Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises
Abstract
1. Introduction
2. Literature Review
3. Research Method
3.1. Preliminary Factors
3.2. The Ranking Model of Preliminary Factors
- Step 1:
- Data collection.
- Step 2:
- The calculation of the objective weight using the Entropy method.
- Step 3:
- The calculation of the subjective weight using FAHP.
- Step 4:
- The calculation of the integrated weights.
4. Factors’ Weights and Ranking Analysis
4.1. Factors’ Weight Results Using the FAHP-Entropy Method
- Step 1:
- Data preprocessing.
- Step 2:
- The calculation of the factors’ objective weights using the Entropy approach.
- Step 3:
- The calculation of the factors’ subjective weights using the FAHP method.
- Step 4:
- The calculation of the factors’ integrated weights.
4.2. Ranking Analysis Results
5. Discussion
- (1)
- Market scale.
- (2)
- Quality control technology.
- (3)
- Standard and system innovation.
- (4)
- Economic output value.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
B→B | Expert Teams | Making Score Items | B1 | B2 | B3 | B4 | B5 | B6 | B7 |
---|---|---|---|---|---|---|---|---|---|
B1 | D1 | m | (1,1,1) | 1/4 | 1/3 | 1 | 3 | 3 | 1 |
Fuzzy degree | Not fuzzy | Fuzzy | Fuzzy | Not fuzzy | Fuzzy | Fuzzy | |||
D2 | m | 3 | 3 | 1 | 4 | 3 | 3 | ||
Fuzzy degree | Not fuzzy | Fuzzy | Not fuzzy | Fuzzy | Fuzzy | Fuzzy | |||
D3 | m | 5 | 2 | 2 | 1/3 | 4 | 1/3 | ||
Fuzzy degree | Not fuzzy | Not fuzzy | Fuzzy | Not fuzzy | Fuzzy | Not fuzzy | |||
D4 | m | 3 | 4 | 5 | 1 | 4 | 4 | ||
Fuzzy degree | Not fuzzy | Fuzzy | Not fuzzy | Not fuzzy | Fuzzy | Not fuzzy | |||
B2 | D1 | m | 1/B1→B2 | (1,1,1) | 3 | 2 | 4 | 3 | 4 |
Fuzzy degree | Not fuzzy | Fuzzy | Not fuzzy | Fuzzy | Fuzzy | ||||
D2 | m | 1/4 | 1/4 | 3 | 3 | 2 | |||
Fuzzy degree | Not fuzzy | Fuzzy | Fuzzy | Fuzzy | Not fuzzy | ||||
D3 | m | 2 | 1/5 | 1/4 | 1/2 | 1/4 | |||
Fuzzy degree | Fuzzy | Fuzzy | Not fuzzy | Fuzzy | Not fuzzy | ||||
D4 | m | 4 | 4 | 1/5 | 2 | 3 | |||
Fuzzy degree | Fuzzy | Not fuzzy | Fuzzy | Fuzzy | Fuzzy | ||||
B3 | D1 | m | 1/B1→B3 | 1/B2→B3 | (1,1,1) | 2 | 3 | 2 | 3 |
Fuzzy degree | Very fuzzy | Not fuzzy | Fuzzy | Not fuzzy | |||||
D2 | m | 1/3 | 1/4 | 4 | 2 | ||||
Fuzzy degree | Not fuzzy | Fuzzy | Fuzzy | Fuzzy | |||||
D3 | m | 1/5 | 1/4 | 1 | 1/5 | ||||
Fuzzy degree | Fuzzy | Not fuzzy | Fuzzy | Not fuzzy | |||||
D4 | m | 1/3 | 1/5 | 1/3 | 3 | ||||
Fuzzy degree | Not fuzzy | Fuzzy | Fuzzy | Not fuzzy | |||||
B4 | D1 | m | 1/B1→B4 | 1/B2→B4 | 1/B3→B4 | (1,1,1) | 2 | 1/4 | 3 |
Fuzzy degree | Not fuzzy | Fuzzy | Not fuzzy | ||||||
D2 | m | 3 | 1/4 | 3 | |||||
Fuzzy degree | Fuzzy | Not fuzzy | Fuzzy | ||||||
D3 | m | 1/2 | 4 | 1/3 | |||||
Fuzzy degree | Fuzzy | Not fuzzy | Fuzzy | ||||||
D4 | m | 1/5 | 1/4 | 1/4 | |||||
Fuzzy degree | Not fuzzy | Fuzzy | Not fuzzy | ||||||
B5 | D1 | m | 1/B1→B5 | 1/B2→B5 | 1/B3→B5 | 1/B4→B5 | (1,1,1) | 1/5 | 3 |
Fuzzy degree | Not fuzzy | Not fuzzy | |||||||
D2 | m | 1/3 | 1/5 | ||||||
Fuzzy degree | Fuzzy | Not fuzzy | |||||||
D3 | m | 5 | 3 | ||||||
Fuzzy degree | Fuzzy | Not fuzzy | |||||||
D4 | m | 4 | 4 | ||||||
Fuzzy degree | Not fuzzy | Fuzzy | |||||||
B6 | D1 | m | 1/B1→B6 | 1/B2→B6 | 1/B3→B6 | 1/B4→B6 | 1/B5→B6 | (1,1,1) | 4 |
Fuzzy degree | Fuzzy | ||||||||
D2 | m | 1/3 | |||||||
Fuzzy degree | Not fuzzy | ||||||||
D3 | m | 1/4 | |||||||
Fuzzy degree | Fuzzy | ||||||||
D4 | m | 5 | |||||||
Fuzzy degree | Not fuzzy | ||||||||
B7 | D1 | m | 1/B1→B7 | 1/B2→B7 | 1/B3→B7 | 1/B4→B7 | 1/B5→B7 | 1/B6→B7 | (1,1,1) |
Fuzzy degree | |||||||||
D2 | m | ||||||||
Fuzzy degree | |||||||||
D3 | m | ||||||||
Fuzzy degree | |||||||||
D4 | m | ||||||||
Fuzzy degree |
Appendix B
Enterprises | Factors | Value Type | Minimum Value | Maximum Value | Expert Teams’ Evaluated Value | |||
---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | |||||
G1 | C1 | IFN | (0.01, 0.99) | (0.99, 0.01) | (0.45, 0.40) | (0.50, 0.45) | (0.55, 0.40) | (0.45, 0.40) |
C2 | LV | EP | EG | P | LG | C | C | |
C3 | LV | EP | EG | C | C | LG | G | |
C4 | LV | EP | EG | LP | LP | C | C | |
C6 | LV | EP | EG | P | LP | C | LP | |
C7 | LV | EP | EG | LP | C | LP | P | |
C8 | LV | EP | EG | P | LP | C | C | |
C9 | IFN | (0.01,0.99) | (0.99,0.01) | (0.35,0.6) | (0.40,05) | (0.40,0.50) | (0.45,0.50) | |
C11 | LV | EP | EG | C | LG | LG | LG | |
C16 | LV | EP | EG | LP | C | C | LP | |
C22 | LV | EP | EG | LP | C | C | LP | |
C23 | IFN | (0.01,0.99) | (0.99,0.01) | (050, 0.30) | (0.50, 0.40) | (0.55,0.35) | (0.50, 0.25) | |
C24 | LV | EP | EG | LG | G | LG | G | |
G2 | C1 | IFN | (0.01,0.99) | (0.99,0.01) | (0.55, 0,40) | (0.60,0.25) | (0.65,0.30) | (0.60,0.30) |
C2 | LV | EP | EG | LP | C | G | C | |
C3 | LV | EP | EG | C | LG | G | LG | |
C4 | LV | EP | EG | LP | C | C | LP | |
C6 | LV | EP | EG | P | C | LG | LP | |
C7 | LV | EP | EG | VP | P | C | C | |
C8 | LV | EP | EG | P | C | LG | LP | |
C9 | IFN | (0.01, 0.99) | (0.99, 0.01) | (0.30, 0,65) | (0.45, 0.50) | (0.50, 0.45) | (0.55, 0.40) | |
C11 | LV | EP | EG | LP | C | G | LG | |
C16 | LV | EP | EG | LP | LG | G | LG | |
C22 | LV | EP | EG | P | LP | C | C | |
C23 | IFN | (0.01, 0.99) | (0.99, 0.01) | (0.3, 0.45) | (0.45, 0.45) | (0.50, 0.40) | (0.45, 0.35) | |
C24 | LV | EP | EG | G | G | G | LG | |
G3 | C1 | IFN | (0.01, 0.99) | (0.99, 0.01) | (0.60, 0.30) | (0.65, 0.20) | (0.65, 0.30) | (0.55, 0.40) |
C2 | LV | EP | EG | C | C | LG | LG | |
C3 | LV | EP | EG | LG | C | LG | LG | |
C4 | LV | EP | EG | C | C | LG | C | |
C6 | LV | EP | EG | LP | LP | C | C | |
C7 | LV | EP | EG | P | P | C | LG | |
C8 | LV | EP | EG | LP | C | C | LG | |
C9 | IFN | (0.01, 0.99) | (0.99, 0.01) | (0.25, 0.60) | (0.55, 0.30) | (0.60, 0.30) | (0.50, 0.45) | |
C11 | LV | EP | EG | C | G | C | LG | |
C16 | LV | EP | EG | C | G | LG | LG | |
C22 | LV | EP | EG | C | C | LG | C | |
C23 | IFN | (0.01,0.99) | (0.99,0.01) | (0.40, 0.40) | (0.45, 0.40) | (0.50, 0.35) | (0.55, 0.30) | |
C24 | LV | EP | EG | G | G | VG | G | |
G4 | C1 | IFN | (0.01,0.99) | (0.99, 0.01) | (0.10, 0.85) | (0.10, 0.80) | (0.15, 0.75) | (0.05, 0.80) |
C2 | LV | EP | EG | VP | P | C | LP | |
C3 | LV | EP | EG | C | LP | C | C | |
C4 | LV | EP | EG | P | LP | P | P | |
C6 | LV | EP | EG | VP | P | LP | P | |
C7 | LV | EP | EG | VP | VP | LP | P | |
C8 | LV | EP | EG | VP | LP | P | P | |
C9 | IFN | (0.01,0.99) | (0.99,0.01) | (0.15, 0.70) | (0.25, 0.60) | (0.30, 0.55) | (0.10, 0.85) | |
C11 | LV | EP | EG | P | LP | LP | P | |
C16 | LV | EP | EG | VP | VP | P | VP | |
C22 | LV | EP | EG | P | LP | LP | LP | |
C23 | IFN | (0.01, 0.99) | (0.99, 0.01) | (0.25, 0.70) | (0.40, 0.35) | (0.35, 0.40) | (0.45, 0.25) | |
C24 | LV | EP | EG | C | G | G | G |
References
- Jin, R.Y.; Gao, S.; Cheshmehzangi, A.; Aboagye-Nimo, E. A holistic review of off-site construction literature published between 2008 and 2018. J. Clean. Prod. 2018, 202, 1202–1219. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Constr. Manag. Econ. 2008, 26, 953–966. [Google Scholar] [CrossRef]
- Li, C.Z.; Hong, J.; Xue, F.; Shen, G.Q.; Xu, X.X.; Luo, L.Z. SWOT analysis and Internet of Things-enabled platform for prefabrication housing production in Hong Kong. Habitat. Int. 2016, 57, 74–87. [Google Scholar] [CrossRef]
- Mao, C.; Xie, F.Y.; Hou, L.; Wu, P.; Wang, J.; Wang, X.Y. Cost analysis for sustainable off-site construction based on a multiple-case study in China. Habitat. Int. 2016, 57, 215–222. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S.; Chiang, Y.H. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Manage. (Oxford) 2009, 29, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Arashpour, M.; Wakefield, R.; Blismas, N.; Minas, J. Optimization of process integration and multi-skilled resource utilization in off-site construction. Autom. Constr. 2015, 50, 72–80. [Google Scholar] [CrossRef]
- Lu, W.S.; Chen, K.; Xue, F.; Pan, W. Searching for an optimal level of prefabrication in construction: An analytical framework. J. Clean. Prod. 2018, 201, 236–245. [Google Scholar] [CrossRef]
- Hwang, B.G.; Shan, M.; Looi, K.Y. Key constraints and mitigation strategies for prefabricated prefinished volumetric construction. J. Clean. Prod. 2018, 183, 183–193. [Google Scholar] [CrossRef]
- Jiang, R.; Mao, C.; Hou, L.; Wu, C.K.; Tan, J.J. A SWOT analysis for promoting off-site construction under the backdrop of China’s new urbanisation. J. Clean. Prod. 2018, 173, 225–234. [Google Scholar] [CrossRef]
- Zhang, X.L.; Skitmore, M.; Peng, Y. Exploring the challenges to industrialized residential building in China. Habitat. Int. 2014, 41, 176–184. [Google Scholar] [CrossRef]
- Guidelines on the Vigorous Development of Prefabricated Buildings (In Chinese). Available online: http://www.gov.cn/zhengce/content/2016-09/30/content_5114118.htm (accessed on 30 September 2016).
- Hou, L.; Tan, Y.; Luo, W.; Xu, S.; Mao, C.; Moon, S. Towards a more extensive application of off-site construction: A technological review. Int. J. Constr. Manag. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Tan, Y.; Shen, L.; Yao, H. Sustainable construction practice and contractors’ competitiveness: A preliminary study. Habitat Int. 2011, 35, 225–230. [Google Scholar] [CrossRef]
- Tan, Y.; Shuai, C.; Shen, L.; Hou, L.; Zhang, G. A study of sustainable practices in the sustainability leadership of international contractors. Sustain. Dev. 2019, 28, 697–710. [Google Scholar] [CrossRef]
- Teng, Y.; Mao, C.; Liu, G.W.; Wang, X.Y. Analysis of stakeholder relationships in the industry chain of industrialized building in China. J. Clean. Prod. 2017, 152, 387–398. [Google Scholar] [CrossRef]
- Gan, X.L.; Chang, R.D.; Wen, T. Overcoming barriers to off-site construction through engaging stakeholders: A two-mode social network analysis. J. Clean. Prod. 2018, 201, 735–747. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.J.; Su, Y.K.; Wu, Z.Z.; Yang, R.J. Effect of stakeholder collaborative management on off-site construction cost performance. J. Clean. Prod. 2018, 184, 490–502. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhong, R.Y.; Li, Z.; Huang, G. Production lead-time hedging and coordination in prefabricated construction supply chain management. Int. J. Prod. Res. 2017, 55, 3984–4002. [Google Scholar] [CrossRef]
- Zhai, Y.; Fu, Y.L.; Xu, G.Y.; Huang, G. Multi-period hedging and coordination in a prefabricated construction supply chain. Int. J. Prod. Res. 2019, 57, 1949–1971. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Life cycle performance of modular buildings: A critical review. Renew. Sustain. Energy Rev. 2016, 62, 1171–1183. [Google Scholar] [CrossRef]
- Mao, C.; Shen, Q.P.; Pan, W.; Ye, K.H. Major Barriers to Off-Site Construction: The Developer’s Perspective in China. J. Manag. Eng. 2015, 31, 04014043. [Google Scholar] [CrossRef]
- Hong, J.K.; Shen, G.Q.P.; Li, Z.D.; Zhang, B.Y.; Zhang, W.Q. Barriers to promoting prefabricated construction in China: A cost-benefit analysis. J. Clean. Prod. 2018, 172, 649–660. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z.; Li, L.; Gao, Y. Constraints on the Promotion of Prefabricated Construction in China. Sustainability 2018, 10, 2516. [Google Scholar] [CrossRef]
- Zakaria, S.A.S.; Gajendran, T.; Rose, T.; Brewer, G. Contextual, structural and behavioural factors influencing the adoption of industrialised building systems: A review. Archit. Eng. Des. Manag. 2018, 14, 3–26. [Google Scholar]
- Ji, Y.B.; Li, K.J.; Liu, G.W.; Shrestha, A.; Jing, J.X. Comparing greenhouse gas emissions of precast in-situ and conventional construction methods. J. Clean. Prod. 2018, 173, 124–134. [Google Scholar] [CrossRef]
- Wong, P.S.P.; Zwar, C.; Gharaie, E. Examining the Drivers and States of Organizational Change for Greater Use of Prefabrication in Construction Projects. J. Constr. Eng. Manag. 2017, 143, 04017020. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M.; Zeng, S.X.; Ng, W.C.Y. Towards adoption of prefabrication in construction. Build. Environ. 2007, 42, 3642–3654. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, D. A hybrid model of external environmental benefits compensation to practitioners for the application of prefabricated construction. Environ. Impact Assess. Rev. 2020, 81, 106358. [Google Scholar] [CrossRef]
- Cavaco, E.; Pacheco, I.; Camara, J. Detailing of concrete-to-concrete interfaces for improved ductility. Eng. Struct. 2018, 156, 210–223. [Google Scholar] [CrossRef]
- Kale, S.; Arditi, D. Diffusion of ISO 9000 certification in the precast concrete industry. Constr. Manag. Econ. 2006, 24, 485–495. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.F.; Dainty, A.R.J. Perspectives of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 2007, 25, 183–194. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Eastman, C.M.; Sacks, R.; Kaner, I. Benchmark tests for BIM data exchanges of precast concrete. Autom. Constr. 2009, 18, 469–484. [Google Scholar] [CrossRef]
- Luo, L.Z.; Shen, G.Q.; Xu, G.Y.; Liu, Y.L.; Wang, Y.J. Stakeholder-Associated Supply Chain Risks and Their Interactions in a Prefabricated Building Project in Hong Kong. J. Manag. Eng. 2019, 35, 05018015. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Fung, I.W.H.; Sing, M.C.P.; Ogunlana, S.O. Best practice of prefabrication implementation in the Hong Kong public and private sectors. J. Clean. Prod. 2015, 109, 216–231. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. The evolution of prefabricated residential building systems in Hong Kong: A review of the public and the private sector. Autom. Constr. 2009, 18, 239–248. [Google Scholar] [CrossRef]
- Isaac, S.; Bock, T.; Stoliar, Y. A methodology for the optimal modularization of building design. Autom. Constr. 2016, 65, 116–124. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Jang, Y.; Park, S.K.; Hong, S. An Experimental and Analytical Study on the Deflection Behavior of Precast Concrete Beams with Joints. Appl. Sci. 2017, 7, 1198. [Google Scholar] [CrossRef]
- Shea, A.; Wall, K.; Walker, P. Evaluation of the thermal performance of an innovative prefabricated natural plant fibre building system. Build. Serv. Eng. Res. Technol. 2013, 34, 369–380. [Google Scholar] [CrossRef]
- Lee, D.; Lim, C.; Kim, S. CO2 emission reduction effects of an innovative composite precast concrete structure applied to heavy loaded and long span buildings. Energy Build. 2016, 126, 36–43. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Manalo, A.C.; Maranan, G.B.; Muttashar, M.; Yan, Z.G.; Vijay, P.V.; Pettigrew, J. Effectiveness of a novel composite jacket in repairing damaged reinforced concrete structures subject to flexural loads. Compos. Struct. 2020, 233, 111634. [Google Scholar] [CrossRef]
- Tullini, N.; Minghini, F. Grouted sleeve connections used in precast reinforced concrete construction-Experimental investigation of a column-to-column joint. Eng. Struct. 2016, 127, 784–803. [Google Scholar] [CrossRef]
- Vaghei, R.; Hejazi, F.; Taheri, H.; Jaafar, M.S.; Aziz, F.N.A.A. Development of a new connection for precast concrete walls subjected to cyclic loading. Earthq. Eng. Eng. Vib. 2017, 16, 97–117. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. J. Clean. Prod. 2017, 142, 3592–3606. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.J.; Su, Y.K.; Wu, Z.Z. Factors Affecting the Capital Cost of Prefabrication-A Case Study of China. Sustainability 2017, 9, 1512. [Google Scholar] [CrossRef]
- Liu, J.K.; Gong, E.Q.; Wang, D.; Teng, Y. Cloud Model-Based Safety Performance Evaluation of Prefabricated Building Project in China. Wirel. Pers. Commun. 2018, 102, 3021–3039. [Google Scholar] [CrossRef]
- Shahtaheri, Y.; Rausch, C.; West, J.; Haas, C.; Nahangi, M. Managing risk in modular construction using dimensional and geometric tolerance strategies. Autom. Constr. 2017, 83, 303–315. [Google Scholar] [CrossRef]
- Choi, J.O.; O’Connor, J.T.; Kim, T.W. Recipes for Cost and Schedule Successes in Industrial Modular Projects: Qualitative Comparative Analysis. J. Constr. Eng. Manag. 2016, 142, 04016055. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhong, R.Y.; Huang, G.Q. Buffer space hedging and coordination in prefabricated construction supply chain management. Int. J. Prod. Econ. 2018, 200, 192–206. [Google Scholar] [CrossRef]
- Arashpour, M.; Wakefield, R.; Abbasi, B.; Lee, E.W.M.; Minas, J. Off-site construction optimization: Sequencing multiple job classes with time constraints. Autom. Constr. 2016, 71, 262–270. [Google Scholar] [CrossRef]
- Yang, Z.T.; Ma, Z.L.; Wu, S. Optimized flowshop scheduling of multiple production lines for precast production. Autom. Constr. 2016, 72, 321–329. [Google Scholar] [CrossRef]
- Li, X.; Shen, G.Q.; Wu, P.; Fan, H.Q.; Wu, H.Q.; Teng, Y. RBL-PHP: Simulation of Lean Construction and Information Technologies for Prefabrication Housing Production. J. Manag. Eng. 2018, 34, 04017053. [Google Scholar] [CrossRef]
- Ramaji, I.J.; Memari, A.M.; Messner, J.I. Product-Oriented Information Delivery Framework for Multistory Modular Building Projects. J. Comput. Civ. Eng. 2017, 31, 04017001. [Google Scholar] [CrossRef]
- Sutrisna, M.; Goulding, J. Managing information flow and design processes to reduce design risks in offsite construction projects. Eng. Constr. Archit. Manag. 2019, 26, 267–284. [Google Scholar] [CrossRef]
- Gibb, A.; Isack, F. Re-engineering through pre-assembly: Client expectations and drivers. Build. Res. Inf. 2010, 31, 146–160. [Google Scholar] [CrossRef]
- Benjaoran, V.; Dawood, N. Intelligence approach to production planning system for bespoke precast concrete products. Autom. Constr. 2006, 15, 737–745. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.F.; Dainty, A.R.J. Strategies for Integrating the Use of Off-Site Production Technologies in House Building. J. Constr. Eng. Manag. ASCE 2012, 138, 1331–1340. [Google Scholar] [CrossRef]
- Kasperzyk, C.; Kim, M.K.; Brilakis, I. Automated re-prefabrication system for buildings using robotics. Autom. Constr. 2017, 83, 184–195. [Google Scholar] [CrossRef]
- Taghaddos, H.; Hermann, U.; Abbasi, A. Automated Crane Planning and Optimization for modular construction. Autom. Constr. 2018, 95, 219–232. [Google Scholar] [CrossRef]
- Mostafa, S.; Chileshe, N.; Abdelhamid, T. Lean and agile integration within offsite construction using discrete event simulation A systematic literature review. Constr. Innov. Engl. 2016, 16, 483–525. [Google Scholar] [CrossRef]
- Bansal, S.; Biswas, S.; Singh, S.K. Fuzzy decision approach for selection of most suitable construction method of Green Buildings. Int. J. Sustain. Built Environ. 2017, 6, 122–132. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q. Critical success factors for modular integrated construction projects: A review. Build. Res. Inf. 2019, 5, 763–784. [Google Scholar] [CrossRef]
- Martin, E.W. Critical Success Factors of Chief MIS/DP Executives. Mis Q. 1982, 6, 1–9. [Google Scholar] [CrossRef]
- Li, C.Z.; Hong, J.K.; Xue, F.; Shen, G.Q.; Xu, X.X.; Mok, M.K. Schedule risks in prefabrication housing production in Hong Kong: A social network analysis. J. Clean. Prod. 2016, 134, 482–494. [Google Scholar] [CrossRef]
- Gan, Y.; Shen, L.; Chen, J.; Tam, V.; Tan, Y.; Illankoon, I. Critical Factors Affecting the Quality of Industrialized Building System Projects in China. Sustainability 2017, 9, 216. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Wu, G.; Li, X. Critical Success Factors for Project Planning and Control in Prefabrication Housing Production: A China Study. Sustainability 2018, 10, 836. [Google Scholar] [CrossRef]
- O’Connor, J.T.; O’Brien, W.J.; Choi, J.O. Critical Success Factors and Enablers for Optimum and Maximum Industrial Modularization. J. Constr. Eng. Manag. 2014, 140, 04014012. [Google Scholar] [CrossRef]
- Ji, Y.; Qi, L.; Liu, Y.; Liu, X.; Li, H.; Li, Y. Assessing and Prioritising Delay Factors of Prefabricated Concrete Building Projects in China. Appl. Sci. 2018, 8, 2324. [Google Scholar] [CrossRef]
- Bai, L.B.; Wang, H.L.; Huang, N.; Du, Q.; Huang, Y.D. An Environmental Management Maturity Model of Construction Programs Using the AHP-Entropy Approach. Int. J. Environ. Res. Public Health 2018, 15, 1317. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.B.; Shen, L.J.; Gu, P. Study of the integrated evaluation index system of the design of energy-saving building and the optimization of these designs based on FAHP- entropy weight. Appl. Mech. Mater. 2013, 357–360, 2859–2864. [Google Scholar] [CrossRef]
- Dou, Y.; Xue, X. Evaluation of Industrialized Construction Capability of Construction Enterprises based on AHP-Entropy Method. In ICCREM; American Society of Civil Engineers (ASCE): Guangzhou, China, 2017. [Google Scholar]
- Afshari, A.R.; Yusuff, R.M.; Derayatifar, A.R. Linguistic Extension of Fuzzy Integral for Group Personnel Selection Problem. Arab. J. Sci. Eng. 2013, 38, 2901–2910. [Google Scholar] [CrossRef]
- Li, C.Z.D.; Zhong, R.Y.; Xue, F.; Xu, G.Y.; Chen, K.; Huang, G.G.Q.; Shen, G.Q.P. Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. J. Clean. Prod. 2017, 165, 1048–1062. [Google Scholar] [CrossRef]
- Tan, T.; Chen, K.; Xue, F.; Lu, W.S. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod. 2019, 219, 949–959. [Google Scholar] [CrossRef]
- Khalili, A.; Chua, D.K. Integrated Prefabrication Configuration and Component Grouping for Resource Optimization of Precast Production. J. Constr. Eng. Manag. 2014, 140, 04013052. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, S.; Su, Y. Evaluating the Efficiency of Industrialization Process in Prefabricated Residential Buildings Using a Fuzzy Multicriteria Decision-Making Method. Math. Probl. Eng. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Mao, C.; Liu, G.; Shen, L.; Wang, X.; Wang, J. Structural Equation Modeling to Analyze the Critical Driving Factors and Paths for Off-site Construction in China. KSCE J. Civ. Eng. 2018, 22, 2678–2690. [Google Scholar] [CrossRef]
- Chiang, Y.H.; Chan, E.H.W.; Lok, L.K.L. Prefabrication and barriers to entry-a case study of public housing and institutional buildings in Hong Kong. Habitat. Int. 2006, 30, 482–499. [Google Scholar] [CrossRef]
- Said, H. Modeling and Likelihood Prediction of Prefabrication Feasibility for Electrical Construction Firms. J. Constr. Eng. Manag. 2016, 142, 04015071. [Google Scholar] [CrossRef]
- Meng, X.; Sun, M.; Jones, M. Maturity Model for Supply Chain Relationships in Construction. J. Manag. Eng. 2011, 27, 97–105. [Google Scholar] [CrossRef]
- Broft, R.; Badi, S.; Pryke, S. Towards supply chain maturity in construction. Built Environ. Proj. Asset Manag. 2016, 6, 187–204. [Google Scholar] [CrossRef]
- Han, Y.; Skibniewski, M.; Wang, L. A Market Equilibrium Supply Chain Model for Supporting Self-Manufacturing or Outsourcing Decisions in Prefabricated Construction. Sustainability 2017, 9, 2069. [Google Scholar] [CrossRef]
- Low, S.P.; Gao, S.; Tiong, K.L. Applying lean production principles to facilities design of ramp-up factories. Facilities 2015, 33, 280–301. [Google Scholar] [CrossRef]
- Pheng, L.S.; Gao, S.; Lin, J.L. Converging early contractor involvement (ECI) and lean construction practices for productivity enhancement: Some preliminary findings from Singapore. Int. J. Product. Perform. Manag. 2015, 64, 831–852. [Google Scholar] [CrossRef]
- Kong, L.; Li, H.; Luo, H.; Ding, L.; Luo, X.; Skitmore, M. Optimal single-machine batch scheduling for the manufacture, transportation and JIT assembly of precast construction with changeover costs within due dates. Autom. Constr. 2017, 81, 34–43. [Google Scholar] [CrossRef]
- Chan, W.T.; Hu, H. Constraint programming approach to-precast production scheduling. J. Constr. Eng. Manag. 2002, 128, 513–521. [Google Scholar] [CrossRef]
- Li, Z.D.; Shen, G.Q.; Xue, X.L. Critical review of the research on the management of prefabricated construction. Habitat. Int. 2014, 43, 240–249. [Google Scholar] [CrossRef]
- Wu, G.B.; Yang, R.; Li, L.; Bi, X.; Liu, B.S.; Li, S.Y.; Zhou, S.X. Factors influencing the application of prefabricated construction in China: From perspectives of technology promotion and cleaner production. J. Clean. Prod. 2019, 219, 753–762. [Google Scholar] [CrossRef]
- Li, C.Z.; Xu, X.; Shen, G.Q.; Fan, C.; Li, X.; Hong, J. A model for simulating schedule risks in prefabrication housing production: A case study of six-day cycle assembly activities in Hong Kong. J. Clean. Prod. 2018, 185, 366–381. [Google Scholar] [CrossRef]
- Yuan, Z.M.; Sun, C.S.; Wang, Y.W. Design for Manufacture and Assembly-oriented parametric design of prefabricated buildings. Autom. Constr. 2018, 88, 13–22. [Google Scholar] [CrossRef]
- Chang, Y.; Li, X.D.; Masanet, E.; Zhang, L.X.; Huang, Z.Y.; Ries, R. Unlocking the green opportunity for prefabricated buildings and construction in China. Resour. Conserv. Recycl. 2018, 139, 259–261. [Google Scholar] [CrossRef]
- Shen, K.; Cheng, C.; Li, X.; Zhang, Z. Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing. Sustainability 2019, 11, 207. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131–143. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, C.L.; Gu, L.W.; Zhang, Y. The evaluation of tourism destination competitiveness by TOPSIS & information entropy-A case in the Yangtze River Delta of China. Tour. Manag. 2011, 32, 443–451. [Google Scholar]
- Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [Google Scholar] [CrossRef]
- Zhang, G.; Zou, P.X.W. Fuzzy Analytical Hierarchy Process Risk Assessment Approach for Joint Venture Construction Projects in China. J. Constr. Eng. Manag. 2007, 133, 771–779. [Google Scholar] [CrossRef]
- Yun, C. Research on Evaluation Index System of Low-carbon Building Based on Triangular Fuzzy AHP in Chongqing in Chongqing University; Chongqing University: Chongqing, China, 2014. (In Chinese) [Google Scholar]
- Ye, J. Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision-making method based on the weights of alternatives. Expert Syst. Appl. 2011, 38, 6179–6183. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets. Appl. Math. Model. 2010, 34, 3864–3870. [Google Scholar] [CrossRef]
- Yuan, Y.; Guan, T.; Yan, X.B.; Li, Y.J. Based on hybrid VIKOR method decision making model for supplier selection. Control Decis. 2014, 29, 551–560. (In Chinese) [Google Scholar]
- Buckley, J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, L.; Yang, Y.; Chong, H.; Moon, S. A comparative review and framework development on public participation for decision-making in Chinese public projects. Environ. Impact Assess. Rev. 2019, 75, 79–87. [Google Scholar] [CrossRef]
- The Thirteenth Five-Year Plan for Prefabricated Building (In Chinese). Available online: http://www.mohurd.gov.cn/wjfb/201703/t20170327_231283.html (accessed on 23 March 2017).
- Luo, L.Z.; Mao, C.; Shen, L.Y.; Li, Z.D. Risk factors affecting practitioners’ attitudes toward the implementation of an industrialized building system A case study from China. Eng. Constr. Archit. Manag. 2015, 22, 622–643. [Google Scholar] [CrossRef]
- Guidance on Improving Quality Assurance System to Improve the Quality of Construction Projects (In Chinese). Available online: http://www.mohurd.gov.cn/wjfb/201909/t20190925_241956.html (accessed on 15 September 2019).
- Guide to the Development of Prefabricated Concrete construction Technology System (Residential Building) (In Chinese). Available online: http://www.mohurd.gov.cn/wjfb/201911/t20191104_242548.html (accessed on 4 July 2019).
- Li, H.X.; Al-Hussein, M.; Lei, Z.; Ajweh, Z. Risk identification and assessment of modular construction utilizing fuzzy analytic hierarchy process (AHP) and simulation. Can. J. Civ. Eng. 2013, 40, 1184–1195. [Google Scholar] [CrossRef]
Research Theme | Research Areas | References |
---|---|---|
Prefabrication industry |
| [22,25] |
| [21,26] | |
| [27,28] | |
| [29,30] | |
Stakeholders and application |
| [21,31] |
| [32,33] | |
| [9,31] | |
| [34,35] | |
Prefabrication product |
| [7,36] |
| [37,38] | |
| [39,40] | |
| [41,42] | |
Performance evaluation |
| [20,43] |
| [4,22] | |
| [44,45] | |
Managerial |
| [46,47] |
| [48] | |
| [49,50] | |
| [49,51] | |
Technical |
| [52,53] |
| [36,54] | |
| [55,56] | |
| [57,58] | |
| [59,60] |
Theme | Method for Primary Factors | Method for Critical Factors | Source |
---|---|---|---|
Major barriers to off-site construction | LR & in-depth IR | Mean score based on questionnaire | [21] |
Constraints on PC promotion | LR & semi-structured IR | [23] | |
Critical factors affecting IBS * quality | LR & semi-structured IR | [64] | |
Critical success factors for project management | LR & in-depth IR | [65] | |
Factors affecting PC capital cost | LR & semi-structured IR | [44] | |
Critical success factors for PC optimum | LR & IR & brainstorming | Mean score based on expert survey | [66] |
Challenges to industrialised building | LR & in-depth IR | Fuzzy set theory based on questionnaire | [10] |
Risk management factors for PC | LR & IR | SNA | [63] |
Project delivery delay factors for PC | LR & IR | DEMATEL-ANP * based on expert survey | [67] |
Aspects | Factors | Type | Value Type | Source | |
---|---|---|---|---|---|
Technology aspect (B1) | C1 | Applicability of BIM technology | S | IFN | [3,72,73] |
C2 | Applicability of efficiency management technology | S | IFN | [66,74,75] | |
C3 | Applicability of quality control technology | S | IFN | [64,67] | |
C4 | Applicability of cost management technology | S | IFN | [22,44,76] | |
C5 | High prefabricated rate | O | PNV | [77,78] | |
Management aspect (B2) | C6 | Level of supply chain management | S | LV | [79,80,81] |
C7 | Level of lean construction | S | LV | [51,59,82] | |
C8 | Level of resource management | S | LV | [50,83,84] | |
C9 | Ability to plan management | S | IFN | [63,66,83,85] | |
Labor aspect (B3) | C10 | Proportion of skilled workers | O | IV | [23,24] |
C11 | Professional level of skilled workers | S | LV | [22,23,67] | |
C12 | Number of improvement proposals by one person | O | IV | [59,82,83] | |
R&D aspect (B4) | C13 | Number of research publications per year article | O | PNV | [76,86,87] |
C14 | Number of external collaborated institutions | O | PNV | [8,86] | |
C15 | Number of standard and system innovation | O | PNV | [22,64,87] | |
C16 | Level of information platform innovation | S | LV | [3,72,73] | |
Market aspect (B5) | C17 | Number of prefabricated construction areas per year | O | PNV | [4,24,63] |
C18 | Number of prefabricated projects per year | O | PNV | [8,24] | |
C19 | Number of prefabricated construction factories | O | PNV | [88] | |
C20 | Number of prefabricated components categories | O | PNV | [22,66,89] | |
Environmental aspect (B6) | C21 | Proportion of sustainable materials in all materials | O | IV | [87,90] |
C22 | Level of material utilization | S | LV | [1,66,91] | |
C23 | Ability to protect environment | S | IFN | [90,91,92] | |
C24 | Level of social recognition | S | LV | [23,24,77] | |
Economic aspect (B7) | C25 | Annual output value of prefabricated projects | O | PNV | [4,44,76] |
C26 | Total assets value | O | PNV | [4,22,87] | |
C27 | Annual profit value of prefabricated projects | O | PNV | [24,44,76] |
Factor | σi | ωi | |
---|---|---|---|
C1 | (0.359, 0.515, 0.126) | 0.969 | 0.007 |
C2 | (0.438, 0.462, 0.100) | 0.840 | 0.038 |
C3 | (0.568, 0.331, 0.102) | 0.891 | 0.026 |
C4 | (0.399, 0.497, 0.103) | 0.767 | 0.055 |
C5 | 0.768 | 0.872 | 0.030 |
C6 | (0.347, 0.554, 0.099) | 0.842 | 0.037 |
C7 | (0.305, 0.604, 0.091) | 0.821 | 0.042 |
C8 | (0.368, 0.532, 0.100) | 0.843 | 0.037 |
C9 | (0.347, 0.553, 0.100) | 0.935 | 0.015 |
C10 | (0.417, 0.625) | 0.852 | 0.035 |
C11 | (0.489, 0.405, 0.105) | 0.925 | 0.018 |
C12 | (0.125, 0.450) | 0.888 | 0.026 |
C13 | 0.453 | 0.806 | 0.046 |
C14 | 0.660 | 0.805 | 0.046 |
C15 | 0.588 | 0.730 | 0.064 |
C16 | (0.401, 0.506, 0.093) | 0.865 | 0.032 |
C17 | 0.650 | 0.720 | 0.066 |
C18 | 0.618 | 0.797 | 0.048 |
C19 | 0.567 | 0.918 | 0.019 |
C20 | 0.750 | 0.970 | 0.007 |
C21 | (0.406, 0.625) | 0.917 | 0.020 |
C22 | (0.408, 0.481,0.112) | 0.765 | 0.055 |
C23 | (0.435, 0.393, 0.173) | 0.912 | 0.021 |
C24 | (0.717, 0.185, 0.098) | 0.865 | 0.032 |
C25 | 0.586 | 0.735 | 0.062 |
C26 | 0.675 | 0.799 | 0.047 |
C27 | 0.625 | 0.716 | 0.067 |
Aspect | D(S) | Factor | D(C) | θ |
---|---|---|---|---|
B1 | 0.210 | C1 | 0.216 | 0.045 |
C2 | 0.216 | 0.045 | ||
C3 | 0.491 | 0.103 | ||
C4 | 0.077 | 0.016 | ||
C5 | 0.000 | 0.000 | ||
B2 | 0.210 | C6 | 0.250 | 0.053 |
C7 | 0.250 | 0.053 | ||
C8 | 0.209 | 0.044 | ||
C9 | 0.291 | 0.061 | ||
B3 | 0.068 | C10 | 0.374 | 0.026 |
C11 | 0.374 | 0.026 | ||
C12 | 0.251 | 0.017 | ||
B4 | 0.122 | C13 | 0.225 | 0.027 |
C14 | 0.225 | 0.027 | ||
C15 | 0.456 | 0.055 | ||
C16 | 0.095 | 0.012 | ||
B5 | 0.188 | C17 | 0.341 | 0.064 |
C18 | 0.341 | 0.064 | ||
C19 | 0.249 | 0.047 | ||
C20 | 0.068 | 0.013 | ||
B6 | 0.113 | C21 | 0.297 | 0.033 |
C22 | 0.297 | 0.033 | ||
C23 | 0.169 | 0.019 | ||
C24 | 0.238 | 0.027 | ||
B7 | 0.090 | C25 | 0.386 | 0.035 |
C26 | 0.386 | 0.035 | ||
C27 | 0.229 | 0.021 |
Code | Objective Weight ω | Subjective Weight θ | Integrated Weight W | Rank |
---|---|---|---|---|
C17 | 0.066 | 0.064 | 0.065 | 1 |
C3 | 0.026 | 0.103 | 0.064 | 2 |
C15 | 0.064 | 0.055 | 0.060 | 3 |
C18 | 0.048 | 0.064 | 0.056 | 4 |
C25 | 0.062 | 0.035 | 0.049 | 5 |
C7 | 0.042 | 0.053 | 0.047 | 6 |
C6 | 0.037 | 0.053 | 0.045 | 7 |
C22 | 0.055 | 0.033 | 0.044 | 8 |
C27 | 0.067 | 0.021 | 0.044 | 9 |
C2 | 0.038 | 0.045 | 0.042 | 10 |
C26 | 0.047 | 0.035 | 0.041 | 11 |
C8 | 0.037 | 0.044 | 0.040 | 12 |
C9 | 0.015 | 0.061 | 0.038 | 13 |
C13 | 0.046 | 0.027 | 0.037 | 14 |
C14 | 0.046 | 0.027 | 0.037 | 15 |
C4 | 0.055 | 0.016 | 0.036 | 16 |
C19 | 0.019 | 0.047 | 0.033 | 17 |
C10 | 0.035 | 0.026 | 0.030 | 18 |
C24 | 0.032 | 0.027 | 0.029 | 19 |
C21 | 0.020 | 0.033 | 0.027 | 20 |
C1 | 0.007 | 0.045 | 0.026 | 21 |
C11 | 0.018 | 0.026 | 0.022 | 22 |
C12 | 0.026 | 0.017 | 0.022 | 23 |
C16 | 0.032 | 0.012 | 0.022 | 24 |
C23 | 0.021 | 0.019 | 0.020 | 25 |
C5 | 0.030 | 0.000 | 0.015 | 26 |
C20 | 0.007 | 0.013 | 0.010 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, P.; Niu, Z.; Gao, S.; Hou, L.; Zhang, G. Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises. Sustainability 2020, 12, 8996. https://doi.org/10.3390/su12218996
Dang P, Niu Z, Gao S, Hou L, Zhang G. Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises. Sustainability. 2020; 12(21):8996. https://doi.org/10.3390/su12218996
Chicago/Turabian StyleDang, Pei, Zhanwen Niu, Shang Gao, Lei Hou, and Guomin Zhang. 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises" Sustainability 12, no. 21: 8996. https://doi.org/10.3390/su12218996
APA StyleDang, P., Niu, Z., Gao, S., Hou, L., & Zhang, G. (2020). Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises. Sustainability, 12(21), 8996. https://doi.org/10.3390/su12218996