Basil (Ocimum basilicum) Cultivation in Decoupled Aquaponics with Three Hydro-Components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) Production in Northern Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. FishGlassHouse (FGH) and Aquaponic System Design
2.2. Experimental Hydroponic Components
2.3. Plant and Fish Species
2.4. Physical and Chemical Parameters
2.5. Mathematical and Statistical Analyses
3. Results
3.1. Fish Growth
3.2. Plant Growth
3.3. Physico-Chemical Parameters
4. Discussion
4.1. Fish Growth
4.2. Physico-Chemical Parameters in the Hydroponic Components
4.3. Plant Growth Parameters
4.3.1. Leaf Development
4.3.2. Plant Biomass Development
4.3.3. Plant Root Development
4.3.4. Plant Height Development
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Strauch, S.M.; Kotzen, B. Coupled Aquaponics Systems. In Aquaponics Food Production Systems; Springer Nature: Basel, Switzerland, 2019; pp. 163–199. [Google Scholar] [CrossRef] [Green Version]
- Rennert, B.; Drews, M. Eine Möglichkeit der kombinierten Fisch- und Gemüseproduktion in Gewächshäusern. Fortschr. Fisch. Wiss. 1989, 8, 19–27. (In German) [Google Scholar]
- Kloas, W.; Groß, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B.; et al. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Joyce, A.; Wuertz, S.; Körner, O.; Bläser, I.; Reuter, M.; Keesman, K.J. Decoupled Aquaponics Systems. In Aquaponics Food Production Systems; Springer Nature: Basel, Switzerland, 2019; pp. 201–229. [Google Scholar] [CrossRef] [Green Version]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponics Food Production Systems; Springer Nature: Basel, Switzerland, 2019; pp. 19–34. [Google Scholar] [CrossRef] [Green Version]
- Engle, C.R. Economics of Aquaponics; Oklahoma State University: Stillwater, OK, USA, 2016; p. 4. [Google Scholar]
- Maucieri, C.; Nicoletto, C.; van Os, E.; Anseeuw, D.; Van Havermaet, R.; Junge, R. Hydroponic Technologies. In Aquaponics Food Production Systems; Springer Nature: Basel, Switzerland, 2019; pp. 77–110. [Google Scholar] [CrossRef] [Green Version]
- Geilfus, C.M. Hydroponic Systems in Horticulture. In Controlled Environment Horticulture; Springer: Cham, Switzerland, 2019; pp. 35–40. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges–A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Junge, R.; König, B.; Villarroel, M.; Komives, T.; Jijakli, M.H. Strategic Points in Aquaponics. Water 2017, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, K.A. Productivity of Kale (Brassica oleracea var. acephala) and Nile tilapia (Oreochromis niloticus) Culture in Aquaponic Systems. Master’s Thesis, The Center for Applied Research on the Environment and Sustainability (CARES), The American University in Cairo, Cairo, Egypt, 2020. [Google Scholar]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Mchunu, N.; Lagerwall, G.; Senzanje, A. Aquaponics in South Africa: Results of a national survey. Aquac. Rep. 2018, 12, 12–19. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron. 2018, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Lennard, W.A.; Leonard, B.V. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Pérez-Urrestarazu, L.; Lobillo-Eguíbar, J.; Fernández-Cañero, R.; Victor, M.; Fernández-Cabanás, V.M. Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquac. Eng. 2019, 85, 129–137. [Google Scholar] [CrossRef]
- Schmautz, Z.; Loeu, F.; Liebisch, F.; Graber, A.; Mathis, A.; Griessler Bulc, T.; Junge, R. Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water 2016, 8, 533. [Google Scholar] [CrossRef] [Green Version]
- Dunwoody, R.K. Aquaponics and Hydroponics: The Effects of Nutrient Source and Hydroponic Subsystem Design on Sweet Basil Production. Master’s Thesis, University of Central Missouri, Warrensburg, MO, USA, 2013. [Google Scholar]
- Brown, S. Culinary herb use in southern California restaurants. Calif. Agric. 1991, 45, 4–6. [Google Scholar] [CrossRef]
- Simon, J.E.; Morales, M.R.; Phippen, W.B.; Vieira, R.F.; Hao, Z. Basil: A Source of Aroma Compounds and a Popular Culinary and Ornamental Herb. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 499–505. [Google Scholar]
- Srivastava, R.K.; Kumar, S.; Sharma, R.S. Ocimum as a promising commercial crop. In The Ocimum Genome, Compendium of Plant Genome; Shasany, A.K., Kole, C., Eds.; Springer Nature: Basel, Switzerland, 2018; pp. 1–7. [Google Scholar]
- Zheljazkov, V.D.; Cantrell, C.L.; Tekwani, B.; Khan, S.I. Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting. J. Agric. Food Chem. 2008, 56, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.E.; Quinn, J.; Murray, R.G. Basil: A source of essential oils. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 484–489. [Google Scholar]
- Pushpangadan, P.; George, V. Basil. In Handbook of Herbs and Spices; Woodhead Publishing: Sawston, UK, 2012; pp. 55–72. [Google Scholar] [CrossRef]
- Palm, H.W.; Bissa, K.; Knaus, U. Significant factors affecting the economic sustainability of closed aquaponic systems; Part II: Fish and plant growth. AACL Bioflux 2014, 7, 162–175. [Google Scholar]
- Knaus, U.; Palm, H.W. Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 466, 51–63. [Google Scholar] [CrossRef]
- Knaus, U.; Appelbaum, S.; Palm, H.W. Significant factors affecting the economic sustainability of closed backyard aquaponics systems. Part IV: Autumn herbs and polyponics. AACL Bioflux 2018, 11, 1760–1775. [Google Scholar]
- Saha, S.; Monroe, A.; Day, M.R. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- Espinosa Moya, E.A.; Angel Sahagún, C.A.; Mendoza Carrillo, J.M.; Albertos Alpuche, P.J.; Álvarez-González, C.A.; Martínez-Yáñez, R. Herbaceous plants as part of biological filter for aquaponics system. Aquac. Res. 2016, 47, 1716–1726. [Google Scholar] [CrossRef]
- Destatis E2 Betriebe mit Erzeugung in Aquakultur sowie erzeugter Menge im Jahr 2018 nach Art der Bewirtschaftung. Afrikanischer Raubwels. In Land und Forstwirtschaft, Fischerei; Statistisches Bundesamt: Wiesbaden, Germany, 2018; p. 54. (In German)
- Destatis E2 Betriebe mit Erzeugung in Aquakultur sowie erzeugter Menge im Jahr 2019 nach Art der Bewirtschaftung. Afrikanischer Raubwels. In Land und Forstwirtschaft, Fischerei; Statistisches Bundesamt: Wiesbaden, Germany, 2019; p. 56. (In German)
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.W.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef]
- Baßmann, B.; Brenner, M.; Palm, H.W. Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water 2017, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Baßmann, B.; Harbach, H.; Weißbach, S.; Palm, H.W. Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus. J. World Aquac. Soc. 2018, 51, 183–199. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production. Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; FAO: Rome, Italy, 2014; p. 262. [Google Scholar]
- Bione, M.A.A.; Paz, V.P.S.; da Silva, F.; Sartoratto, A.; Soares, T.M. Production of hydroponic basil essential oil with conventional nutrient solution in brackish waters and organic nutrient solution. In Proceedings of the II Inovagri International Meeting, Fortaleza, Brazil, 13–16 April 2014; pp. 438–448. [Google Scholar]
- Putievsky, E.; Galambosi, B. 2. Production systems of sweet basil. In Basil: The Genus Ocimum; Hiltunen, R., Holm, Y., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 39–65. [Google Scholar]
- Dudley, D.H. Aquaponic Design Plans and Everything You Need to Know, 2nd ed.; Howard Publishing: Brentwood, TN, USA, 2018; p. 630. [Google Scholar]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- IBM Deutschland GmbH. IBM SPSS Statistics for Windows, Version 20.0; IBM Deutschland GmbH: Ehningen, Germany, 2011. [Google Scholar]
- Microsoft® Corporation. Microsoft Excel®; Microsoft® Corporation: Redmond, WA, USA, 2010. [Google Scholar]
- Pantanella, E. Aquaponics and sustainability: Production, quality and nutrient efficiency in Sweet basil and African catfish. In Nutrition and Quality of Aquaponic Systems; Ph.D. Thesis; Universita degli Studi della Tuscia: Viterbo, Italy, 2012. [Google Scholar]
- Martins, C.I.; Aanyu, M.; Schrama, J.W.; Verreth, J.A. Size distribution in African catfish (Clarias gariepinus) affects feeding behaviour but not growth. Aquaculture 2005, 250, 300–307. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Wasenitz, B.; Bischoff, A.A.; Strauch, S.M. Proportional up scaling of African catfish (Clarias gariepinus Burchell, 1822) commercial recirculating aquaculture systems disproportionally affects nutrient dynamics. Aquaculture 2018, 491, 155–168. [Google Scholar] [CrossRef]
- Degani, G.; Ben-Zvi, Y.; Levanon, D. The relationship between body size and growth of African catfish (Clarias gariepinus) (Burchell, 1922) fed practical diet. Indian J. Fish. 1988, 35, 207–210. [Google Scholar]
- Walters, K.J.; Currey, C.J. Hydroponic greenhouse basil production: Comparing systems and cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Meyers, M. Basil: An Herb Society of America Guide; The Herb Society of America: Kirtland, OH, USA, 2003; p. 45. [Google Scholar]
- Morano, G.; Amalfitano, C.; Sellitto, M.; Cuciniello, A.; Maiello, R.; Caruso, G. Effects of nutritive solution electrical conductivity and plant density on growth, yield and quality of sweet basil grown in gullies by subirrigation. Adv. Hortic. Sci. 2017, 31, 25–30. [Google Scholar]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture; SRAC Publ. No. 454; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2006; 16p. [Google Scholar]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. South Pacific Soil. Cult. Conf. 2003, 648, 63–69. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Bailey, D.S. Basil performance evaluation in aquaponics. HortTechnology 2019, 29, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Bittsanszky, A.; Uzinger, N.; Gyulai, G.; Mathis, A.; Junge, R.; Villarroel, M.; Kotzen, B.; Komives, T. Nutrient supply of plants in aquaponic systems. Ecocycles 2016, 2, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Succop, C.E.; Newman, S.E. Organic fertilization of fresh market sweet basil in a greenhouse. HortTechnoloy 2004, 14, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, S.A.; Chong, J.H. Less is more? Basil growth and flowering under below-recommended nitrogen fertilization rates. J. Environ. Hortic. 2016, 34, 84–90. [Google Scholar] [CrossRef]
- Werker, E. Function of essential oil-secreting glandular hairs in aromatic plans of Lamiacea—A review. Flavour Fragr. J. 1993, 8, 249–255. [Google Scholar] [CrossRef]
- Dev, N.; Das, A.K.; Hossain, M.A.; Rahman, S.M.M. Chemical compositions of different extracts of Ocimum basilicum leaves. J. Sci. Res. 2011, 3, 197. [Google Scholar] [CrossRef] [Green Version]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Kiferle, C.; Maggini, R.; Pardossi, A. Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. Aust. J. Crop Sci. 2013, 7, 321–327. [Google Scholar]
- Elansary, H.O.; Yessoufou, K.; Shokralla, S.; Mahmoud, E.A.; Skalicka-Woźniak, K. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crops Prod. 2016, 92, 50–56. [Google Scholar] [CrossRef]
- Absar, N.; Kaur, P.; Singh, A.K.; Khan, N.; Singh, S. Optimization of seed rate and seedling establishment technique for raising the nursery of French basil (Ocimum basilicum L.). Ind. Crops Prod. 2016, 85, 190–197. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Bufalo, J.; Cantrell, C.L.; Astatkie, T.; Zheljazkov, V.D.; Gawde, A.; Boaro, C.S.F. Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system. Ind. Crops Prod. 2015, 74, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on tilapia and vegetable production in the UVI aquaponic system; New dimensions on farmed Tilapia. In Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004. [Google Scholar]
- Shete, A.P.; Verma, A.K.; Chadha, N.K.; Prakash, C.; Chandrakant, M.H.; Nuwansi, K.K.T. Evaluation of different hydroponic media for mint (Mentha arvensis) with common carp (Cyprinus carpio) juveniles in an aquaponic system. Aquac. Int. 2017, 25, 1291–1301. [Google Scholar] [CrossRef]
- Graves, C.J. The nutrient film technique. Hortic. Rev. 1983, 5, 1–44. [Google Scholar]
- Robinson, D. The responses of plants to non-uniform supplies of nutrients. New Phytol. 1994, 127, 635–674. [Google Scholar] [CrossRef]
- Mohammed, S. Tomorrow’s Agriculture: “NFT Hydroponics”—Grow within Your Budget; Springer International Publishing: Manila, Philippines, 2018; p. 50. [Google Scholar] [CrossRef]
- Jena, A.K.; Biswas, P.; Saha, H. Aquaponics—A step towards urban agriculture. Innov. Farming 2016, 1, 163–167. [Google Scholar]
- Pantanella, E. Aquaponics Production, Practices and Opportunities. In Sustainable Aquaculture, Applied Environmental Science and Engineering for a Sustainable Future; Hai, F.I., Visvanathan, C., Boopathy, R., Eds.; Springer International Publishing: Manila, Philippines, 2018; pp. 191–248. [Google Scholar] [CrossRef]
- Frerichs, C.; Daum, D.; Koch, R. Ammoniumtoxizität—Eine Ursache für Wachstums- und Qualitätsbeeinträchtigungen von organisch gedüngtem Basilikum. Ammonium toxicity—One cause for growth and quality impairments on organic fertilized basil? J. Kulturpflanzen 2017, 69, 101–112. (In German) [Google Scholar] [CrossRef]
- Beaman, A.R. Irradiance, Total Nitrogen, and Nitrate-N: Ammonium-N Ratio Requirements for Optimal Edible Biomass Production of Basil. Master’s Thesis, Iowa State University, Ames, IA, USA, 2008; p. 64. [Google Scholar]
Parameters | Weight Class I 1 | Weight Class II 2 | Weight Class III 3 | p-I 4 | p-II 4 | p-III 4 |
---|---|---|---|---|---|---|
Initial weight (kg) | 0.04 ± 0.00 c | 0.35 ± 0.00 b | 1.14 ± 0.00 a | 0.001 | 0.001 | 0.001 |
Final weight (kg) | 0.33 ± 0.00 c | 1.02 ± 0.01 b | 1.85 ± 0.01 a | 0.001 | 0.001 | 0.001 |
Weight gain (kg) | 0.29 ± 0.00 c | 0.66 ± 0.01 b | 0.71 ± 0.01 a | 0.001 | 0.001 | 0.014 |
Tank initial weight (kg) | 5.60 ± 0.00 c | 49.55 ± 0.05 b | 157.17 ± 0.69 a | 0.001 | 0.001 | 0.001 |
Tank final weight (kg) | 45.82 ± 0.24 c | 141.73 ± 1.09 b | 252.75 ± 3.39 a | 0.001 | 0.001 | 0.001 |
Tank weight gain (kg) | 40.22 ± 0.24 b | 92.18 ± 1.12 a | 95.58 ± 2.70 a | 0.001 | 0.002 | 0.313 |
Feed (kg) | 29.86 ± 0.08 c | 77.59 ± 0.96 b | 86.58 ± 1.67 a | 0.001 | 0.001 | 0.001 |
Initial feed (%/biomass) | 3.57 ± 0.00 a | 1.63 ± 0.00 b | 0.96 ± 0.00 c | 0.001 | 0.001 | 0.001 |
Final feed (%/biomass) | 1.67 ± 0.00 a | 1.01 ± 0.00 b | 0.70 ± 0.00 c | 0.001 | 0.001 | 0.001 |
Mean feed (%/biomass) | 2.33 ± 0.00 a | 1.25 ± 0.01 b | 0.81 ± 0.01 c | 0.001 | 0.001 | 0.001 |
FCR 5 | 0.74 ± 0.00 c | 0.84 ± 0.00 b | 0.91 ± 0.01 a | 0.001 | 0.001 | 0.001 |
SGR (%/d) 5 | 3.23 ± 0.01 a | 1.50 ± 0.01 b | 0.90 ± 0.02 c | 0.001 | 0.001 | 0.001 |
Mortality (%) | 0.33 ± 0.58 a | 0.67 ± 0.58 a | 1.00 ± 1.00 a | 0.564 | 0.564 | 0.564 |
Parameters | Grow pipes | Raft | Gravel | p-I 1 | p-II 1 | p-III 1 |
---|---|---|---|---|---|---|
Beginning of hydroponic culture (day 0) | ||||||
Plant height (cm) | 4.2 ± 0.6 a | 3.9 ± 0.7 a | 4.1 ± 0.7 a | 0.458 | 0.840 | 0.809 |
After 35 days of culture | ||||||
Plant height above ground (cm) 2 | 79.7 ± 8.1 b | 84.9 ± 10.3 a,b | 89.9 ± 9.3 a | 0.186 | 0.001 | 0.245 |
After 41 days of culture | ||||||
Plant height (cm) 3 | 96.7 ± 7.0 b | 94.8 ± 8.6 b | 101.8 ± 8.3 a | 0.643 | 0.012 | 0.003 |
Plant wet weight (g) | 382.8 ± 63.7 a | 360.8 ± 98.3 a | 425.1 ± 108.6 a | 0.773 | 0.344 | 0.144 |
Plant dry weight (g) | 36.6 ± 7.1 a | 35.7 ± 11.2 a | 37.9 ± 11.6 a | 0.669 | 0.669 | 0.669 |
Lateral branches (no) | 13.9 ± 1.2 a | 13.4 ± 1.1 a | 14.2 ± 1.2 a | 0.122 | 0.122 | 0.122 |
Leaf (no) | 518.0 ± 81.4 a | 493.7 ± 124.8 a | 515.1 ± 133.0 a | 0.775 | 0.997 | 0.819 |
Average leaf area (cm²) | 86.2 ± 18.8 a,b | 82.5 ± 18.1 b | 96.4 ± 16.8 a | 0.780 | 0.162 | 0.037 |
After 71 days of culture | ||||||
Leaf (no) 4 | 0.3 ± 1.1 b | 0.4 ± 1.3 a,b | 1.3 ± 3.4 a | 0.506 | 0.017 | 0.085 |
Plant root wet weight (g) | 73.6 ± 20.9 a | 33.2 ± 13.1 b | 30.3 ± 9.0 b | 0.001 | 0.001 | 0.784 |
Plant root dry weight (g) | 8.3 ± 1.8 a | 5.7 ± 1.7 b | 5.1 ± 1.5 b | 0.001 | 0.001 | 0.725 |
Parameter | Grow pipes | Raft | Gravel | p-I 1 | p-II 1 | p-III 1 |
---|---|---|---|---|---|---|
DO 2 (mg/L) | 7.7 ± 0.2 a | 7.8 ± 0.2 a | 7.7 ± 0.2 a | 0.591 | 0.995 | 0.652 |
OS 3 (%) | 99.1 ± 1.0 a | 100.0 ± 0.9 a | 98.9 ± 1.4 a | 0.211 | 0.908 | 0.099 |
Temperature (°C) | 27.9 ± 1.6 a | 27.9 ± 1.7 a | 28.0 ± 1.8 a | 1.000 | 0.995 | 0.996 |
PPFD (µmol/m2s) | 166.8 ± 36.3 b | 219.4 ± 89.9 a | 172.5 ± 44.5 b | 0.001 | 0.797 | 0.004 |
Light intensity (lx) | 952.0 ± 157.4 a | 929.4 ± 154.4 a | 823.8 ± 119.1 b | 0.667 | 0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knaus, U.; Pribbernow, M.; Xu, L.; Appelbaum, S.; Palm, H.W. Basil (Ocimum basilicum) Cultivation in Decoupled Aquaponics with Three Hydro-Components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) Production in Northern Germany. Sustainability 2020, 12, 8745. https://doi.org/10.3390/su12208745
Knaus U, Pribbernow M, Xu L, Appelbaum S, Palm HW. Basil (Ocimum basilicum) Cultivation in Decoupled Aquaponics with Three Hydro-Components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) Production in Northern Germany. Sustainability. 2020; 12(20):8745. https://doi.org/10.3390/su12208745
Chicago/Turabian StyleKnaus, Ulrich, Monique Pribbernow, Lu Xu, Samuel Appelbaum, and Harry W. Palm. 2020. "Basil (Ocimum basilicum) Cultivation in Decoupled Aquaponics with Three Hydro-Components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) Production in Northern Germany" Sustainability 12, no. 20: 8745. https://doi.org/10.3390/su12208745