How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic
Abstract
:1. Introduction
2. A Brief Review of Understanding and Measuring Climate Resilience
3. Study Area
- During the last decade, the effects of climate change like urban flooding, storms, heat waves and droughts have been particularly noticeable for local residents. Significantly urban flooding due to a heavy rainfall event in July 2008 caused damage to infrastructures and residential properties: Within two and a half hours, 203 mm of precipitation fell over the western part of Dortmund, especially the sub-districts Marten and Dorstfeld [66].The drought and hot summer of 2018 enforced many urban heat islands and crop losses, while storms in 2014, 2018 and 2019 caused damage and harm to people and the built environment. As a reaction to the increasing number of extreme weather events, on 15 November 2018 the council decided to develop an integrated climate adaptation masterplan to strengthen resilience for the entire city. The analysis results could support the conceptualization procedure. Previous GIS-based studies have also shown that—to a certain degree—Dortmund is confronted with social-ecological inequalities [67,68].
- Since January 2017, the availability of open geodata of the surveying and cadastral administration in NRW has been considerably improved [69]. As a consequence, digital elevation models (DEM), digital landscape models (DLM), noise pollution mappings, climate analyses and high-resolution Digital Orthophotos (DOP) are freely available under the German data license »dl-de/by-2-0«. In this sense, there are fewer formal and financial barriers to the outlined research purpose and more precise analyses up to parcel level are feasible. The City of Dortmund should serve as an illustrative example to present the potential application of this free geodata and to connect those individual data sets thematically.
4. Materials and Methods
4.1. Data Collection and Preparation
4.2. Indicator Selection and Calculation
- Whose resilience is prioritized?
- What climate related extreme events should Dortmund be resilient to?
- Is the resilience of some areas prioritized over others?
4.2.1. Environment
4.2.2. Society
- residential use, up to two storeys: 15%,
- residential use, three to five storeys: 30%,
- residential use, more than five storeys: 40%, and
- residential mixed use: 15%.
4.2.3. Infrastructure
4.2.4. Economy
4.2.5. Institution
- No climate adaptation measurements are planned
- Climate adaptation measurements will be planned
- Climate adaptation measurements are planned, but not started yet to implement
- Climate adaptation measurements are currently being tested or implemented
- Climate adaptation measurements have been implemented (e.g., official land use plan is in force or plan approval procedure is finished)
4.3. Fuzzy Logic Analysis
4.3.1. Fuzzification
4.3.2. Indicator Combination and Inference Method
4.3.3. Defuzzification
4.4. Compromise Programming and Sensitivity Analysis
5. Results
5.1. Mapping the Subsystems
5.2. Urban Climate Resilience Index (UCRI)
5.3. Sensitivity Analysis
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Road Type | Max Speed |
---|---|
Motorway | 120 km/h |
Motorway_link | 50 km/h |
Trunk | 120 km/h |
Trunk_link | 50 km/h |
Primary | 50 km/h |
Primary_link | 40 km/h |
Secondary | 50 km/h |
Secondary_link | 40 km/h |
Tertiary | 50 km/h |
Tertiary_link | 40 km/h |
Residential | 30 km/h |
Living_street | 5 km/h |
Service | 20 km/h |
Track | 20 km/h |
Unclassified | 30 km/h |
Sectors | Subsectors | ALKIS-Code |
---|---|---|
Energy | Electricity, Gas, Oil | 2571, 2580, 2590, 2520, 2523, 2501, 2570, 2130, 2522 |
Information technology and telecommunications | Telecommunications, Information Technology | 3035, 2540 |
Transport and traffic | Air transport, Inland waterways transport, Rail transport, Road transport | 42,015, 42,016, 42,010, 42,001 |
Health | Medical services, Pharmaceuticals and vaccines, Laboratories, hospitals, old people’s homes, shelter for homeless | 1022, 3050, 3051, 3052, 2056, 3053, 3064 |
Water | Public water supply, Public sewage disposal | 2610, 2611, 2510, 2512, 2513 |
Finance and insurance industry | Banks, Stock exchanges, Insurance companies, Financial service providers | 2020, 2030, 2040 |
Government and public administration | Government and public administration, Judicial bodies, Emergency/rescue services including civil protection | 3066, 3010, 3011, 3012, 3014, 3015, 3016, 3019, 3071, 3072, 3070, 3100 |
Media and culture | Broadcasting (television and radio), print and electronic media, Cultural property, Structures of symbolic meaning | 2171, 3030, 3060, 3040, 3041, 3033, 3032, 3034, 3031, 3036 |
Appendix B
References
- Hagedorn, G.; Kalmus, P.; Mann, M.; Vicca, S.; van den Berge, J.; van Ypersele, J.-P.; Bourg, D.; Rotmans, J.; Kaaronen, R.; Rahmstorf, S.; et al. Concerns of young protesters are justified. Science 2019, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Allgaier, J. Science and Environmental Communication on YouTube: Strategically Distorted Communications in Online Videos on Climate Change and Climate Engineering. Front. Commun. 2019, 4, 36. [Google Scholar] [CrossRef]
- United Nations, Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 4 July 2019).
- European Environment Agency (EEA). Economic Losses from Climate-Related Extremes in Europe. 2019. Available online: https://www.eea.europa.eu/data-and-maps/indicators/direct-losses-from-weather-disasters-3/assessment-2 (accessed on 1 July 2019).
- Imbery, F.; Friedrich, K.; Haeseler, S.; Koppe, C.; Janssen, W.; Bissolli, P. Vorläufiger Rückblick auf den Sommer 2018—Eine Bilanz Extremer Wetterereignisse. Available online: https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20180803_bericht_sommer2018.pdf?__blob=publicationFile&v=10 (accessed on 29 October 2018).
- Imbery, F.; Friedrich, K.; Koppe, C.; Janssen, W.; Pfeifroth, U.; Daßler, J.; Bissolli, P. 2018 Wärmster Sommer im Norden und Osten Deutschlands. Stand 6 September 2018. Available online: https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20180906_waermstersommer_nordenosten2018.pdf?__blob=publicationFile&v=7 (accessed on 13 November 2018).
- Walker, B.H.; Salt, D.A. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2006; ISBN 9781597260930. [Google Scholar]
- Caniglia, B.S.; Frank, B.; Delano, D.; Kerner, B. Enhancing environmental justice research and praxis: The inclusion of human security, resilience and vulnerabilities literature. IJISD 2014, 8, 409. [Google Scholar] [CrossRef]
- Friend, R.; Moench, M. What is the purpose of urban climate resilience? Implications for addressing poverty and vulnerability. Urban Clim. 2013, 6, 98–113. [Google Scholar] [CrossRef]
- Sandoval, V.; Gonzalez-Muzzio, C.; Albornoz, C. Resilience and Environmental Justice: Potential Linkages. Procedia Econ. Financ. 2014, 18, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Pellow, D.N. Environmental Inequality Formation: Toward a Theory of Environmental Injustice. Am. Behav. Sci. 2000, 43, 581–601. [Google Scholar] [CrossRef]
- Mayer, B. A framework for improving resilience. In Resilience, Environmental Justice and the City; Caniglia, B.S., Vallée, M., Frank, B.F., Eds.; Routledge: Abingdon/Oxon, UK; New York, NY, USA, 2017; pp. 37–56. ISBN 9781138119895. [Google Scholar]
- Collier, M.J.; Nedović-Budić, Z.; Aerts, J.; Connop, S.; Foley, D.; Foley, K.; Newport, D.; McQuaid, S.; Slaev, A.; Verburg, P. Transitioning to resilience and sustainability in urban communities. Cities 2013, 32, S21–S28. [Google Scholar] [CrossRef] [Green Version]
- Denton, F.; Wilbanks, T.J.; Abeysinghe, A.C.; Burton, I.; Gao, Q.; Lemos, M.C.; Masui, T.; O’Brien, K.L.; Warner, K. Climate-resilient pathways: Adaptation, mitigation, and sustainable development I. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1101–1131. [Google Scholar]
- Davoudi, S. Just Resilience. City Community 2018, 17, 3–7. [Google Scholar] [CrossRef]
- Greiving, S.; Arens, S.; Becker, D.; Fleischhauer, M.; Hurth, F. Improving the Assessment of Potential and Actual Impacts of Climate Change and Extreme Events Through a Parallel Modeling of Climatic and Societal Changes at Different Scales. J. Extrem. Events 2017, 4, 1850003. [Google Scholar] [CrossRef]
- Folke, C. Resilience (Republished). ES 2016, 21. [Google Scholar] [CrossRef]
- Meerow, S.; Stults, M. Comparing Conceptualizations of Urban Climate Resilience in Theory and Practice. Sustainability 2016, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Christmann, G.; Balgar, K.; Mahlkow, N. Local Constructions of Vulnerability and Resilience in the Context of Climate Change. A Comparison of Lübeck and Rostock. Soc. Sci. 2014, 3, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster Resilience Indicators for Benchmarking Baseline Conditions. J. Homel. Secur. Emerg. Manag. 2010, 7. [Google Scholar] [CrossRef]
- Davoudi, S.; Shaw, K.; Haider, L.J.; Quinlan, A.E.; Peterson, G.D.; Wilkinson, C.; Fünfgeld, H.; McEvoy, D.; Porter, L. Resilience: A Bridging Concept or a Dead End? Plan. Theory Pract. 2012, 13, 299–333. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Bundesministerium für Bildung und Forschung (BMBF). Zukunftsstadt. Strategische Forschungs-Und Innovationsagenda. 2015. Available online: https://www.fona.de/mediathek/pdf/Zukunftsstadt.pdf (accessed on 12 May 2019).
- Werner, E.E.; Bierman, J.M.; French, F.E. The Children of Kauai. A longitudinal Study from the Prenatal Period to Age Ten; University of Hawaii Press: Honolulu, HI, USA, 1971; ISBN 0870228609. [Google Scholar]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Adewale, S.; Godson, A.; Sokan-Adeaga, A.; Sokan-Adeaga, M.; Deborah, E. Resilience and Sustainability of the Ecosystem: An Environmental Health Perspective. Lond. J. Res. Sci. Nat. Form. 2018, 18, 7–26. [Google Scholar]
- Mileti, D.; Noji, E.K. Disasters by Design: A Reassessment of Natural Hazards in the United States; Joseph Henry Press: Washington, DC, USA, 1999; ISBN 978-0-309-26173-9. [Google Scholar]
- European Commission, Directorate-General for Environment. Guidance on Integrating Climate Change and Biodiversity into Strategic Environmental Assessment; Publications Office: Luxembourg, 2013; ISBN 978-92-79-29016-9. [Google Scholar]
- Fekkak, M.; Fleischhauer, M.; Greiving, S.; Lucas, R.; Schinkel, J.; von Winterfeld, U. “Resiliente Stadt-Zukunftsstadt”. Im Auftrag des Ministeriums für Bauen, Wohnen, Stadtentwicklung und Verkehr des Landes Nordrhein-Westfalen (MBWSV); Forschungsgutachten November 2016. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/6614/file/6614_Resiliente_Stadt.pdf (accessed on 14 January 2020).
- Wilbanks, T.J. Integrating climate change and sustainable development in a place-based context. Clim. Policy 2003, 3, 147–154. [Google Scholar] [CrossRef]
- World Commission on Environment and Development (WCED). Our Common Future: Towards Sustainable Development; WCED: Oxford, UK, 1987. [Google Scholar]
- Birkmann, J.; Bach, C.; Vollmer, M. Tools for Resilience Building and Adaptive Spatial Governance. Raumforsch. Raumordn. 2012, 70, 293–308. [Google Scholar] [CrossRef]
- Hassler, U.; Kohler, N. Resilience in the built environment. Build. Res. Inf. 2014, 42, 119–129. [Google Scholar] [CrossRef]
- Wang, Y.; Du, M.; Zhou, L.; Cai, G.; Bai, Y. A Novel Evaluation Approach of County-Level City Disaster Resilience and Urban Environmental Cleanliness Based on SDG11 and Deqing County’s Situation. Sustainability 2019, 11, 5713. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Moser, S.; Meerow, S.; Arnott, J.; Jack-Scott, E. The turbulent world of resilience: Interpretations and themes for transdisciplinary dialogue. Clim. Chang. 2019, 153, 21–40. [Google Scholar] [CrossRef]
- Cutter, S.L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 2016, 80, 741–758. [Google Scholar] [CrossRef]
- Wu, J.; Wu, T. Ecological Resilience as a Foundation for Urban Design and Sustainability. In Resilience in Ecology and Urban Design; Pickett, S.T.A., Cadenasso, M.L., McGrath, B., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 211–229. ISBN 978-94-007-5340-2. [Google Scholar]
- Figueiredo, L.; Honiden, T.; Schumann, A. Indicators for Resilient Cities; OECD Regional Development Working Papers; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Feldmeyer, D.; Wilden, D.; Kind, C.; Kaiser, T.; Goldschmidt, R.; Diller, C.; Birkmann, J. Indicators for Monitoring Urban Climate Change Resilience and Adaptation. Sustainability 2019, 11, 2931. [Google Scholar] [CrossRef] [Green Version]
- Abramson, D.M.; Grattan, L.M.; Mayer, B.; Colten, C.E.; Arosemena, F.A.; Bedimo-Rung, A.; Lichtveld, M. The resilience activation framework: A conceptual model of how access to social resources promotes adaptation and rapid recovery in post-disaster settings. J. Behav. Health Serv. Res. 2015, 42, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Neil Adger, W.; Arnell, N.W.; Tompkins, E.L. Successful adaptation to climate change across scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Xu, L.; Marinova, D.; Guo, X. Resilience thinking: A renewed system approach for sustainability science. Sustain. Sci. 2015, 10, 123–138. [Google Scholar] [CrossRef]
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Platt, S.; Brown, D.; Hughes, M. Measuring resilience and recovery. Int. J. Disaster Risk Reduct. 2016, 19, 447–460. [Google Scholar] [CrossRef]
- Weichselgartner, J.; Kelman, I. Geographies of resilience. Prog. Hum. Geogr. 2015, 39, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to Environmental Change: Contributions of a Resilience Framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Willows, R. (Ed.) Climate Adaptation. Risk, Uncertainty and Decision-Making; UK Climate Impacts Programme: Oxford, UK, 2003; ISBN 9780954483005. [Google Scholar]
- Kötter, T.; Weiß, D. Stresstest Stadt—Wie Resilient Sind Unsere Städte? Unsicherheiten der Stadtentwicklung Identifizieren, Analysieren und Bewerten; Stand: February 2018; Bundesinstitut für Bau-, Stadt und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR): Bonn, Germany, 2018; ISBN 978-3-87994-224-4.
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 1–9. [Google Scholar] [CrossRef]
- Choko, O.P.; Schmitt Olabisi, L.; Onyeneke, R.U.; Chiemela, S.N.; Liverpool-Tasie, L.S.O.; Rivers, L. A Resilience Approach to Community-Scale Climate Adaptation. Sustainability 2019, 11, 3100. [Google Scholar] [CrossRef] [Green Version]
- Renschler, C.S.; Frazier, A.E.; Arendt, L.A.; Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. A Framework for Defining and Measuring Resilience at the Community Scale: The PEOPLES Resilience Framework; University of Buffalo State University of New York: Buffalo, NY, USA, 2010. [Google Scholar]
- The Nature Conservancy. TNC Coastal Resilience Tool. Available online: http://coastalresilience.org/natural-solutions/toolkit/ (accessed on 26 October 2018).
- Winderl, T. Disaster Resilience Measurements: Stocktaking of Ongoing Efforts in Developing Systems for Measuring Resilience. Available online: https://www.preventionweb.net/files/37916_disasterresiliencemeasurementsundpt.pdf (accessed on 26 October 2018).
- Rockefeller Foundation. 100 Resilient Cities. Available online: http://www.100resilientcities.org/ (accessed on 21 June 2019).
- Resilience Alliance. Available online: https://www.resalliance.org/ (accessed on 21 June 2019).
- Pestel Institut. Regionale Krisenfestigkeit: Eine Indikatorengestützte Bestandsaufnahme auf der Ebene der Kreise und Kreisfreien Städte. Available online: https://www.braunschweig.de/politik_verwaltung/fb_institutionen/staedtische_gesellschaften/bsmportal/spitzenposition/Regionale-Krisenfestigkeit-Pestel-Institut_011211.pdf (accessed on 5 June 2019).
- Brunetta, G.; Salata, S. Mapping Urban Resilience for Spatial Planning—A First Attempt to Measure the Vulnerability of the System. Sustainability 2019, 11, 2331. [Google Scholar] [CrossRef] [Green Version]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Stadt Dortmund, Stabsstelle Dortmunder Statistik. Jahresber. Bevölk. 2019, 206, 1–48.
- Stadt Dortmund. 20. Jahrhundert—“Heute”: Strukturkrise und-Wandel. Available online: https://www.dortmund.de/de/leben_in_dortmund/ausunsererstadt/stadtportraet/stadtgeschichte/20jahrhundert/strukturkrise_und_wandel/index.html (accessed on 9 September 2019).
- Strohmeier, K.P.; Bader, S. Demographic Decline, Segregation, and Social Urban Renewal in Old Industrial Metropolitan Areas. Available online: https://difu.de/publikationen/demographic-decline-segregation-and-social-urban-renewal-in.html (accessed on 9 September 2019).
- Greiving, S.; Pratzler-Wanczura, S.; Sapountzaki, K.; Ferri, F.; Grifoni, P.; Firus, K.; Xanthopoulos, G. Linking the actors and policies throughout the disaster management cycle by “Agreement on Objectives”—A new output-oriented management approach. Nat. Hazards Earth Syst. Sci. 2012, 12, 1085–1107. [Google Scholar] [CrossRef] [Green Version]
- Greiving, S.; Lindner, C. Assessment of Flash Flood Risk in a Continuous Urban Fabric by the Example of the City of Dortmund. In Urban Flood Risk Management—Approaches to Enhance Resilience of Communities; Zenz, G., Hornich, R., Eds.; Verlag der Technischen Universität Graz: Graz, Austria, 2011; pp. 257–262. [Google Scholar]
- Shrestha, R.; Flacke, J.; Martinez, J.; van Maarseveen, M. Environmental Health Related Socio-Spatial Inequalities: Identifying “Hotspots” of Environmental Burdens and Social Vulnerability. Int. J. Environ. Res. Public Health 2016, 13, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flacke, J.; Schüle, S.A.; Köckler, H.; Bolte, G. Mapping Environmental Inequalities Relevant for Health for Informing Urban Planning Interventions-A Case Study in the City of Dortmund, Germany. Int. J. Environ. Res. Public Health 2016, 13, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffier, A.; Elsner, C.; Rath, C.; Robens, F.; Seidel, J.; Will, K. Offene Geobasisdaten für NRW. Z. Geodäsie Geoinf. Landmanag. (Zfv) 2017, 142, 133–145. [Google Scholar]
- McGarigal, K. FRAGSTATS HELP. Available online: http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 14 September 2017).
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Available online: https://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html (accessed on 9 January 2020).
- Wieland, R.; Voss, M.; Holtmann, X.; Mirschel, W.; Ajibefun, I. Spatial Analysis and Modeling Tool (SAMT): 1. Structure and possibilities. Ecol. Inform. 2006, 1, 67–76. [Google Scholar] [CrossRef]
- Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V. Müncheberg. Programme zum Herunterladen—ZALF. Available online: http://www.zalf.de/de/forschung_lehre/software_downloads/Seiten/default.aspx (accessed on 9 January 2020).
- Comber, A.; Brunsdon, C.; Green, E. Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landsc. Urban Plan. 2008, 86, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Schwarze, B. Eine Methode zum Messen von Naherreichbarkeit in Kommunen. Ph.D. Thesis, TU Dortmund University, Dortmund, Germany, 14 July 2015. [Google Scholar]
- Brugge, D.; Patton, A.P.; Bob, A.; Reisner, E.; Lowe, L.; Bright, O.-J.M.; Durant, J.L.; Newman, J.; Zamore, W. Developing Community-Level Policy and Practice to Reduce Traffic-Related Air Pollution Exposure. Environ. Justice 2015, 8, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, S.; Saleem, A.; Dewan, A. Effectiveness of DOS (Dark-Object Subtraction) method and water index techniques to map wetlands in a rapidly urbanising megacity with Landsat 8 data. In Proceedings of the Research@Locate in Conjunction with the Annual Conference on Spatial Information in Australia and New Zealand, Brisbane, Australia, 10–12 March 2015; pp. 100–108. [Google Scholar]
- Zadeh, L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 1997, 90, 111–127. [Google Scholar] [CrossRef]
- Zhang, Z.; Sheng, L.; Yang, J.; Chen, X.-A.; Kong, L.; Wagan, B. Effects of Land Use and Slope Gradient on Soil Erosion in a Red Soil Hilly Watershed of Southern China. Sustainability 2015, 7, 14309–14325. [Google Scholar] [CrossRef] [Green Version]
- Honold, J.; Beyer, R.; Lakes, T.; van der Meer, E. Multiple environmental burdens and neighborhood-related health of city residents. J. Environ. Psychol. 2012, 32, 305–317. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, X.-L.; Lin, C.-Z.; Wang, M.; He, X.-J. Development as adaptation: Framing and measuring urban resilience in Beijing. Adv. Clim. Chang. Res. 2018, 9, 234–242. [Google Scholar] [CrossRef]
- Krüger, T.; Held, F.; Hoechstetter, S.; Goldberg, V.; Geyer, T.; Kurbjuhn, C. A new heat sensitivity index for settlement areas. Urban Clim. 2013, 6, 63–81. [Google Scholar] [CrossRef]
- Bach, C.; Birkmann, J.; Kropp, J.; Olonscheck, M.; Setiadi, N.; Vollmer, M.; Walther, C. Assessing Vulnerability to Heat Waves and Heavy Rainfall at a Community Level, 11st ed.; Federal Office of Civil Protection and Disaster Assistence (BBK): Bonn, Germany, 2014; pp. 1–157. [Google Scholar]
- Bradford, K.; Abrahams, L.; Hegglin, M.; Klima, K. A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania. Environ. Sci. Technol. 2015, 49, 11303–11311. [Google Scholar] [CrossRef] [PubMed]
- Kiran, K.C.; Corcoran, J.; Chhetri, P. Measuring the spatial accessibility to fire stations using enhanced floating catchment method. Socio-Econ. Plan. Sci. 2018, 100673. [Google Scholar] [CrossRef]
- Caniglia, B.S.; Frank, B. Revealing the resilience infrastructure of cities: Preventing environmental injustices-in-waiting. In Resilience, Environmental Justice and the City; Caniglia, B.S., Vallée, M., Frank, B.F., Eds.; Routledge: Abingdon/Oxon, UK; New York, NY, USA, 2017; pp. 57–75. ISBN 9781138119895. [Google Scholar]
- Palka, G.; Grădinaru, S.R.; Jørgensen, G.; Hersperger, A.M. Visualizing Planning Intentions: From Heterogeneous Information to Maps. J. Geovisualizat. Spat. Anal. 2018, 2, 617. [Google Scholar] [CrossRef]
- Telesca, L.; Lasaponara, R. Pre- and post-fire behavioral trends revealed in satellite NDVI time series. Geophys. Res. Lett. 2006, 33, 2293. [Google Scholar] [CrossRef]
- Halkia, M.; Ferri, S.; Siragusa, A.; Pafi, M. Measuring the Accessibility of Urban Green Areas. A Comparison of the Green ESM with Other Datasets in Four European Cities; Publications Office: Luxembourg, 2016; ISBN 9279612867. [Google Scholar]
- Schaefer, M.; Thinh, N.X. Evaluation of Land Cover Change and Agricultural Protection Sites: A GIS and Remote Sensing Approach for Ho Chi Minh City, Vietnam. Heliyon 2019, 5, e01773. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Avdan, U.; Jovanovska, G. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sens. 2016, 2016, 1480307. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Amelung, B. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. In Seasonal Forecasts, Climatic Change and Human Health; Thomson, M.C., Garcia-Herrera, R., Beniston, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 161–172. ISBN 978-1-4020-6876-8. [Google Scholar]
- European Environment Agency. Noise in Europe 2014; Publications Office: Luxembourg, 2014; ISBN 9292135058.
- Directive 2002/49/EC of the European Parliament and of the Council Relating to the Assessment and Management of Environmental Noise. 2002. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:189:0012:0025:EN:PDF (accessed on 14 January 2020).
- Foudi, S.; Osés-Eraso, N.; Tamayo, I. Integrated spatial flood risk assessment: The case of Zaragoza. Land Use Policy 2015, 42, 278–292. [Google Scholar] [CrossRef]
- DEFRA. R&D Outputs: Flood Risks to People Phase 2. FD2321/TR2 Guidance Document; DEFRA: London, UK, 2006.
- Taubenböck, H.; Wurm, M.; Klein, I.; Esch, T. Verwundbarkeitsanalyse urbaner Räume: Ableitung von Indikatoren aus multisensoralen Fernerkundungsdaten. In REAL CORP 2011: Change for Stability: Lifecycles of Cities and Regions: The Role and Possibilities of Foresighted Planning in Transformation Process, Proceedings of the 16th International Conference on Urban Planning, Regional Development and Information Society = Beiträge zur 16. Internationalen Konferenz zu Stadtplanung, Regionalentwicklung und Informationsgesellschaft, Essen, Germany, 18–20 May 2011; Schrenk, M., Popovich, V., Zeile, P., Eds.; CORP, Competence Center of Urban and Regional Planning: Schwechat-Rannersdorf, Austria, 2011; pp. 1107–1118. ISBN 978-3-9503110-1-3. [Google Scholar]
- Mileu, N.; Queirós, M. Development of a QGIS Plugin to Dasymetric Mapping. Free Open Source Softw. Geospat. (Foss4g) Conf. Proc. 2018, 18. [Google Scholar] [CrossRef]
- Holloway, S.; Schumacher, J.; Redmond, R. People & Place: Dasymetric Mapping Using Arc/Info; High Mountain Press: Missoula, MT, USA, 1997. [Google Scholar]
- Federal Ministry of the Interior (BMI). National Strategy for the Protection of Critical Infrastructures (KRITIS-Strategie). Available online: https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/themen/bevoelkerungsschutz/kritis.html (accessed on 27 July 2019).
- Stein, J. Qualitätskriterien für die Bedarfsplanung von Feuerwehren in Städten; AGBF-Bund: Bonn, Germany, 2015. [Google Scholar]
- Gonçalves, C.; Marques da Costa, E. Framework and Indicators to Measure Urban Resilience: Assay in Caldas da Rainha and Évora. Urban Systems; AESOP/ACSP Congress: Dublin, Ireland, 2013. [Google Scholar]
- Reckien, D.; Flacke, J.; Dawson, R.J.; Heidrich, O.; Olazabal, M.; Foley, A.; Hamann, J.J.-P.; Orru, H.; Salvia, M.; de Gregorio Hurtado, S.; et al. Climate change response in Europe: What’s the reality? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Clim. Chang. 2014, 122, 331–340. [Google Scholar] [CrossRef]
- Kayacan, E.; Khanesar, M.A. Fundamentals of Type-1 Fuzzy Logic Theory. Fuzzy Neural Networks for Real Time Control Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 13–24. ISBN 9780128026878. [Google Scholar]
- Piegat, A. Fuzzy Modeling and Control; Physica-Verlag HD: Heidelberg, Germany, 2001; ISBN 9783790824865. [Google Scholar]
- Thinh, N.X.; Hedel, R. Vergleich zwei räumlicher Bewertungsmethoden-Compromise Programming und regelbasierte hierarchische Fuzzy-Bewertung. In Simulation in Umwelt-und Geowissenschaften; Wittmann, J., Thinh, N.X., Eds.; Umweltinformatik, Shaker Verlag: Aachen, Germany, 2005; pp. 57–66. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Haddad, B.M. Ranking the adaptive capacity of nations to climate change when socio-political goals are explicit. Glob. Environ. Chang. 2005, 15, 165–176. [Google Scholar] [CrossRef]
- Zeleny, M. Multiple Criteria Decision Making. Kyoto, 1975; Springer: Berlin, Germany, 1976; ISBN 0387076840. [Google Scholar]
- Lokalkompass Dortmund-Ost. Projektauftakt: Masterplan Integrierte Klimaanpassung Dortmund (MiKaDo). Available online: https://www.lokalkompass.de/dortmund/c-politik/projektauftakt-masterplan-integrierte-klimaanpassung-dortmund-mikado_a1260159 (accessed on 9 December 2019).
- Richter, B.; Grunewald, K.; Meinel, G. Analyse von Wegedistanzen in Städten zur Verifizierung des Ökosystemleistungsindikators “Erreichbarkeit städtischer Grünflächen”. In AGIT 2-2016: Journal für Angewandte Geoinformatik, 1., Neuerscheinung; Strobl, J., Zagel, B., Griesebner, G., Blaschke, T., Wichmann, H., Eds.; Wichmann Verlag: Berlin, Germany, 2016; pp. 472–481. ISBN 978-3-87907-622-2. [Google Scholar]
- Laux, P.; Nguyen, P.N.B.; Cullmann, J.; Kunstmann, H. Impacts of Land-Use/Land-Cover Change and Climate Change on the Regional Climate in the Central Vietnam. In Land Use and Climate Change Interactions in Central Vietnam: LUCCi, 1st ed.; Nauditt, A., Ribbe, L., Eds.; Springer: Singapore, 2017; pp. 143–151. ISBN 978-981-10-2623-2. [Google Scholar]
- Liu, Z.; Xiu, C.; Song, W. Landscape-Based Assessment of Urban Resilience and Its Evolution: A Case Study of the Central City of Shenyang. Sustainability 2019, 11, 2964. [Google Scholar] [CrossRef] [Green Version]
Explanation | Source | |
---|---|---|
R | Robustness and adaptiveness to climate related stresses and shocks | [35,38] |
E | Evaluation and Monitoring: resilience as a process | [39,40] |
S | Scale (Countries, Regions, Cities, Neighborhoods, Individual) | [39,40,41,42] |
I | Interdisciplinarity: resilience as umbrella for different sectors | [18,40] |
L | Learning and innovation | [37,43,44] |
I | Information and transparency: resilience as participation tool | [40,45] |
E | Environment (natural and built up) | [17,35] |
N | Networked systems and actors (multilevel governance) | [35] |
C | Capacity to transform after disturbance but maintain self-organization | [7,21,46] |
E | Equity and Justice: resilience measurements must not exclude others | [42,44,47,48] |
Format | Description | Resolution/Scale | Source | Year |
---|---|---|---|---|
Raster | Landsat 8 Satellite Image (path 197/row 24) | 30 × 30 m (Cloud Cover: 5.22%) | United States Geological Survey (USGS) | 2018 |
Digital Orthophotos (n = 332) | 0.01 × 0.01 m | Geobasis NRW (dl-de/by-2-0) | 2018 | |
Heavy rain hazard mapping (return period 1%/year) | 1 × 1 m | Municipal Drainage Office Dortmund | 2019 | |
Noise mapping from different sources (trains, trams, roads, industry) | 10 × 10 m | Environmental Office Dortmund; Federal Office for Railways Bonn | 2018 | |
Digital terrain model (DTM) and digital surface model (DSM) | Point data with 0.5 m spacing | Geobasis NRW (dl-de/by-2-0) | 2018 | |
Vector | Land Use, Digital Landscape Model of the Federal topographic information system (ATKIS Basis-DLM) | 1:10.000 | Geobasis NRW (dl-de/by-2-0) | 2019 |
Building parcels with land use information, Authoritative real estate cadastre information system (ALKIS) | Parcel Level | GeobasisNRW (dl-de/by-2-0) | 2019 | |
Points of Interest (POI) | Parcel Level | City of Dortmund Website | 2019 | |
Road Network | Parcel Level | OpenStreetMap (Geofabrik GmbH, www.download.geofabrik.de) | 2019 | |
Fire brigade operations due to extreme weather events | Long/Lat Coordinates | Institute of Fire Service and Rescue Technology (IFR) Dortmund | 2008–2018 | |
Volume of cold-air flow in m3/s | 100 × 100 m | NRW Office for the Protection of Nature, the Environment and Consumers (LANUV) | 2019 | |
Socio-demo-graphic and -Economic data | Proportion of infants (0–11 years) | Statistical sub-districts (n = 170) | Statistics Office Dortmund | 2017 |
Proportion of elderly +65 years | ||||
Proportion of SGBII and SGB XII recipients | ||||
Proportion of single households | ||||
Digital Land Use Plans | Official preparatory Land Use Plan | 1:20.000 | City of Dortmund Website | 2004 |
Land Use plans Ev148, InN222, Hu144 | Parcel Level | 2014, 2012, 1985 | ||
Climate mitigation measures | 1:500 | Unk. | ||
Freely available | On demand |
Dimension | Criterion | Indicator (GIS-Acronym) | Source |
---|---|---|---|
Robustness | |||
Environment | Retention sites | Degree of unsealed ground (DUG) | [40] |
Slope (SL) | [79] | ||
Resources | Accessibility of public open and green spaces (AccG) | [42,67,80] | |
Ventilation status (VS) | [40,81] | ||
Burdens | Heat stress (PET) | [82] | |
Noise pollution (NP) | [67] | ||
Society | Hazard to housing | Potentially flooded housing parcels (HFld) | [59] |
History of extreme events | Number of fire brigade operations due to extreme weather events (2008–2018) (NFO) | [40] | |
Demographic structure | Number of 0–11 years olds (INF) | [68,83] | |
Number of +65 years olds (ELD) | [67,83] | ||
Number of single-households (SHH) | [83,84] | ||
Infrastructure | Hazard to Critical Infrastructures | Potentially flooded technical and social infrastructures (TSFld) | [59,83] |
Potentially flooded transport and traffic infrastructures (TTFld) | [59,83] | ||
Civil Protection | Accessibility by fire brigade (AccF) | [85] | |
Health access | Drive time to hospitals (AccH) | [86] | |
Adaptiveness | |||
Economy | Diversity of business | Shannon Diversity Index (SHDI) | [40] |
Unemployment | Number of SGBII and SGBXII recipients (SGB) | [20] | |
Institution | Strategies and plans | Implementation status of climate resilience related measurements, research projects and land use plans (IN) | [37,40,87] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaefer, M.; Thinh, N.X.; Greiving, S. How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic. Sustainability 2020, 12, 635. https://doi.org/10.3390/su12020635
Schaefer M, Thinh NX, Greiving S. How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic. Sustainability. 2020; 12(2):635. https://doi.org/10.3390/su12020635
Chicago/Turabian StyleSchaefer, Mathias, Nguyen Xuan Thinh, and Stefan Greiving. 2020. "How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic" Sustainability 12, no. 2: 635. https://doi.org/10.3390/su12020635
APA StyleSchaefer, M., Thinh, N. X., & Greiving, S. (2020). How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic. Sustainability, 12(2), 635. https://doi.org/10.3390/su12020635