Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Sampling
2.3. Precipitation and Discharge
2.4. Snow Cover and Artificial Snow Production
2.5. Measuring Sites
2.6. Field and Laboratory Analyses
2.6.1. Physico-Chemical Analyses
- temperature,
- pH,
- electrical conductivity,
- dissolved oxygen,
- turbidity,
- suspended matter,
- nitrogenous substances.
2.6.2. Bacteriological Analyses
3. Results and Discussion
3.1. Natural and Artifcial Snow Cover and Hydrology
3.2. Physisco-Chemical Parameters
3.3. Bacteria
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Křeček, J.; Haigh, M.; Hofer, T.; Kubin, E.; Promper, C. Ecosystem Services of Headwater Catchments; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 3-319-57945-2. [Google Scholar]
- Amatya, D.M.; Williams, T.M.; Bren, L.; de Jong, C. Forest Hydrology: Processes, Management and Assessment; CABI: Wallingford, UK, 2016; ISBN 978-1-78064-660-2. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Van Oel, P.R. Advancing water footprint assessment research: Challenges in monitoring progress towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- UN Water. Integrated Monitoring Guide for SDG 6: Targets and Global Indicators; UN Water: Geneva, Switzerland, 2016; p. 26. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. s.l; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Wurm, K. Untersuchungen zu Den Gewässerökologischen Auswirkungen der Einleitungen aus den Steinbruchbetrieben im Oberen Achertal (Analysis of Hydroecological Impacts of Discharge from a Granite Quarry in the Upper Acher Valley); Regierungspräsidium Freiburg; Gewässerökologisches Labor: Starzach, Germany, 2014. [Google Scholar]
- Mann, C.; Absher, J.D. Recreation conflict potential and management implications in the northern/central Black Forest Nature Park. J. Environ. Plan. Manag. 2008, 51, 363–380. [Google Scholar] [CrossRef]
- Ott, B.; Uhlenbrook, S. Quantifying the impact of land-use changes at the event and seasonal time scale using a process-oriented catchment model. Hydrol. Earth Syst. Sci. Discuss. 2004, 8, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Global Freshwater Quality. A first Assessment; Meybeck, M.D., Chapman, D.V., Helmer, R., Eds.; WHO and UNE; Basil Blackwell: Oxford, UK, 1989. [Google Scholar]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Pompei, C.; Alves, E.; Vieira, E.; Campos, L. Impact of meteorological variables on water quality parameters of a reservoir and ecological filtration system. Int. J. Environ. Sci. Technol. 2020, 17, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, S.G.; Quick, C.G.; Creed, I.F. Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals. Water Resour. Res. 2013, 49, 3863–3880. [Google Scholar] [CrossRef]
- Gray, N.F. Ch. 19 Monitoring and removal of pathogens. In Drinking Water Quality: Problems and Solutions; Cambridge University Press: Cambridge, UK, 2008; pp. 307–322. [Google Scholar]
- Pennington, K.L.; Cech, T.V. Water Quality. In Introduction to Water Resources and Environmental Issues; Cambridge University Press: Cambridge, UK, 2009; pp. 99–136. ISBN 1-107-39420-1. [Google Scholar]
- Geldreich, E.E. Pathogenic agents in freshwater resources. Hydrol. Process. 1996, 10, 315–333. [Google Scholar] [CrossRef]
- Xie, X.; Norra, S.; Berner, Z.; Stüben, D. A Gis-Supported Multivariate Statistical Analysis of Relationships Among Stream Water Chemistry, Geology and Land Use in Baden-Württemberg, Germany. Water. Air. Soil Pollut. 2005, 167, 39–57. [Google Scholar] [CrossRef]
- Schneider, P.; Neitzel, P.L.; Schaffrath, M.; Schlumprecht, H. Physico-chemical assessment of the reference status in German surface waters: A contribution to the establishment of the EC Water Framework Directive 2000/60/EG in Germany. Acta Hydrochim. Hydrobiol. 2003, 31, 49–63. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Wang, Z. Ecosystem Effects of Acidic Deposition. In Encyclopedia of Water; American Cancer Society: New York, NY, USA, 2019; pp. 1–12. ISBN 978-1-119-30076-2. [Google Scholar]
- Shanley, J.B.; Wemple, B. Water Quantity and Quality in the Mountain Environment. Vt. Law Rev. 2001, 26, 717. [Google Scholar]
- Murdoch, P.S.; Shanley, J.B. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method. Water Resour. Res. 2006, 42, 42. [Google Scholar] [CrossRef]
- Constantz, J. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resour. Res. 1998, 34, 1609–1615. [Google Scholar] [CrossRef]
- Ries, J.B. Landscape damage by skiing at the Schauinsland in the Black Forest, Germany. Mt. Res. Dev. 1996, 16, 27–40. [Google Scholar] [CrossRef]
- Molles, M.C.; Gosz, J.R. Effects of a ski area on the water quality and invertebrates of a mountain stream. Water. Air. Soil Pollut. 1980, 14, 187–205. [Google Scholar] [CrossRef]
- de Jong, C. Challenges for mountain hydrology in the third millennium. Front. Environ. Sci. 2015, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Rixen, C.; Stoeckli, V.; Ammann, W. Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspect. Plant Ecol. Evol. Syst. 2003, 5, 219–230. [Google Scholar] [CrossRef]
- Lagriffoul, A.; Boudenne, J.-L.; Absi, R.; Ballet, J.-J.; Berjeaud, J.-M.; Chevalier, S.; Creppy, E.E.; Gilli, É.; Gadonna, J.-P.; Gadonna-Widehem, P.; et al. Bacterial-based additives for the production of artificial snow: What are the risks to human health? Sci. Total Environ. 2010, 408, 1659–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jong, C. Hochgebirge: Wassertürme für eine wachsende Weltbevölkerung. In Warnsignal Klima: Hochgebirge im Wandel; Lozán, J.L., Breckle, S.-W., Escher-Vetter, H., Grassl, H., Kasang, D., Paul, F., Schickhoff, U., Eds.; Wissenschaftliche Auswertungen: Hamburg, Germany, 2020; pp. 45–52. [Google Scholar]
- Siegwald, L. Qualité de l’eau en Moyenne Montagne: Pentes Naturelles et Anthropisées (Water Quality in Low Mountain Regions: Natural and Artificial Slopes). Master’s Thesis, Faculty of Geography and Regional Planning, University of Strasbourg, Strasbourg, France, 2018. [Google Scholar]
- Landesamt für Geologie, Rohstoffe und Bergbau. Baden Würrtemberg Bodenkunde Übersichtskarte 1:50,000. Available online: http://maps.lgrb-bw.de/?view=lgrb_uek350_boden (accessed on 1 June 2018).
- DWD Niederschlag: Vieljährige Mittelwerte 1981–2010. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_8110_akt_html.html?view=nasPublication (accessed on 1 June 2018).
- Ortlam, D. Der Ursprung der Acher (Nord-Schwarzwald) Anhand Historischer Recherchen, Die Glaziale Genese des Ruhesteins und der Neue FRT-Horizont im Tiefen Buntsandstein (Schwarzwald-Hochstraße); Ortlam: Bremen, Germany, 2010; p. 26. [Google Scholar]
- Thies, H. Limnochemische Untersuchungen an vier Karseen des Nordschwarzwaldes unter Berücksichtigung von sauren Niederschlägen sowie der Makrophytenvegetation. Diploma Thesis, University of Freiburg, Baden-Württemberg, Germany, 1987. [Google Scholar]
- Gilfedder, B.S.; Petri, M.; Biester, H. Iodine speciation and cycling in fresh waters: A case study from a humic rich headwater lake (Mummelsee). J. Limnol. 2009, 68, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia. Mummelsee—Wikipedia, Die Freie Enzyklopädie. Available online: https://de.wikipedia.org/wiki/Mummelsee (accessed on 2 June 2020).
- Fiedler, S.; Lamers, M.; Ingwersen, J.; Streck, T.; Stahr, K.; Jungkunst, H.F. Impact of the heatwave in 2003 on the summer CH4 budget of a spruce forest with large variation in soil drainage: A four-year comparison (2001–2004). J. Plant Nutr. Soil Sci. 2008, 171, 666–671. [Google Scholar] [CrossRef]
- BFG Thematische Karte, 2nd WRRL Bewirtschaftungsplan (WFD Management Plan); BFG: Koblenz, Germany. Available online: https://geoportal.bafg.de/wfdmaps2017/ (accessed on 2 June 2020).
- Schlund, W. Naturschutzgebiet Hornisgrinde—Biberkessel; Staatliche Naturschutzverwaltung Baden-Württemberg, Regierungspräsidium Freiburg: Freiburg, Germany, 2009. [Google Scholar]
- Hornisgrinde. Available online: https://en.wikipedia.org/wiki/Hornisgrinde (accessed on 2 June 2020).
- ILN Bühl. Management Plan (MaP) für das FFH-Gebiet 7415-311 “Wilder See—Hornisgrinde und Oberes Murgtal”. Natura 2000; Regierungspräsidium Karlsruhe: Karlsruhe, Germany, 2018; p. 178. [Google Scholar]
- Nationalpark Schwarzwald LGL Gebietsgliederung. Available online: www.lgl-bw.de (accessed on 2 June 2020).
- Sauer, S.; Freiwald, A.; Maier, T.; Kube, M.; Reinhardt, R.; Kostrzewa, M.; Geider, K. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS ONE 2008, 3, e2843. [Google Scholar] [CrossRef] [Green Version]
- LUBW. Wetter—Und Pegeldaten Hornisgrinde, Messjahr 2018, Moorkataster Baden-Würtemberg; LUBW: Karlsruhe, Germany, 2018. [Google Scholar]
- Morrill, J.C.; Bales, R.C.; Conklin, M.H. Estimating Stream Temperature from Air Temperature: Implications for Future Water Quality. J. Environ. Eng. 2005, 131, 139–146. [Google Scholar] [CrossRef] [Green Version]
- WHO. Drinking Water Parameter Cooperation Project. Support to the Revision of Annex I Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption (Drinking Water Directive); WHO: Bonn, Germany, 2017; p. 240. [Google Scholar]
- Wenninger, J.; Uhlenbrook, S.; Tilch, N.; Leibundgut, C. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrol. Process. 2004, 18, 3305–3322. [Google Scholar] [CrossRef]
- Uhlenbrook, S.; Leibundgut, C.; Maloszewski, P. Natural tracers for investigating residence times, runoff components and validation of a rainfall-runoff model. IAHS Publ. 2000, 262, 465–471. [Google Scholar]
- Clark, M.J.; Cresser, M.S.; Smart, R.; Chapman, P.J.; Edwards, A.C. The influence of catchment characteristics on the seasonality of carbon and nitrogen species concentrations in upland rivers of Northern Scotland. Biogeochemistry 2004, 68, 1–19. [Google Scholar] [CrossRef]
- Ministère de la Transition écologique et solidaire. Guide Technique Relatif à L’évaluation de L’état des Eaux de Surface Continentales (Cours D’eau, Canaux, Plans D’eau); Ministère de la Transition Ecologique et Solidaire: La Défense, France, 2019; p. 123. [Google Scholar]
- Gardner, K.K.; McGlynn, B.L. Seasonality in spatial variability and influence of land use/land cover and watershed characteristics on stream water nitrate concentrations in a developing watershed in the Rocky Mountain West. Water Resour. Res. 2009, 45, 45. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.M.; Johnsen, K.; Sørensen, J.; Nielsen, P.; Jacobsen, C.S. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol. 2000, 50, 1957–1964. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Acharya, V.; Mukhia, S.; Singh, D.; Kumar, S. Complete genome sequence of Pseudomonas frederiksbergensis ERDD5: 01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 2019, 111, 492–499. [Google Scholar] [CrossRef]
- Afzal, M.I.; Jacquet, T.; Delaunay, S.; Borges, F.; Millière, J.-B.; Revol-Junelles, A.-M.; Cailliez-Grimal, C. Carnobacterium maltaromaticum: Identification, isolation tools, ecology and technological aspects in dairy products. Food Microbiol. 2010, 27, 573–579. [Google Scholar] [CrossRef]
- Perkins, S.R.; Beckett, T.A.; Bump, C.M. Cedecea davisae bacteremia. J. Clin. Microbiol. 1986, 24, 675. [Google Scholar] [CrossRef] [Green Version]
- Kämpfer, P.; Lodders, N.; Martin, K.; Avendaño-Herrera, R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int. J. Syst. Evol. Microbiol. 2012, 62, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbate, M.; Queck, S.Y.; Koh, K.S.; Rice, S.A.; Givskov, M.; Kjelleberg, S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J. Bacteriol. 2004, 186, 692–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, F.; Stettler, J.; Priskin, J.; Rosenberg-Taufer, B.; Ponnapureddy, S.; Fux, S.; Barth, M. Tourism destinations under pressure: Challenges and innovative solutions. Lucerne Univ. Appl. Sci. Arts Inst. Tour. ITW Roesslimatte 2017, 48, 6002. [Google Scholar]
- Martín-Martín, J.M.; Ostos-Rey, M.S.; Salinas-Fernández, J.A. Why Regulation Is Needed in Emerging Markets in the Tourism Sector. Am. J. Econ. Sociol. 2019, 78, 225–254. [Google Scholar] [CrossRef] [Green Version]
- Senetra, A.; Dynowski, P.; Cieślak, I.; Źróbek-Sokolnik, A. An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains. Sustainability 2020, 12, 2963. [Google Scholar] [CrossRef] [Green Version]
Site | Latitude | Longitude | Altitude (m) | Hiking Impact | Ski Run Impact | Ski Park. Impact | Drains below B500 |
---|---|---|---|---|---|---|---|
spring | 48°35′56.274″ | 8°12′2.012″ | 1040 | - | no | no | no |
lake | 48°35′52.228″ | 8°11′59.222″ | 1035 | yes | no | no | no |
up_ski run | 48°35′38.555″ | 8°13′11.859″ | 1010 | no | yes | no | no |
natural | 48°35′37″ | 8°13′13.583″ | 1000 | no | no | no | no |
low_ski run | 48°35′43.679″ | 8°13′6.651″ | 960 | no | yes | no | no |
ski_run | 48°35′46.079″ | 8°13′6.106″ | 955 | no | yes | no | no |
fountain | 48°35′47.663″ | 8°13′2.308″ | 955 | - | no | no | no |
parking_1 | 48°35′42.84″ | 8°12′59.42″ | 945 | no | yes | yes | yes |
parking_2 | 48°35′40.258″ | 8°12′57.636″ | 935 | no | yes | no | yes |
quarry | 48°35′16.346″ | 8°12′21.345″ | 700 | no | - | - | no |
Variable | T | pH | Cond. | DOC | Oxyg. Satur. | Turb. | Susp. Matt. | Organ.Nitrog. | NO2-N | NO3-N | NH4-N | TN | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | 0.7 | 0.4 | 7.3 | 2.0 | 7.1 | |||||||||||||||||||
7.8 | 6.4 | 61.2 | 10.2 | 102 | ||||||||||||||||||||
Lake | 9.1 | 1.3 | 8.1 | 1.3 | 25.1 | 8.3 | 3.01 | 0.63 | 0.03 | 0.16 | 0.09 | 0.7 | ||||||||||||
10.9 | 7.8 | 43.6 | 9.5 | 104.9 | 12.2 | 11.9 | 1.58 | 0.03 | 0.25 | 0.09 | 2.0 | |||||||||||||
P_1 | 2.5 | 0.7 | 33.6 | 1.0 | 7.4 | 0.3 | 0.4 | 0.43 | 0.02 | 0.08 | 0.06 | 0.4 | ||||||||||||
7.3 | 6.3 | 103.5 | 8.6 | 82.5 | 0.7 | 0.23 | 1.18 | 0.01 | 0.41 | 0.05 | 1.7 | |||||||||||||
P_2 | 2.6 | 1.6 | 34.3 | 0.6 | 6.0 | |||||||||||||||||||
3.7 | 5.2 | 108.5 | 9.6 | 86.8 | ||||||||||||||||||||
Quarry | 2.6 | 0.7 | 9.5 | 1.1 | 14.0 | 0.4 | 0.29 | 0.27 | 0.06 | 0.17 | 0.01 | 0.4 | ||||||||||||
8.2 | 7.0 | 97.6 | 10.8 | 101.4 | 1.0 | 0.17 | 0.38 | 0.03 | 0.61 | 0 | 1.0 | |||||||||||||
Fount. | 0.6 | 0.4 | 3.9 | 1.8 | 24.0 | 0.2 | 11.5 | 1.0 | 0 | 0.01 | 0.02 | 1.0 | ||||||||||||
7.9 | 5.0 | 75.3 | 10.8 | 94.9 | 0.8 | 8.15 | 1.0 | 0 | 0.96 | 0.02 | 2.0 |
Sampling Site | |||||||||
---|---|---|---|---|---|---|---|---|---|
Species | ski_run | natural site | up_ski_run | low_ski_run_ | parking_1 | parking_2 | quarry | Habitat | Pathogenic |
Achromobacter sp | x | freshwater, marine water, soil | - | ||||||
Bacillus megaterium | x | marine water, soil | no | ||||||
Hafnia alvei * | x | freshwater, waste water, soil, food products | rarely | ||||||
Lelliottia amnigena * | x | principally in water | yes | ||||||
Pantoea agglomerans | x | x | vegetables, grains, fruits, excrements | yes | |||||
P. brassicacearum | x | isolated apart from rapeseed flower | yes | ||||||
P. fluorescens | x | soil, animals | Rarely | ||||||
P. frederiksbergensis | x | soil and sediments | no | ||||||
P. koreensis | x | x | x | x | cultivated soil | - | |||
P. protegens | x | x | x | soil | no | ||||
Rahnella aquatilis * | x | x | x | x | water, soil, vegetables | yes | |||
Serratia fonticola * | x | soil, animals | yes | ||||||
Staphylococcus pasteuri | x | animals, vegetables, stratospher | yes | ||||||
Yersinia enterocolitica * | x | x | surface water, food | yes | |||||
Yersinia intermedia * | x | freshwater, wastewater, rodents | rarely | ||||||
* enterobacteria |
Sampling Site | ||||||
---|---|---|---|---|---|---|
Species | Spring | Lake | Fountain | Parking_1_ | Quarry | Pathogenic |
Carnobacterium maltaromaticum | x | x | fish | |||
Cedecea davisae | x | - | ||||
Erwinia billingiae * | x | plants | ||||
Flavobacterium araucananum | x | - | ||||
Hafnia alvei * | x | rarely | ||||
Lelliottia amnigena * | x | x | x | yes | ||
Serratia fonticola * | x | x | x | rarely | ||
Serratia liquefaciens * | x | sometimes | ||||
Yersinia aldovae* | x | no | ||||
Aeromonas sp. | x | x | - | |||
Citrobacter sp. * | x | - | ||||
Flavobacterium sp | x | x | x | - | ||
Pseudomonas sp | x | x | x | x | x | - |
Serratia sp * | x | - | ||||
Yersinia sp * | x | x | - | |||
* enterobacteria |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siegwald, L.; de Jong, C. Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany. Sustainability 2020, 12, 9022. https://doi.org/10.3390/su12219022
Siegwald L, de Jong C. Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany. Sustainability. 2020; 12(21):9022. https://doi.org/10.3390/su12219022
Chicago/Turabian StyleSiegwald, Laura, and Carmen de Jong. 2020. "Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany" Sustainability 12, no. 21: 9022. https://doi.org/10.3390/su12219022
APA StyleSiegwald, L., & de Jong, C. (2020). Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany. Sustainability, 12(21), 9022. https://doi.org/10.3390/su12219022