártica Chilena; Technical Report; Ministerio de Energía: Punta Arenas, Chile, 2017. [Google Scholar]
- CERE-UMAG. Elaboración de Propuesta de Matriz Energética para Magallanes al 2050; Technical Report; Universidad de Magallanes: Punta Arenas, Chile, 2015. [Google Scholar]
- Pearsall, N. The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment; Woodhead Publishing: Oxford, UK, 2016; Chapter 1; pp. 1–19. [Google Scholar]
- Kumar, N.M.; Kumar, M.R.; Rejoice, P.R.; Mathew, M. Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia 2017, 117, 180–189. [Google Scholar] [CrossRef]
- Wijeratne, W.P.U.; Yang, R.J.; Too, E.; Wakefield, R. Design and development of distributed solar PV systems: Do the current tools work? Sustain. Cities Soc. 2018, 45, 553–578. [Google Scholar] [CrossRef]
- PVsyst Program. PV Syst User Manual. 2019. Available online: http://files.pvsyst.com/help/ (accessed on 7 May 2019).
- Omar, M.A.; Mahmoud, M.M. Grid connected PV-home systems in Palestine: A review on technical performance, effects and economic feasibility. Renew. Sustain. Energy Rev. 2018, 82, 2490–2497. [Google Scholar] [CrossRef]
- Adaramola, M.S. Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance. Energy Convers. Manag. 2015, 101, 85–93. [Google Scholar] [CrossRef]
- Sharma, R.; Goel, S. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Rep. 2017, 3, 76–84. [Google Scholar] [CrossRef]
- Milosavljević, D.D.; Pavlović, T.M.; Piršl, D.S. Performance analysis of a grid-connected solar PV plant in Niš, Republic of Serbia. Renew. Sustain. Energy Rev. 2015, 44, 423–435. [Google Scholar] [CrossRef]
- Baghdadi, I.; El Yaakoubi, A.; Attari, K.; Leemrani, Z.; Asselman, A. Performance investigation of a PV system connected to the grid. Procedia Manuf. 2018, 22, 667–674. [Google Scholar] [CrossRef]
- Allouhi, A.; Saadani, R.; Buker, M.; Kousksou, T.; Jamil, A.; Rahmoune, M. Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Sol. Energy 2019, 178, 25–36. [Google Scholar] [CrossRef]
- Allouhi, A.; Saadani, R.; Kousksou, T.; Saidur, R.; Jamil, A.; Rahmoune, M. Grid-connected PV systems installed on institutional buildings: Technology comparison, energy analysis and economic performance. Energy Build. 2016, 130, 188–201. [Google Scholar] [CrossRef]
- Tarigan, E.; Djuwari, D.; Kartikasari, F.D. Techno-economic simulation of a grid-connected PV system design as specifically applied to residential in Surabaya, Indonesia. Energy Procedia 2015, 65, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Okello, D.; Van Dyk, E.; Vorster, F. Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth, South Africa. Energy Convers. Manag. 2015, 100, 10–15. [Google Scholar] [CrossRef]
- Elkholy, A.; Fahmy, F.; El-Ela, A.A.; Nafeh, A.E.S.A.; Spea, S. Experimental evaluation of 8 kW grid-connected photovoltaic system in Egypt. J. Electr. Syst. Inf. Technol. 2016, 3, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology. Energy Rep. 2016, 2, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.; Valdes, M.F.; Jara, D.; Watson, A. Potential residential PV development in Chile: The effect of net metering and net billing schemes for grid-connected PV systems. Renew. Sustain. Energy Rev. 2015, 41, 1037–1051. [Google Scholar] [CrossRef]
- Sahouane, N.; Dabou, R.; Ziane, A.; Neçaibia, A.; Bouraiou, A.; Rouabhia, A.; Mohammed, B. Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara. Renew. Energy 2019, 143, 1318–1330. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, T.; Wu, D. A Novel Command-Filtered Adaptive Backstepping Control Strategy with Prescribed Performance for Photovoltaic Grid-Connected Systems. Sustainability 2020, 12, 7429. [Google Scholar] [CrossRef]
- Afzal, M.; Khan, M.; Hassan, M.; Wadood, A.; Uddin, W.; Hussain, S.; Rhee, S. A Comparative Study of Supercapacitor-Based STATCOM in a Grid-Connected Photovoltaic System for Regulating Power Quality Issues. Sustainability 2020, 12, 6781. [Google Scholar] [CrossRef]
- Gaisse, P.; Muñoz, J.; Villalón, A.; Aliaga, R. Improved Predictive Control for an Asymmetric Multilevel Converter for Photovoltaic Energy. Sustainability 2020, 12, 6204. [Google Scholar] [CrossRef]
- Mahmod Mohammad, A.; Mohd Radzi, M.; Azis, N.; Shafie, S.; Atiqi Mohd Zainuri, M. Novel Hybrid Approach for Maximizing the Extracted Photovoltaic Power under Complex Partial Shading Conditions. Sustainability 2020, 12, 5786. [Google Scholar] [CrossRef]
- Rezk, H.; Kanagaraj, N.; Al-Dhaifallah, M. Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City. Sustainability 2020, 12, 3341. [Google Scholar] [CrossRef] [Green Version]
- Kebede, A.; Berecibar, M.; Messagie, T.; Jemal, T.; Behabtu, H.; Van Mierlo, J. A Techno-Economic Optimization and Performance Assessment of a 10 kWp Photovoltaic Grid-Connected System. Sustainability 2020, 12, 7648. [Google Scholar] [CrossRef]
- METEONORM User Manuals, A.O. Available online: http://meteonorm.com/en/meteonorm-documents (accessed on 27 April 2019).
- Photovoltaic System Performance Monitoring-Guidelines for Measurement, Data Exchange and Analysis; Technical Committee GEL/82; BS EN 61724:1998; B.E. British Standards Institution: London, UK, 1998.
- Marion, B.; Kroposki, B.; Emery, K.; Del Cueto, J.; Myers, D.; Osterwald, C. Validation of a Photovoltaic Module Energy Ratings Procedure at NREL; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 1999. [Google Scholar]
- Congedo, P.; Malvoni, M.; Mele, M.; De Giorgi, M. Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 2013, 68, 1–10. [Google Scholar] [CrossRef]
- Ayompe, L.; Duffy, A.; McCormack, S.; Conlon, M. Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 2011, 52, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Kymakis, E.; Kalykakis, S.; Papazoglou, T.M. Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Convers. Manag. 2009, 50, 433–438. [Google Scholar] [CrossRef]
- Drif, M.; Pérez, P.; Aguilera, J.; Almonacid, G.; Gomez, P.; De la Casa, J.; Aguilar, J. Univer Project. A grid connected photovoltaic system of 200 kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683. [Google Scholar] [CrossRef]
- Mondol, J.D.; Yohanis, Y.; Smyth, M.; Norton, B. Long term performance analysis of a grid connected photovoltaic system in Northern Ireland. Energy Convers. Manag. 2006, 47, 2925–2947. [Google Scholar] [CrossRef]
- Pietruszko, S.; Gradzki, M. Performance of a grid connected small PV system in Poland. Appl. Energy 2003, 74, 177–184. [Google Scholar] [CrossRef]
- Sharma, V.; Chandel, S. Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India. Energy 2013, 55, 476–485. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Vågnes, E.E. Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions. Energy Convers. Manag. 2015, 90, 458–465. [Google Scholar] [CrossRef]
PV Panel | Specification |
---|---|
Type | Polycrystalline silicon |
Nominal power | 265 |
Peak efficiency | 16.47% |
Maximum power voltage | 30.6 V |
Maximum power current | 8.66 A |
Open circuit voltage | 37.7 V |
Short circuit current | 9.23 A |
Weight | 18 kg |
Net (gross) panel surface | 1.6 m |
PV Array | Specification |
---|---|
Nominal power of the PV system | 8.2 |
Number of panels | 31 |
Number of strings | 3 |
Number of modules for each string | 10 × 2 and 11 × 1 |
Number of inverters | 1 |
Net (gross) module area | 49.6 m |
Grid-connected inverter | |
DC input side (PV array connection) | |
Maximum input voltage () | 1000 V |
Rated input voltage | 267–800 |
AC output side (mains grid connection) | |
Output voltage (rated) | 220–400 V |
Output current (rated) | 11.8 A |
Output power (rated) | 8200 W |
Grid frequency | 40–50 Hz |
Power factor cos | 0.85 |
Month | GlobHor | GlobInc | GlobEff | EArray | E_Grid | EffArrR | EffSysR | |
---|---|---|---|---|---|---|---|---|
(kWh/m) | (°C) | (kWh/m) | (kWh/m) | (kWh) | (kWh) | (%) | (%) | |
January | 141.0 | 9.70 | 133.3 | 126.0 | 956.4 | 928.1 | 14.38 | 13.96 |
February | 97.0 | 8.40 | 101.8 | 96.7 | 736.5 | 714.1 | 14.51 | 14.07 |
March | 79.0 | 8.40 | 95.5 | 90.9 | 695.3 | 674.6 | 14.60 | 14.16 |
April | 41.0 | 6.70 | 58.8 | 56.0 | 433.2 | 418.3 | 14.78 | 14.27 |
May | 22.0 | 4.10 | 39.9 | 37.7 | 294.1 | 282.5 | 14.80 | 14.21 |
June | 11.0 | 2.10 | 18.8 | 17.5 | 136.8 | 128.5 | 14.56 | 13.67 |
July | 15.0 | 2.00 | 25.4 | 23.8 | 187.3 | 177.2 | 14.77 | 13.98 |
August | 27.0 | 2.80 | 40.5 | 38.5 | 303.3 | 290.5 | 15.02 | 14.38 |
September | 62.0 | 4.40 | 78.4 | 74.8 | 582.3 | 563.6 | 14.89 | 14.42 |
October | 93.0 | 6.20 | 99.5 | 94.4 | 726.5 | 704.0 | 14.65 | 14.19 |
November | 136.0 | 7.90 | 134.7 | 127.8 | 970.8 | 943.3 | 14.45 | 14.04 |
December | 149.0 | 9.50 | 138.4 | 130.8 | 982.7 | 953.4 | 14.24 | 13.82 |
Year | 873.0 | 6.00 | 965.1 | 914.8 | 7005.3 | 6778.0 | 14.56 | 14.08 |
Location | PV Type | Installed | Monitoring | Final Yield | Capacity | Performance | Reference |
---|---|---|---|---|---|---|---|
Power (kWp) | Period | ((kWh/kWp—Day) | Factor (%) | Ratio (%) | |||
Crete, Greece | pc-Si | 171.36 | 2007 | 3.66 | 15.3 | 67.4 | [31] |
Jaén, Spain | mc-Si | 20 | 2003 | 2.74 | 10.84 | 65 | [32] |
Ballymena, Northern Ireland | mc-Si | 13 | 2001 to 2003 | 1.7–1.9 | - | 60–62 | [33] |
Warsaw, Poland | a-Si | 1 | 2001 | 2.27 | 9.47 | 60–80 | [34] |
Khatkar-Kalan, India | 190 | 2011 | 2.23 | 9.27 | 74 | [35] | |
Punta Arenas, Chile | pc-Si | 8.2 | 2018 | 3.6 | 15.1 | 89 | Present study |
Dublin, Ireland | mc-Si | 1.72 | 2008–2009 | 2.4 | 10.1 | 81.5 | [30] |
As, Norway | pc-Si | 2.07 | 2013–2014 | 2.55 | 10.6 | 83 | [36] |
Nis, Serbia | mc-Si | 2.0 | 2013–2014 | 3.18 | 12.88 | 93.6 | [10] |
Eastern, India | pc-Si | 11.2 | 2014–2015 | 3.67 | 15.3 | 78 | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, H.; Rivera, M.; Wheeler, P.; Vicencio, N. The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region. Sustainability 2020, 12, 9227. https://doi.org/10.3390/su12219227
Vidal H, Rivera M, Wheeler P, Vicencio N. The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region. Sustainability. 2020; 12(21):9227. https://doi.org/10.3390/su12219227
Chicago/Turabian StyleVidal, Humberto, Marco Rivera, Patrick Wheeler, and Nicolás Vicencio. 2020. "The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region" Sustainability 12, no. 21: 9227. https://doi.org/10.3390/su12219227
APA StyleVidal, H., Rivera, M., Wheeler, P., & Vicencio, N. (2020). The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region. Sustainability, 12(21), 9227. https://doi.org/10.3390/su12219227