Successful Implementation of Climate-Friendly, Nutritious, and Acceptable School Meals in Practice: The OPTIMAT™ Intervention Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Theory
2.2. Recruitment of Schools
2.3. Preparation of the Database and Optimization
2.4. Linear Programming
2.5. Meal Planning and Implementation
2.6. Outcomes
- (1)
- Plate waste per pupil (g), calculated per day by dividing the total plate waste by the total daily number of recorded plates.
- (2)
- Food consumption per pupil (g), calculated by subtracting the sum of the total serving waste, total plate waste, and total leftover food from the total amount of prepared food and dividing that by the recorded total daily number of plates.
2.7. Statistical Analyses
3. Results
Linear Optimization and Menu Planning
4. Discussion
4.1. Main Findings
4.2. Strengths and Limitations
4.3. Future Developments of the Method
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC Climate Change. Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT—Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Oostindjer, M.; Aschemann-Witzel, J.; Wang, Q.; Skuland, S.E.; Egelandsdal, B.; Amdam, G.V.; Schjøll, A.; Pachucki, M.C.; Rozin, P.; Stein, J.; et al. Are school meals a viable and sustainable tool to improve the healthiness and sustainability of children’s diet and food consumption? A cross-national comparative perspective. Crit. Rev. Food Sci. Nutr. 2017, 57, 3942–3958. [Google Scholar] [CrossRef] [PubMed]
- The Swedish National Agency for Education Statistik om Förskola, Skola och Vuxenutbildning. Swedish. (Statistics on Preschool, School and Adult Education). Available online: https://www.skolverket.se/skolutveckling/statistik/sok-statistik-om-forskola-skola-och-vuxenutbildning (accessed on 27 May 2020).
- The Swedish Food Agency. The Swedish Food Agency Bra mat i Skolan: Råd för Förskoleklass, Grundskola, Gymnasieskola och Fritidshem. Swedish. (Good School Meals: Guidelines for Primary Schools, Secondary Schools and Youth Recreation Centres); The Swedish Food Agency: Uppsala, Sweden, 2018; ISBN 978-91-7714-266-9.
- Eustachio Colombo, P.; Patterson, E.; Elinder, L.S.; Lindroos, A.K. The importance of school lunches to the overall dietary intake of children in Sweden: A nationally representative study. Public Health Nutr. 2020, 23, 1705–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The National Food Agency. The National Food Agency Råd om bra Matvanor-Risk- Och Nyttohanteringsrapport (Advice on Good Eating Habits-Risk and Utility Management Report); The National Food Agency: Uppsala, Sweden, 2015.
- Ottmar, E.; Ramón, P.-M.; Youba, S. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, Edenhofer, O., Eds.; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-05821-7. [Google Scholar]
- Patterson, E.; Elinder, L.S. Improvements in school meal quality in Sweden after the introduction of new legislation—A 2-year follow-up. Eur. J. Public Health 2015, 25, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Micha, R.; Karageorgou, D.; Bakogianni, I.; Trichia, E.; Whitsel, L.P.; Story, M.; Peñalvo, J.L.; Mozaffarian, D. Effectiveness of school food environment policies on children’s dietary behaviors: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0194555. [Google Scholar] [CrossRef]
- Dantzig, G.B. Maximization of a linear function of variables subject to linear inequality. In Activity Analysis of Production and Allocation; Koopmans, T.C., Ed.; Wiley & Chapman-Hall: New York, NY, USA; London, UK, 1951; pp. 339–347. [Google Scholar]
- Gazan, R.; Brouzes, C.M.C.; Vieux, F.; Maillot, M.; Lluch, A.; Darmon, N. Mathematical Optimization to Explore Tomorrow’s Sustainable Diets: A Narrative Review. Adv. Nutr. 2018, 9, 602–616. [Google Scholar] [CrossRef]
- Vieux, F.; Perignon, M.; Gazan, R.; Darmon, N. Dietary changes needed to improve diet sustainability: Are they similar across Europe? Eur. J. Clin. Nutr. 2018, 72, 951. [Google Scholar] [CrossRef]
- Perignon, M.; Masset, G.; Ferrari, G.; Barré, T.; Vieux, F.; Maillot, M.; Amiot, M.-J.; Darmon, N. How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutr. 2016, 19, 2662–2674. [Google Scholar] [CrossRef] [Green Version]
- Macdiarmid, J.I.; Kyle, J.; Horgan, G.W.; Loe, J.; Fyfe, C.; Johnstone, A.; McNeill, G. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am. J. Clin. Nutr. 2012, 96, 632–639. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Horgan, G.W.; Whybrow, S.; Macdiarmid, J.I. Healthy and sustainable diets that meet greenhouse gas emission reduction targets and are affordable for different income groups in the UK. Public Health Nutr. 2019, 22, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Horgan, G.W.; Perrin, A.; Whybrow, S.; Macdiarmid, J.I. Achieving dietary recommendations and reducing greenhouse gas emissions: Modelling diets to minimise the change from current intakes. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, N.; Nghiem, N.; Mhurchu, C.N.; Eyles, H.; Baker, M.G.; Blakely, T. Foods and Dietary Patterns That Are Healthy, Low-Cost, and Environmentally Sustainable: A Case Study of Optimization Modeling for New Zealand. PLoS ONE 2013, 8, e59648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eustachio Colombo, P.; Patterson, E.; Schafer Elinder, L.; Lindroos, A.K.; Sonesson, U.; Darmon, N.; Parlesak, A. Optimizing School Food Supply: Integrating Environmental, Health, Economic, and Cultural Dimensions of Diet Sustainability with Linear Programming. Int. J. Environ. Res. Public Health 2019, 16, 3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benvenuti, L.; De Santis, A.; Santesarti, F.; Tocca, L. An optimal plan for food consumption with minimal environmental impact: The case of school lunch menus. J. Clean. Prod. 2016, 129, 704–713. [Google Scholar] [CrossRef]
- Ribal, J.; Fenollosa, M.L.; García-Segovia, P.; Clemente, G.; Escobar, N.; Sanjuán, N. Designing healthy, climate friendly and affordable school lunches. Int. J. Life Cycle Assess. 2016, 21, 631–645. [Google Scholar] [CrossRef]
- Eustachio Colombo, P.; Patterson, E.; Lindroos, A.K.; Parlesak, A.; Elinder, L.S. Sustainable and acceptable school meals through optimization analysis: An intervention study. Nutr. J. 2020, 19, 1–15. [Google Scholar] [CrossRef]
- Bandura, A. Social Cognitive Theory. In The International Encyclopedia of Communication; Donsbach, W., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; ISBN 978-1-4051-8640-7. [Google Scholar]
- The National Food Agency Livsmedelsdatabasen Version 20181024. Swedish. Available online: https://www.livsmedelsverket.se/om-oss/psidata/livsmedelsdatabasen (accessed on 9 October 2017).
- Florén, B.; Amani, P.; Davis, J. Climate Database Facilitating Climate Smart Meal Planning for the Public Sector in Sweden. Int. J. Food Syst. Dyn. 2017, 8, 72–80. [Google Scholar]
- International Organization for Standardization ISO 14040:2006-Environmental Management—Life Cycle Assessment—Principles and Framework. Available online: https://www.iso.org/standard/37456.html (accessed on 9 October 2017).
- International Organization for Standardization ISO 14044:2006-Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Available online: https://www.iso.org/standard/38498.html (accessed on 9 October 2017).
- Parlesak, A.; Tetens, I.; Jensen, J.D.; Smed, S.; Blenkuš, M.G.; Rayner, M.; Darmon, N.; Robertson, A. Use of Linear Programming to Develop Cost-Minimized Nutritionally Adequate Health Promoting Food Baskets. PLoS ONE 2016, 11, e0163411. [Google Scholar] [CrossRef] [Green Version]
- Mason, A.J. OpenSolver-An Open Source Add-in to Solve Linear and Integer Progammes in Excel. In Operations Research Proceedings 2011; Klatte, D., Lüthi, H.-J., Schmedders, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 401–406. ISBN 978-3-642-29209-5. [Google Scholar]
- World Wildlife Fund One Planet Plate 2019–Kriterier och Bakgrund (One Planet Plate 2019–Criteria and Background). Available online: https://wwwwwfse.cdn.triggerfish.cloud/uploads/2019/04/kriterier-fr-one-planet-plate-rev-2019.pdf (accessed on 30 January 2020).
- Wanselius, J.; Axelsson, C.; Moraeus, L.; Berg, C.; Mattisson, I.; Larsson, C. Procedure to Estimate Added and Free Sugars in Food Items from the Swedish Food Composition Database Used in the National Dietary Survey Riksmaten Adolescents 2016–17. Nutrients 2019, 11, 1342. [Google Scholar] [CrossRef] [Green Version]
- School Food Sweden. Att Mäta Konsumtion (to Measure Consumption). Available online: http://www.skolmatsverige.se/konsumtionsmatning (accessed on 25 August 2020).
- Bernal, J.L.; Cummins, S.; Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348–355. [Google Scholar]
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Broekema, R.; Tyszler, M.; van’t Veer, P.; Kok, F.J.; Martin, A.; Lluch, A.; Blonk, H.T.J. Future-proof and sustainable healthy diets based on current eating patterns in the Netherlands. Am. J. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Milner, J.; Green, R.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Spadaro, J.; Markandya, A.; Wilkinson, P. Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 2015, 5, e007364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perignon, M.; Sinfort, C.; El Ati, J.; Traissac, P.; Drogué, S.; Darmon, N.; Amiot, M.-J.; Amiot, M.J.; Achir, N.; Alouane, L.; et al. How to meet nutritional recommendations and reduce diet environmental impact in the Mediterranean region? An optimization study to identify more sustainable diets in Tunisia. Glob. Food Secur. 2019, 23, 227–235. [Google Scholar] [CrossRef]
- Wickramasinghe, K.K.; Rayner, M.; Goldacre, M.; Townsend, N.; Scarborough, P. Contribution of healthy and unhealthy primary school meals to greenhouse gas emissions in England: Linking nutritional data and greenhouse gas emission data of diets. Eur. J. Clin. Nutr. 2016, 70, 1162–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardini, C.; Lankoski, L. Forced Choice Restriction in Promoting Sustainable Food Consumption: Intended and Unintended Effects of the Mandatory Vegetarian Day in Helsinki Schools. J. Consum. Policy 2013, 36, 159–178. [Google Scholar] [CrossRef]
- Tyszler, M.; Kramer, G.; Blonk, H. Just eating healthier is not enough: Studying the environmental impact of different diet scenarios for Dutch women (31–50 years old) by linear programming. Int. J. Life Cycle Assess. 2016, 21, 701–709. [Google Scholar] [CrossRef]
- Green, R.; Milner, J.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Markandya, A.; Spadaro, J.; Wilkinson, P. The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim. Chang. 2015, 129, 253–265. [Google Scholar] [CrossRef]
- Hammelman, C.; Hayes-Conroy, A. Understanding Cultural Acceptability for Urban Food Policy. J. Plan. Lit. 2015, 30, 37–48. [Google Scholar] [CrossRef]
- Thomas, J.; Sutcliffe, K.; Harden, A.; Oakley, A.; Oliver, S.; Rees, R.; Brunton, G.; Kavanagh, J. Children and Healthy Eating: A Systematic Review of Barriers and Facilitators; Centre for Reviews and Dissemination: York, UK, 2003. [Google Scholar]
- Kaljonen, M.; Peltola, T.; Salo, M.; Furman, E. Attentive, speculative experimental research for sustainability transitions: An exploration in sustainable eating. J. Clean. Prod. 2019, 206, 365–373. [Google Scholar] [CrossRef]
- För Lärare (For Teachers). Available online: https://www.wwf.se/utbildning/larare/ (accessed on 25 August 2020).
- Thomson, J.L.; Tussing-Humphreys, L.M.; Onufrak, S.J.; Zoellner, J.M.; Connell, C.L.; Bogle, M.L.; Yadrick, K. A Simulation Study of the Potential Effects of Healthy Food and Beverage Substitutions on Diet Quality and Total Energy Intake in Lower Mississippi Delta Adults. J. Nutr. 2011, 141, 2191–2197. [Google Scholar] [CrossRef] [Green Version]
- Roodenburg, A.J.C.; van Ballegooijen, A.J.; Dötsch-Klerk, M.; van der Voet, H.; Seidell, J.C. Modelling of Usual Nutrient Intakes: Potential Impact of the Choices Programme on Nutrient Intakes in Young Dutch Adults. PLoS ONE 2013, 8, e72378. [Google Scholar] [CrossRef]
- Seves, S.M.; Verkaik-Kloosterman, J.; Biesbroek, S.; Temme, E.H. Are more environmentally sustainable diets with less meat and dairy nutritionally adequate? Public Health Nutr. 2017, 20, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Verger, E.O.; Holmes, B.A.; Huneau, J.F.; Mariotti, F. Simple changes within dietary subgroups can rapidly improve the nutrient adequacy of the diet of French adults. J. Nutr. 2014, 144, 929–936. [Google Scholar] [CrossRef]
- Vieux, F.; Dubois, C.; Duchêne, C.; Darmon, N. Nutritional Quality of School Meals in France: Impact of Guidelines and the Role of Protein Dishes. Nutrients 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Payne, C.L.; Scarborough, P.; Cobiac, L. Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature. Public Health Nutr. 2016, 19, 2654–2661. [Google Scholar] [CrossRef]
- Appleton, K.M.; Hemingway, A.; Rajska, J.; Hartwell, H. Repeated exposure and conditioning strategies for increasing vegetable liking and intake: Systematic review and meta-analyses of the published literature. Am. J. Clin. Nutr. 2018, 108, 842–856. [Google Scholar] [CrossRef] [Green Version]
Parameter | Constraints | Baseline | Results | ||
---|---|---|---|---|---|
Lower Limit | Upper Limit | Baseline Food List | Optimized Food List | Final Menu Plan | |
CO2 eq. (g/lunch) | na | 499 * | 693 | 499 | 497 |
Cost (SEK/lunch) | na | na | 11.54 | 11.18 | 11.17 |
Energy (kcal/lunch) a | 672 | 672 | 672 | 672 | 667 |
Carbohydrates (%E) | 45 | 60 | 47 | 50 | 50 |
Fat (%E) | 22 | 40 | 33 | 29 | 28 |
Protein (%E) | 10 | na | 16 | 17 | 17 |
Fiber (%E) | 2 | na | 6 | 8 | 8 |
Saturated fatty acids (%E) | na | 10 | 9 | 8 | 8 |
Monounsaturated fatty acids (%E) | 10 | 20 | 14 | 12 | 12 |
Polyunsaturated fatty acids (%E) | 5 | 10 | 7 | 6 | 6 |
Vitamin A (µg) b | 188 | na | 316 | 277 | 277 |
Vitamin D (µg) b | 3.1 | na | 4.5 | 3.1 | 3.1 |
Vitamin E (mg) b | 2.2 | na | 5.1 | 4.7 | 4.7 |
Thiamine (mg) b | 0.3 | na | 0.4 | 0.4 | 0.4 |
Riboflavin (mg) b | 0.4 | na | 0.6 | 0.5 | 0.5 |
Vitamin C (mg) b | 16.0 | na | 39.6 | 40.0 | 40.0 |
Niacin (mg) b | 4.6 | na | 5.0 | 5.2 | 5.3 |
Vitamin B6 (mg) b | 0.4 | na | 0.6 | 0.6 | 0.6 |
Vitamin B12 (µg) b | 0.6 | na | 1.9 | 1.4 | 1.4 |
Folate (µg) b | 62.7 | na | 139 | 152 | 152 |
Phosphor (mg) b | 199 | na | 585 | 555 | 555 |
Iodine (µg) b | 43.2 | na | 103 | 93.4 | 94.2 |
Iron (mg) b | 3.4 | na | 3.9 | 5.2 | 4.6 |
Calcium (mg) b | 282 | na | 419 | 321 | 322 |
Potassium (mg) b | 971 | na | 1154 | 1113 | 1111 |
Magnesium (mg) b | 87.7 | na | 111 | 120 | 120 |
Salt (g) c | na | 3.6 | 2.4 | 2.3 | 2.3 |
Selenium (µg) b | 12.5 | na | 17.3 | 18.0 | 18.0 |
Zinc (mg) b | 3.4 | na | 3.5 | 3.4 | 3.4 |
Added sugars (E%) c,d | na | 5 | 2 | 1 | 1 |
Milk e | −50% | −50% | − | − | − |
Crisp bread e | −50% | −50% | − | − | − |
Butter (used as spread) e | −50% | −50% | − | − | − |
Potatoes e | −75% | +50% | − | − | − |
Frozen hamburgers e | −100% | −100% | − | − | − |
Frozen meat patties e | −100% | −100% | − | − | − |
Minced meat e | −100% | −100% | − | − | − |
Meatballs e | −0% | +0% | − | − | − |
All other foods e | −75% | +100% | − | − | − |
Plate Waste (g/Pupil) | Consumption (g/Pupil) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Intervention | Parameter Estimates | Baseline | Intervention | Parameter Estimates | |||||||||||
Mean | 95% CI | Mean | 95% CI | β1 | p | β2 | p | Mean | 95% CI | Mean | 95% CI | β1 | p | β2 | p | |
School 1 | 16 | 13–18 | 21 | 18–24 | 8.19 | 0.040 | −0.43 | 0.331 | 277 | 246–308 | 251 | 221–281 | −22.97 | 0.582 | −13.58 | 0.002 |
School 2 | 25 | 19–31 | 24 | 20–28 | 8.66 | 0.192 | 1.01 | 0.181 | 232 | 186–278 | 267 | 232–303 | −49.33 | 0.350 | −12.91 | 0.028 |
School 3 | 26 | 22–30 | 44 | 37–52 | 10.81 | 0.191 | 1.95 | 0.034 | 344 | 311–377 | 355 | 314–395 | 18.39 | 0.714 | −3.14 | 0.593 |
School 4 | 26 | 21–31 | 32 | 22–41 | 10.40 | 0.302 | −1.33 | 0.251 | 197 | 167–228 | 176 | 133–218 | −25.15 | 0.617 | 2.27 | 0.701 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elinder, L.S.; Eustachio Colombo, P.; Patterson, E.; Parlesak, A.; Lindroos, A.K. Successful Implementation of Climate-Friendly, Nutritious, and Acceptable School Meals in Practice: The OPTIMAT™ Intervention Study. Sustainability 2020, 12, 8475. https://doi.org/10.3390/su12208475
Elinder LS, Eustachio Colombo P, Patterson E, Parlesak A, Lindroos AK. Successful Implementation of Climate-Friendly, Nutritious, and Acceptable School Meals in Practice: The OPTIMAT™ Intervention Study. Sustainability. 2020; 12(20):8475. https://doi.org/10.3390/su12208475
Chicago/Turabian StyleElinder, Liselotte Schäfer, Patricia Eustachio Colombo, Emma Patterson, Alexandr Parlesak, and Anna Karin Lindroos. 2020. "Successful Implementation of Climate-Friendly, Nutritious, and Acceptable School Meals in Practice: The OPTIMAT™ Intervention Study" Sustainability 12, no. 20: 8475. https://doi.org/10.3390/su12208475